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Abstract
Background  Muscle loss is prevalent in chronic obstructive pulmonary disease (COPD). Prior studies evaluating 
musculoskeletal dysfunction in COPD have focused on individuals with baseline low muscle mass. Currently, there is 
limited data evaluating clinical characteristics and outcomes associated with progression to incident low muscle mass 
in a tobacco-exposed cohort of individuals with baseline normal muscle mass.

Methods  We evaluated 246 participants from a single-center longitudinal tobacco-exposed cohort with serial 
spirometry, thoracic imaging, dual energy x-ray absorptiometry (DXA) measurements, walk testing, and plasma 
adipokine measurements. DXA-derived fat free mass index (FFMI) and appendicular skeletal mass index (ASMI) were 
used as surrogates for muscle mass. Participants with incident low muscle mass (LM) at follow-up were characterized 
by FFMI < 18.4 kg/m2 in males and < 15.4 kg/m2 in females and/or ASMI < 7.25 kg/m2 in males and < 5.67 kg/m2 in 
females.

Results  Twenty-five (10%) participants progressed to incident low muscle mass at follow-up. At baseline, the LM 
subgroup had greater active smoking prevalence (60% v. 38%, p = 0.04), lower FFMI (17.8 ± 1.7 kg/m2 v. 19.7 ± 
2.9 kg/m2, p = 0.002), lower ASMI (7.3 ± 0.9 kg/m2 v. 8.2 ± 1.2 kg/m2, p = 0.0003), and lower plasma leptin (14.9 ± 10.1 
ng/mL v. 24.0 ± 20.9 ng/mL, p = 0.04). At follow-up, the LM subgroup had higher COPD prevalence (68% v. 43%, 
p = 0.02), lower FEV1/FVC (0.63 ± 0.12 v. 0.69 ± 0.12, p = 0.02), lower %DLco (66.5 ± 15.9% v. 73.9 ± 16.8%, p = 0.03), and 
higher annual rate of FFMI decline (-0.17 kg/m2/year v. -0.04 kg/m2/year, p = 0.006). There were no differences in age, 
gender distribution, pack years smoking history, or walk distance.

Conclusions  We identified a subgroup of tobacco-exposed individuals with normal baseline muscle mass who 
progressed to incident DXA-derived low muscle mass. This subgroup demonstrated synchronous lung disease 
and persistently low circulating leptin levels. Our study suggests the importance of assessing for muscle loss in 
conjunction with lung function decline when evaluating individuals with tobacco exposure.
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Background
Chronic obstructive pulmonary disease (COPD) is a 
heterogeneous chronic lung disease with multisystemic 
manifestations that contribute significantly to disease 
morbidity and mortality [1, 2]. Decreased muscle mass 
is an important extrapulmonary manifestation of COPD, 
with estimated prevalence ranges between 15 and 40% 
[3]. In individuals with COPD, reduced muscle mass 
is associated with lung disease progression, exercise 
intolerance, decreased health-related quality of life, and 
mortality [4–8]. In recent years, physical inactivity and 
frailty have become growing areas of focus in this high-
risk population [9]. Dysregulated adipokine metabolism 
– with adiponectin, leptin, and resistin being commonly 
implicated adipokines – is also prevalent in COPD and 
is associated with inflammatory response regulation, 
emphysema, and skeletal muscle dysfunction [10–13].

Body mass index (BMI) is commonly used for risk 
stratification in COPD but may not accurately reflect 
true muscle mass, as pathologic loss of skeletal muscle is 
not always accompanied by proportional loss of adipose 
tissue [14]. Dual energy x-ray absorptiometry (DXA) is 
the gold standard for body composition measurement 
in COPD [15–17]. Fat free mass index (FFMI), defined 
as the sum of whole-body lean muscle and bone min-
eral content adjusted for height in meters squared, is a 
clinically accepted and widely used surrogate marker for 
muscle mass in COPD [18, 19]. In cross sectional COPD 
studies, FFMI correlates with airflow obstruction and 
emphysema, and is an independent predictor of mortal-
ity, regardless of BMI [20, 21]. The dynamic processes of 
FFMI change over time and longitudinal weight loss are 
also associated with increased mortality [22, 23]. Simi-
larly, appendicular skeletal mass index (ASMI), defined 
as the sum of upper and lower extremity lean muscle 
adjusted for height in meters squared, is another DXA 
measure that associates with impaired functional sta-
tus in COPD [24]. However, clinicians do not routinely 
order whole-body DXA scans to specifically assess for 
FFMI and/or ASMI in COPD, but rather rely on BMI, 
despite its limitations, as a global assessment of body 
composition.

Prior studies evaluating muscle loss in COPD have used 
clinical cohorts that included individuals with prevalent 
low muscle mass [18, 19, 21]. Additionally, these studies 
utilized alternative approaches for defining muscle loss, 
such as quantitative computed tomography (CT) mea-
surements, [25, 26] which lack established thresholds and 
are not incorporated into current definitions of sarcope-
nia [27]. Currently, there are few studies describing risk 
factors associated with index progression to muscle loss 

using gold standard DXA measurements of body compo-
sition. Longitudinal evaluation of risk factors associated 
with incident low muscle mass using gold standard defi-
nitions is necessary to accurately identify the subgroup at 
highest risk for disease progression and morbidity who 
may benefit most from early targeted interventions.

Importantly, most studies describing musculoskeletal 
comorbidities and outcomes in lung disease have primar-
ily focused on participants with COPD. However, tobacco 
exposure is associated with oxidative stress in peripheral 
airways and muscle, and tobacco-exposed individuals 
without airflow obstruction remain at high risk for func-
tional status decline, muscle dysfunction, and muscle loss 
[23, 28–30]. Therefore, evaluation and identification of 
incident low muscle mass should focus on all tobacco-
exposed individuals, regardless of spirometry.

The main purposes of this study were to [1] identify 
clinical characteristics and adipokines associated with 
incident low muscle mass and [2] evaluate associations 
between incident low muscle mass and clinical outcomes 
in a tobacco-exposed longitudinal cohort with and with-
out airflow obstruction.

Methods
Study population
Participants from the single-center Specialized Centers 
of Clinically Oriented Research (SCCOR) longitudi-
nal cohort at the University of Pittsburgh were enrolled 
according to the previously published study design [25]. 
All participants were ≥ 40 years of age at time of enroll-
ment and had ≥ 10 pack year smoking history. Pertinent 
exclusion criteria included clinical or radiographic evi-
dence of alternative primary lung processes, suspicious 
lung nodule or lung malignancy, chronic systemic cor-
ticosteroid use, and BMI ≥ 36  kg/m2. Participants were 
followed over several study visits, with longitudinal data 
ranging between 2 and 10 years (median 6 years, IQR 5–8 
years). At each study visit, participants completed pul-
monary function testing, chest computed tomography 
(CT) imaging, DXA measurements of body composition, 
incremental shuttle walk testing (ISWT), respiratory-
specific questionnaires, and blood collection. For this 
study, we used a convenience sample of 246 participants 
who had normal baseline muscle mass at cohort entry 
(defined in the Body Composition Measurement subsec-
tion) and ≥2 DXA measurements (Fig.  1). The Univer-
sity of Pittsburgh Institutional Review Board approved 
all data acquisition procedures (IRB CR19090239-006) 
and written informed consent was obtained from all 
participants.
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Body composition measurements
Body mass index (BMI) was defined as weight in kilo-
grams (kg) over height in meters squared (m2). Normal 
BMI range is 18.5–24.9  kg/m2 [31]. DXA measures of 
body composition were obtained using a Hologic Discov-
ery densitometer (Hologic Inc., Bedford, MA, USA). Fat 
free mass index (FFMI) was defined as the sum of whole-
body lean muscle and bone mineral content in kg over 
height in m2. Low FFMI was defined as < 18.4  kg/m2 in 
males and < 15.4 kg/m2 in females based on FFMI < 25th 
percentile of healthy adults aged 55–74 [32]. Appendicu-
lar skeletal mass index (ASMI) was defined as the sum of 
upper and lower extremity lean muscle in kg over height 
in m2. Low ASMI was defined as < 7.25  kg/m2 in males 
and < 5.67  kg/m2 in females based on ASMI < 20th per-
centile of healthy elderly adults [33].

Clinical measurements
Pulmonary function testing with pre- and post-bron-
chodilator challenge and diffusing capacity of the lung 
for carbon monoxide (DLco) was performed using 
American Thoracic Society (ATS) standards [34]. COPD 
was defined by a post-bronchodilator ratio of forced 
expiratory volume in 1  s (FEV1) to forced vital capac-
ity (FVC) < 0.70. The degree of airflow obstruction was 
characterized by percent predicted FEV1 (%FEV1) using 
Gold Initiative for Chronic Obstructive Lung Disease 
(GOLD) criteria, with mild (stage I), moderate (II), severe 
(III), and very severe (IV) represented by FEV1 ≥ 80%, 

between ≥ 50% and < 80%, between ≥ 30% and < 50%, and 
< 30%, respectively [35].

Incremental shuttle walk testing (ISWT) was used to 
assess maximal performance capacity [36]. Participants 
walked along a stretch of unimpeded hallway at a pace 
dictated by a recording on a cassette player with the pace 
incrementally increased over 12 stages until exercise was 
stopped due to symptoms. All participants who were pre-
scribed oxygen therapy utilized their supplemental oxy-
gen during testing.

The St. George’s Respiratory Questionnaire (SGRQ), a 
COPD-specific validated questionnaire for health status 
assessment, was used to determine health-related qual-
ity of life and symptom burden [37]. SGRQ scores range 
between 0 and 100, where higher scores indicate greater 
respiratory symptom burden. Subdomains included 
Activity, Impacts, and Symptoms. The modified Medi-
cal Research Council (mMRC) Dyspnea Scale, a validated 
5-point self-reported scoring questionnaire, was used to 
determine dyspnea severity and disability [38]. Severe 
exacerbations, defined by those requiring hospitalization, 
were dichotomized as absent or present and self-reported 
at each study visit. Pulmonary rehabilitation was dichot-
omized as absent or present and self-reported at each 
study visit.

Radiographic assessment
Chest CT scans were performed using a standard high-
resolution protocol at 0.625-millimeter thickness and 

Fig. 1  Study flow diagram. Eligible participants were ≥40 years of age, current or former tobacco smoke users, and had ≥10 pack year smoking history. 
Participants were followed between 2 to 10 years after the baseline study visit
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interval. Quantitative emphysema was measured using 
the 15th percentile voxel point (Perc15), where more 
negative values (i.e., closer to -1,000 Hounsfield Units) 
correspond to greater emphysema burden [39]. Semi-
quantitative emphysema was visually determined using 
the Emphysema Score (EScore), a validated 6-point scor-
ing system determined by a single board-certified tho-
racic radiologist blinded to participant characteristics 
[40]. EScores defined as absent (score 0), trace/minimal 
[1], mild [2], moderate [3], severe [4], and very severe 
[5] correspond to < 10%, 10–25%, 26–50%, 51–75%, and 
> 75% visual emphysema, respectively.

Blood adipokine measurement
Plasma levels of adiponectin, leptin, and resistin were 
measured in the fasting state using the human obesity 
multiplex Luminex assays (R&D Systems, Minneapolis, 
Minnesota, USA) and analyzed using a Bioplex 200 plat-
form (Bio-Rad, Hercules, California, USA) from banked 
participant samples collected at baseline and final follow-
up study visits. All samples were run in duplicates and 
analyzed according to the manufacturer’s instructions.

Statistical analysis
Participants were grouped based on the presence or 
absence of incident low muscle mass at their final follow-
up study visit, defined by low FFMI and/or ASMI. Dif-
ferences in baseline and follow-up clinical, physiologic, 
radiographic, and adipokine levels between the incident 
low muscle mass (LM) subgroup and the stable muscle 
mass (SM) subgroup were assessed using chi-squared 
test for categorical variables, two-sample t-test for nor-
mally distributed baseline variables, and Wilcoxon rank-
sum test for non-normally distributed baseline variables. 
Bivariate and multivariate logistic regression modeling 
were used to determine relationships between longitu-
dinal muscle phenotypes and plasma adipokine levels. 
Multivariable partial correlation coefficient modeling was 
used to determine relationships between plasma adipo-
kine levels and DXA-derived total body fat mass. Receiver 
operator characteristic (ROC) curve and Youden index 
were used to determine the area under curve (AUC) and 
the optimal cut-point of baseline plasma leptin level for 
discriminating between LM and SM subgroups. Covari-
ates included age, gender (due to muscle and fat tissue 
differences between males and females), %FEV1, active 
smoking status, and corticosteroid use. Relationships 
were reported using odds ratios (OR) with 95% confi-
dence intervals or partial Pearson correlation coefficients 
(r) with associated p-values. Kernel density estimates 
were used to provide non-normally distributed smoothed 
probability density estimates of the variable of interest 
(calculated annual rate of FFMI change) in histogram for-
mat. Missing data was assumed to be missing at random 

for the purposes of this longitudinal cohort study. All sta-
tistical analyses were performed using Stata 17.1 (Stata-
Corp, Inc., College Station, Texas, USA). Figures were 
created using GraphPad Prism 9.5 (GraphPad Software, 
Boston, Massachusetts, USA).

Results
Baseline study cohort characteristics
At baseline, our study cohort had a mean age of 64.6 ± 5.7 
years, equal gender distribution (52% male, 48% female), 
and significant tobacco use (median 44 pack years, 
interquartile range [IQR] 31–60 pack years) (Table  1). 
Ninety-nine (40%) participants were active tobacco users 
at baseline and 80 (33%) remained active tobacco users 
at follow-up. A total of 150 (61%) participants had lung 
disease, defined by airflow obstruction and/or emphy-
sema. One hundred two (42%) participants met GOLD 
criteria for COPD, with the majority demonstrating 
mild (41%) or moderate (50%) airflow obstruction. Half 
of participants had CT-determined emphysema, with 
the majority demonstrating trace/minimal (58%), mild 
(20%), or moderate (17%) disease. Mean anthropometric 
measurements were notable for BMI of 29.1 ± 3.5 kg/m2 
(male: 29.1 ± 3.2 kg/m2, female: 29.0 ± 3.8 kg/m2), FFMI 
of 19.6 ± 2.3 kg/m2 (male: 21.1 ± 1.7 kg/m2, female: 17.8 
± 1.5 kg/m2), and ASMI of 8.1 ± 1.2 kg/m2 (male: 8.9 ± 
0.9  kg/m2, female: 7.2 ± 0.7  kg/m2). The interval range 
between first and final DXA measurements was 1.8 to 6.6 
years.

Muscle mass change is variable over time
In longitudinal analyses using kernel density estimate 
plotting, our tobacco-exposed cohort demonstrated vari-
able annual rates of FFMI change over time (Fig. 2). There 
were no meaningful differences in the mean annual rate 
of FFMI change between participants with lung disease 
(-0.06 kg/m2/year) and participants without lung disease 
(-0.05 kg/m2/year).

The incident low muscle mass (LM) subgroup (n = 25) 
had significantly higher annual rate of FFMI decline 
compared with the stable muscle mass (SM) subgroup 
(n = 221) (-0.17 kg/m2/year v. -0.04 kg/m2/year, p = 0.006) 
(Fig. 3). No participants in the LM subgroup gained mus-
cle, whereas 85 participants (38%) in the SM subgroup 
gained muscle. The LM subgroup had a median follow-
up period of 7 years (IQR 5–10 years), and the SM sub-
group had a median follow-up period of 6 years (IQR 4–7 
years) (p = 0.01).

Incident low muscle mass is associated with lower lung 
function at follow-up
We compared baseline study cohort characteristics 
between the LM and SM subgroups (Table  2). Par-
ticipants in the LM subgroup had lower BMI (25.7 ± 
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2.0  kg/m2 v. 29.4 ± 3.4  kg/m2, p < 0.0001), lower FFMI 
(17.8 ± 1.7  kg/m2 v. 19.7 ± 2.9  kg/m2, p = 0.002), lower 
ASMI (7.3 ± 0.9 kg/m2 v. 8.2 ± 1.2 kg/m2, p = 0.0003), and 
greater active tobacco use (60% v. 38%, p = 0.04). There 
were no differences in age, gender distribution, total pack 
years, lung function, emphysema, respiratory symptoms, 
corticosteroid use, walk distance, severe exacerbation 
frequency, or pulmonary rehabilitation participation 
between subgroups.

We compared key final follow-up study cohort charac-
teristics between the LM and SM subgroups (Fig. 4). In 
addition to lower anthropometric measures and greater 
active tobacco use, participants in the LM subgroup had 
greater prevalence of COPD (68% v. 43%, p = 0.02), lower 
FEV1/FVC (0.63 ± 0.12 v. 0.69 ± 0.12, p = 0.02), and lower 
DLco% (66.5 ± 15.9% v. 73.9 ± 16.8%, p = 0.03). There were 
trends toward lower %FEV1, greater Perc15-measured 

emphysema burden, and lower walk distance (Supple-
mental Table  1). There were no differences in age, gen-
der distribution, total pack years, respiratory symptoms, 
severe exacerbation frequency, pulmonary rehabilitation 
participation, or mortality between subgroups.

In addition to greater annual rate of FFMI decline over 
time (Fig. 3), participants in the LM subgroup had greater 
annual rate of Perc15-measured emphysema progression 
(-2.1 HU/year v. -0.6 HU/year, p = 0.04) compared to par-
ticipants in the SM subgroup (Supplemental Table  2). 
The LM subgroup trended toward greater annual rates of 
ASMI and %FEV1 decline. Despite significant differences 
in annual rates of FFMI change between subgroups, there 
was no difference in annual rates of BMI change. There 
was no difference in annual rate of walk distance change. 
During the time interval between baseline to final follow-
up, the LM subgroup had greater rates of %FEV1 and 

Table 1  Baseline and final follow-up study cohort characteristics. A total of 246 participants had demographic, clinical, radiographic, 
and body composition data. Values are listed as mean with standard deviation, unless otherwise specified by *, indicating median with 
interquartile range. There were no available updated total pack years at final follow-up

Baseline (n = 246) Final Follow-Up (n = 246)
Age (y) 64.6 (5.7) 70.7 (5.8)
Male sex (n, %) 129 (52%) 129 (52%)
Caucasian race (n, %) 230 (93%) 230 (93%)
Pack years * 44 (31–60) -
Active smoking (n, %) 99 (40%) 80 (33%)
Inhaled corticosteroids (n, %) 23 (9%) 44 (18%)
Oral corticosteroids (n, %) 4 (2%) 4 (2%)
BMI (kg/m2) 29.1 (3.5) 28.9 (4.1)
FFMI (kg/m2) 19.6 (2.3) 19.2 (2.5)
ASMI (kg/m2) 8.1 (1.2) 7.8 (1.2)
Total body fat mass (kg) 27.5 (7.6) 27.8 (8.2)
Spirometry
  FEV1/FVC
  FEV1 predicted (%)
  DLco predicted (%)

0.69 (0.11)
87.7 (18.7)
77.8 (16.1)

0.68 (0.12)
86.5 (21.1)
73.2 (16.8)

COPD (n, %)
  GOLD I (n, %)
  GOLD II (n, %)
  GOLD III (n %)
  GOLD IV (n, %)

102 (42%)
42 (41%)
51 (50%)
9 (9%)
0 (0%)

113 (46%)
40 (35%)
58 (51%)
13 (12%)
1 (1%)

Emphysema by EScore (n, %)
  Trace/Minimal (n, %)
  Mild (n, %)
  Moderate (n, %)
  Severe (n, %)
  Very Severe (n, %)

123 (50%)
71 (58%)
24 (20%)
21 (17%)
4 (3%)
3 (2%)

116 (49%)
58 (50%)
34 (29%)
18 (16%)
3 (3%)
3 (3%)

Perc15 (HU) -902 (24) -905 (24)
SGRQ Total score * 12 (6–28) 13 (5–25)
SGRQ Activity score * 19 (6–42) 23 (6–42)
SGRQ Impacts score * 4 (0–14) 4 (0–13)
SGRQ Symptoms score * 23 (10–38) 21 (9–35)
mMRC score * 0 (0–1) 1 (0–1)
Walk distance (m) 456 (143) 371 (142)
Severe exacerbation (n, %) 10 (4%) 9 (4%)
Pulmonary rehabilitation (n, %) 2 (< 1%) 8 (3%)
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Fig. 3  Annual rates of FFMI change is greater for LM subgroup. Distribution of annual change of FFMI (x-axis) is plotted against density (y-axis). Subgroup 
mean values are indicated by vertical lines. ∆: change. LM subgroup: -0.17 kg/m2/year. SM subgroup: -0.04kg/m2/year

 

Fig. 2  Annual rates of FFMI change are variable and not modified by lung disease. Distribution of annual change of FFMI (x-axis) is plotted against density 
(y-axis). Subgroup mean values are indicated by vertical lines. Lung disease is defined by airflow obstruction and/or emphysema. ∆: change. Lung disease: 
-0.06 kg/m2/year. No lung disease: -0.05kg/m2/year
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emphysema progression compared to the SM subgroup 
(Fig. 5).

Muscle loss is associated with lower circulating leptin
Compared with the SM subgroup, the LM subgroup had 
lower circulating leptin levels at baseline (14.9 ± 10.1 ng/
mL v. 24.4 ± 20.9 ng/mL, p = 0.03) and at follow-up (10.9 ± 
6.1 ng/mL v. 23.5 ± 22.1 ng/mL, p = 0.001) (Table 3). Adi-
ponectin and resistin levels were similar between groups. 
In multivariable logistic regression modeling controlling 
for age, gender, %FEV1, active smoking status, cortico-
steroid use, and duration of follow-up, the odds of inci-
dent low muscle mass was lower for every unit of plasma 
leptin increase at baseline (OR 0.96, 95% CI 0.92–0.99, 
p = 0.047) and at follow-up (OR 0.88, 95% CI 0.81–0.95, 
p = 0.002) (Table  4). The optimal baseline plasma leptin 

cut-point for the discrimination of incident muscle loss 
was 27.2 ng/mL (Supplementary Fig. 1).

Discussion
We showed that tobacco-exposed individuals with nor-
mal baseline muscle mass who progress to low muscle 
mass have, at baseline, higher rates of active tobacco use 
and lower circulating leptin levels, but are similar in age, 
gender distribution, and lung disease status compared 
with tobacco-exposed individuals who maintain or gain 
muscle mass over time. Incident low muscle mass is 
associated with lower lung function, emphysema pro-
gression, and the persistence of low circulating leptin 
levels at follow-up. A higher annual rate of FFMI decline 
in the low muscle mass subgroup was not reflected by a 
higher annual rate of BMI decline. These findings sug-
gest that muscle loss and lung disease progression are 

Table 2  Baseline study cohort characteristics by subgroup. There were 25 participants in the incident low muscle mass phenotype 
and 221 participants in the stable muscle mass phenotype based on final study visit FFMI and/or ASMI data. Values are listed as mean 
with standard deviation, unless otherwise specified by *, indicating median with interquartile range

SM Subgroup (n = 221) LM Subgroup (n = 25) P-Value
Age (y) 64.7 (5.8) 63.9 (5.3) NS
Male sex (n, %) 114 (52%) 15 (60%) NS
Caucasian race (n, %) 205 (93%) 25 (100%) NS
Active smoker (n, %) 84 (38%) 15 (60%) 0.04
Pack years * 45 (30–60) 42 (35–70) NS
Inhaled corticosteroids (n, %) 23 (10%) 0 (0%) NS
Oral corticosteroids (n, %) 3 (1%) 1 (4%) NS
BMI (kg/m2) 29.4 (3.4) 25.7 (2.0) < 0.0001
FFMI (kg/m2) 19.7 (2.9) 17.8 (1.7) 0.002
ASMI (kg/m2) 8.2 (1.2) 7.3 (0.9) 0.0003
Total body fat mass (kg) 28.1 (7.7) 22.9 (4.7) 0.001
Spirometry
  FEV1/FVC
  FEV1 predicted (%)
  DLco predicted (%)

0.70 (0.11)
88.1 (18.5)
78.3 (16.5)

0.66 (0.11)
84.6 (20.5)
73.3 (12.3)

NS
NS
NS

COPD (n, %)
  GOLD I (n, %)
  GOLD II (n, %)
  GOLD III (n %)
  GOLD IV (n, %)

89 (40%)
37 (42%)
44 (49%)
8 (9%)
0 (0%)

13 (60%)
5 (38%)
7 (54%)
1 (8%)
0 (0%)

NS

Emphysema by EScore (n, %)
  Trace/Minimal (n, %)
  Mild (n, %)
  Moderate (n, %)
  Severe (n, %)
  Very Severe (n, %)

109 (49%)
62 (57%)
20 (18%)
21 (19%)
4 (4%)
2 (2%)

14 (56%)
9 (64%)
4 (29%)
0 (0%)
0 (0%)
1 (7%)

NS

Perc15 (HU) -902 (25) -903 (21) NS
SGRQ Total score * 12 (6–27) 9 (5–30) NS
SGRQ Activity score * 19 (6–42) 17 (6–42) NS
SGRQ Impacts score * 5 (0–13) 0 (0–17) NS
SGRQ Symptoms score * 23 (10–38) 22 (10–30) NS
mMRC score * 1 (0–1) 0 (0–1) NS
Walk distance (m) 454 (143) 479 (149) NS
Severe exacerbation (n, %) 9 (4%) 1 (4%) NS
Pulmonary rehabilitation (n, %) 2 (< 1%) 0 (0%) NS
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synchronous processes and reaffirms the importance of 
comprehensive musculoskeletal assessment in conjunc-
tion with lung disease assessment over time in individu-
als with tobacco exposure.

Our findings describing clinical characteristics asso-
ciated with progression to incident low muscle mass 
using gold standard DXA measurements have important 
clinical implications. While prior studies report cross-
sectional and longitudinal associations between FFMI-
derived muscle loss and airflow obstruction, emphysema, 
and mortality, [19–21, 41] these studies include cohorts 
in which significant proportions of participants have 
prevalent low muscle mass or sarcopenia. Therefore, 
we currently have limited insight into the natural his-
tory and progression to early musculoskeletal disease in 
tobacco-related lung disease, as well as the risk factors 
that contribute to the development of low muscle mass 

over time. Importantly, while BMI has traditionally been 
used for risk stratification in COPD, this anthropometric 
measure may not accurately reflect true muscle mass [14, 
42]. This is consistent with our results demonstrating sig-
nificant differences in annual rates of FFMI change, but 
no differences in annual rates of BMI change, between 
the LM and SM subgroups over time. As such, our study 
highlights the importance of closely monitoring muscle 
mass using gold standard DXA measurements, or more 
precise techniques that differentiate skeletal muscle from 
adipose tissue, prior to the development and progression 
of sarcopenia and frailty in tobacco-exposed individuals 
to allow for early targeted therapies such as pulmonary 
rehabilitation. While measures of muscle strength were 
not readily available for this study, it is an important 
component of sarcopenia criteria that may occur prior to 

Fig. 4  LM subgroup demonstrated lower lung function at final follow-up compared with SM subgroup. Bar graph with associated dot plot representa-
tion by SM and LM subgroup of FEV1/FVC, %FEV1, %DLco, SGRQ Total score, Perc15, and walk distance, with associated p-value
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muscle loss. Therefore, early evaluation and interventions 
should also incorporate muscle strength testing.

We found that circulating leptin levels were lower at 
baseline and at follow-up in participants with incident 
low muscle mass compared to participants with stable 
muscle mass over time. We also discovered a positive 
correlation (adjusted partial Pearson r 0.59, p < 0.0001) 
between circulating leptin levels and adipose tissue con-
tent using DXA-derived total body fat content in our 
tobacco-exposed cohort. We did not find differences in 
circulating adiponectin or resistin levels between sub-
groups. Leptin is a circulating adipokine central to energy 
homeostasis and inflammatory response regulation [43]. 
Prior studies have shown that individuals with COPD 

have lower serum leptin levels compared with healthy 
controls, [44] and that age-related reductions in muscle 
mass and bone strength are associated with reduced 
leptin levels [45]. The critical role of leptin in regulat-
ing muscle mass and function is also well-described in 
animal models, where leptin loss-of-function (ob/ob) or 
lipodystrophic fat-free mice had lower muscle fiber size 
and reduced peak contractile muscle strength, both of 
which were partially rescued with leptin administration 
or reconstitution of 10% normal adipose tissue, respec-
tively [46–48]. In concordance with these studies, our 
findings suggest that leptin plays a key role in adipose-
muscle signaling and is involved in mechanisms of mus-
cle loss in individuals with tobacco exposure. Due to the 

Table 3  Plasma adipokines by subgroup. Plasma levels of adiponectin and leptin were measured at the baseline and final follow-up 
study visit. Values are listed as mean with standard deviation, p-values are listed for comparisons between muscle subgroup

SM Subgroup (n = 221) LM Subgroup (n = 25) P-Value
Baseline

Adiponectin (ng/mL) 6736 (3054) 6325 (2377) NS
Leptin (ng/mL) 24.0 (20.9) 14.9 (10.1) 0.04
Resistin (ng/mL) 6.1 (2.1) 6.0 (2.1) NS

Final Follow-Up
Adiponectin (ng/mL) 6742 (3307) 6541 (2597) NS
Leptin (ng/mL) 23.5 (22.1) 10.9 (6.1) 0.001
Resistin (ng/mL) 6.7 (2.5) 6.3 (2.5) NS

Fig. 5  LM subgroup demonstrated greater rates of airflow obstruction and emphysema progression over time compared to the SM subgroup. COPD 
grouping was defined using GOLD classification. Emphysema grouping was defined using Semi-quantitative EScore classification
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emergence of leptin replacement therapy, which has pri-
marily been utilized for the treatment of lipodystrophy, 
[49] future studies targeting this adipokine pathway in 
individuals with reduced muscle loss may be an impor-
tant area of research.

We demonstrated different patterns of muscle mass 
change in a tobacco-exposed cohort with normal baseline 
muscle mass at cohort entry. We found no differences 
in lung function, emphysema, or respiratory symptoms 
between the LM and SM subgroups at baseline, but 
significantly higher prevalence of COPD and greater 
lung disease burden in the LM subgroup at follow-up. 
Whether this is the result of the “spill-over” inflamma-
tion phenomenon or concomitant systemic inflamma-
tion affecting both lung and skeletal muscle, [50] our data 
suggests that muscle loss and lung disease progression 
are synchronous processes, rather than musculoskeletal 
dysfunction due to lung disease. This is congruent with a 
recent COPDGene study demonstrating that lung disease 
severity did not significantly correlate with musculoskele-
tal comorbidity burden: compared with tobacco-exposed 
individuals with COPD, tobacco-exposed individuals 
with preserved ratio-impaired spirometry (PRISm) had 
stronger correlations with measures of muscle weak-
ness [51]. However, it is also possible that the difference 
in the follow-up period may have affected the incidence 
of COPD onset between the two subgroups. Our study 
emphasizes the importance of comprehensive and serial 
monitoring of musculoskeletal assessments, in conjunc-
tion with lung disease assessments, over time in this 
high-risk population.

There are several strengths of our study worth high-
lighting. First, we used gold standard DXA measures of 
body composition to evaluate changes in muscle mass in 
our tobacco-exposed cohort, which allowed us to define 
low muscle mass using standard, clinically accepted defi-
nitions. Second, our cohort included tobacco-exposed 
individuals without airflow obstruction (58%), which 
differentiates it from prior studies of musculoskeletal 
dysfunction that focused primarily on tobacco-exposed 
individuals with spirometrically-defined COPD. The 
inclusion of individuals with tobacco exposure and pre-
served lung function is critical given the growing body 
of evidence demonstrating increased respiratory lung 
disease morbidity and mortality in tobacco-exposed indi-
viduals without airflow obstruction [28, 52]. Third, this 
study allowed us to make important inferences about 
muscle loss and lung disease progression over time.

There are several limitations of this study. First, this 
cohort is comprised of participants with mild to moder-
ate airflow obstruction. Therefore, our results may not be 
generalizable to individuals with severe obstruction, and 
we cannot make inferences about the impact of severe 
respiratory exacerbations on the development of low Ta
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muscle mass, which has been shown in prior studies [53]. 
Second, we only have data for tobacco-exposed individu-
als who are 64 years of age or older and excluded those 
who already had low muscle mass at cohort entry. As a 
result, it is possible that we did not capture a third sub-
group of tobacco-exposed individuals, those with lower 
muscle mass earlier in life and slow decline over time 
who develop low muscle mass, analogous to the lung 
function decline trajectory described by Lange and col-
leagues, where the subgroup with low %FEV1 at cohort 
inception and slow %FEV1 decline developed COPD over 
time [54]. Third, our predominantly Caucasian study 
population reflected the demographics of western Penn-
sylvania, eastern Ohio, and West Virginia, but may not 
have adequately captured global minority or racial differ-
ences in tobacco-exposed individuals with and without 
COPD. Fourth, due to the small percentage of partici-
pants who underwent pulmonary rehabilitation (< 1% at 
baseline, 3% at final follow-up), we did not have consis-
tent data on the effects of this physical intervention on 
skeletal muscle mass.

In conclusion, we identified a subgroup of tobacco-
exposed individuals with normal baseline muscle mass 
who progressed to incident low muscle mass. Over time, 
individuals in this subgroup demonstrated greater active 
smoking prevalence, more airflow obstruction, greater 
emphysema progression, and lower circulating leptin 
compared to individuals with stable muscle mass. This 
study demonstrates that importance of following mus-
culoskeletal comorbidities over time in high-risk indi-
viduals and suggests possible mechanisms involved in 
tobacco-related muscle loss.
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