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Abstract 

Background We applied machine learning (ML) algorithms to generate a risk prediction tool [Collaboration for Risk 
Evaluation in COVID-19 (CORE-COVID-19)] for predicting the composite of 30-day endotracheal intubation, intrave-
nous administration of vasopressors, or death after COVID-19 hospitalization and compared it with the existing risk 
scores.

Methods This is a retrospective study of adults hospitalized with COVID-19 from March 2020 to February 2021. 
Patients, each with 92 variables, and one composite outcome underwent feature selection process to identify the 
most predictive variables. Selected variables were modeled to build four ML algorithms (artificial neural network, 
support vector machine, gradient boosting machine, and Logistic regression) and an ensemble model to generate a 
CORE-COVID-19 model to predict the composite outcome and compared with existing risk prediction scores. The net 
benefit for clinical use of each model was assessed by decision curve analysis.

Results Of 1796 patients, 278 (15%) patients reached primary outcome. Six most predictive features were identified. 
Four ML algorithms achieved comparable discrimination (P > 0.827) with c-statistics ranged 0.849–0.856, calibration 
slopes 0.911–1.173, and Hosmer–Lemeshow P > 0.141 in validation dataset. These 6-variable fitted CORE-COVID-19 
model revealed a c-statistic of 0.880, which was significantly (P < 0.04) higher than ISARIC-4C (0.751), CURB-65 (0.735), 
qSOFA (0.676), and MEWS (0.674) for outcome prediction. The net benefit of the CORE-COVID-19 model was greater 
than that of the existing risk scores.
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Conclusion The CORE-COVID-19 model accurately assigned 88% of patients who potentially progressed to 30-day 
composite events and revealed improved performance over existing risk scores, indicating its potential utility in clini-
cal practice.

Keywords COVID-19, Mortality, Organ failure, Prediction models, Machine learning algorithms

Background
COVID-19 continues to disrupt healthcare systems 
with unacceptably high hospitalization and death rates 
in the United States. The Centers for Disease Control 
and Prevention’s COVID data tracker weekly review 
reported current 7-day average of 4216 new hospitali-
zations and new 537 deaths as of January 25, 2023 [1]. 
The risk of progression to critical organ dysfunction 
or death varies considerably among patients hospital-
ized for COVID-19 vary considerably with estimates 
ranging from 3 to 80% [2]. A substantial proportion of 
patients with mild to moderate symptoms on admis-
sion may rapidly progress to critical illness [3], neces-
sitating prompt attention to choose the best possible 
forward strategy. Therefore, the early identification of 
patients at the greatest risk for unfavorable outcomes 
with COVID-19 is crucial for clinical decision-making 
and resource allocation.

Several promising prognostic models and risk-scor-
ing systems, mainly using standard statistical (SS) 
approaches have been developed to predict COVID-19 
outcomes. A systematic review identified 39 prediction 
models based on SS methods for predicting short-term 
COVID-19 outcomes [4, 5]. However, most studies 
using these models have serious methodological flaws 
and a high risk of bias in multiple domains. Numerous 
machine learning (ML) models have also been devel-
oped using a priori or large heterogeneous electronic 
health record (EHR) data in patients with COVID-19. 
Although the results were promising for the diagnosis, 
they were inconclusive regarding outcome prediction 
after COVID-19. None of the available prognostic mod-
els has sufficient clinical utility to inform clinical deci-
sion-making in hospitalized patients with COVID-19.

Accordingly, we conducted a retrospective multi-
center cohort study to develop robust multivariable ML 
models to identify a set of most predictive variables to 
generate a point-based new risk prediction tool [Col-
laboration for Risk Evaluation in COVID-19 (CORE-
COVID-19)] that can be used at the bedside to predict 
a composite of endotracheal intubation, intravenous 
vasopressor administration, or death within 30  days 
of admission for COVID-19. We extended our objec-
tives to compare the ML models and CORE-COVID-19 
model with previously identified and validated risk pre-
diction tools for COVID-19 outcomes.

Methods
Additional details of methods are provided in Additional 
file 1: Panel 1. Methods, additional description.

Data source
Data were extracted from the Mayo Clinic’s compre-
hensive electronic health record system encompassing 
all 16 Mayo Clinic hospitals across four states (Arizona, 
Florida, Minnesota, and Wisconsin) from March 2020 
to February 2021. We used International Classifica-
tion of Disease, Tenth Revision, Clinical Modification 
(ICD-10-CM) codes U07.1, J12.89, J12.82, J20.8, J40, J22, 
J98.8, or J80 for data extraction [6]. These ICD-10-CM 
COVID-19 diagnosis codes were shown to reliably cap-
ture COVID-19 discharges with sensitivity, specificity, 
positive predictive value, and the negative predictive 
value of 98.01%, 99.04%, 91.52%, and 99.79%, respectively 
[7]. Additionally, we used “Mayo Data Explorer (MDE)”, 
a Mayo Clinic-specific server, to identify patients using 
the term “COVID-19” to extract COVID-19 patient data 
to supplement the initial ICD-10-CM codes-derived 
data. The use of two different servers for the extrac-
tion of COVID-19 patients potentially minimizes miss-
ing COVID-19 patients. Finally, we conducted a manual 
review of the electronic medical records of each patient 
to verify the accuracy of the data and add the missing 
data points.

Study design and population
This was a retrospective study of consecutive adults 
hospitalized with reverse transcription-polymerase 
chain reaction-confirmed COVID-19. The investigators 
reviewed the discharge diagnoses of COVID-19. Preg-
nant patients and those who declined access to their 
medical records for research were excluded. Details of 
the process of data extraction were published previously 
[8]. Data were de-identified according to the United 
States Department of Health and Human Services pri-
vacy rules [9] before analysis. The study conformed to 
the Declaration of Helsinki, strengthening the report-
ing of observational studies in epidemiology (STROBE) 
statement [10], and the transparent reporting of a mul-
tivariable prediction model for individual prognosis or 
diagnosis (TRIPOD) reporting guidelines [11]. The Mayo 
Clinic Institutional Review Board approved the study and 
waived the need for informed consent.
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Variable selection
The inclusion of independent variables for model devel-
opment was based on a comprehensive review of rele-
vant prognostic studies in patients with COVID-19 [4, 5, 
12–16], non-COVID-19 pneumonia [17–22], and expert 
opinion. Heart rate, respiratory rate, systolic blood pres-
sure, diastolic blood pressure, temperature, and  SpO2 
(oxygen saturation) were time-varying dynamic variables. 
For each dynamic variable, we ascertained an average of 
the three consecutive measurements obtained at 15 min 
intervals on admission for analysis. The variable selection 
was performed to eliminate potentially unrelated vari-
ables and enhance the prediction model’s performance 
[23]. We identified 92 potential predictor variables for 
model development including those related to demo-
graphics (n = 3), social indicators (n = 4), anthropometric 
measure (n = 1), admission source (n = 4), admitting ser-
vice (n = 3), comorbid conditions (n = 31), vital (8), labo-
ratory measures (n = 16), ECG measure (n = 1), hospital 
complications (n = 12), and drugs (n = 9). Hypotension 
as an input feature was defined as systolic blood pres-
sure < 90  mmHg that responded to fluid bolus or medi-
cation adjustment. Other key complications which were 
noted during hospitalizations and included as input fea-
tures were encephalopathy, hypothermia, pulmonary 
edema, myocardial infarction, pulmonary embolism, and 
respiratory failure that preceded the progression to com-
posite events were also included as input features. These 
incidents occurred prior to progression to the composite 
events.

Data pre‑processing
The missing values for continuous variables were imputed 
by the bagged trees method and dichotomous variables 
by the mode value [24, 25]. The continuous variables were 
further transformed by the Yeo-Johnson  transformation 
to reduce skewness, and then centered and scaled. The 
categorical variables, i.e., the  SpO2 categories were con-
verted to dummy variables by one-hot encoding, so the 
number of input features increased from 92 to 98, plus 
one outcome label variable. Finally, the pre-processed 
data were randomly split [26] into training (70%) and 
validation (30%) sets for model development and internal 
validation.

Data‑driven feature selection
A data-driven feature selection process was implemented 
on development set after data pre-processing. We incor-
porated Recursive Feature Elimination (RFE) method 
[27, 28], which is a backward feature selection algorithm. 
It can fit ML classifiers such as logistic regression (LR), 
Naïve Bayes (NB), and Random Forest (RF) in our study, 

to select a subset of variables important in predicting the 
outcome. Previous studies demonstrated good capabil-
ity of RFE in enhancing the prediction performances of 
the three classifiers [29–31]. These classifiers are familiar 
for working with RFE to generate reliable results. In the 
RFE procedure, number of variables ranging from 2 to 
92 were retained in the model and the variable set with 
the best accuracy in predicting the outcome was identi-
fied. The procedure was completed with tenfold cross-
validation and repeated five-times. The RFE procedure 
for each classifier was performed 30 times on different 
seeds; thus, there were 90 best accuracies to compare. As 
a result, the six features selected by the logistic regres-
sion in RFE demonstrated the best accuracy considering 
a small number of features required. We calculated the 
level of importance of the variables in the selected model 
[32]. Finally, the six selected variables were used for the 
subsequent stages of model development.

Analytic approach (Fig. 1)
ML-based models We reviewed the literature through 
March 2022 to identify potential ML models used to 
predict disease prognosis among patients with COVID-
19 [4, 33]. Based on the study sample size, volume and 
complexity of the data, we constructed artificial neural 
network (NN) [34], support vector machine (SVM) [35], 
gradient boosting (GBM) [36], and LR. The LR was con-
sidered the reference model since LR was one of the most 
common methods used in health research and clinical 
analysis. The data subset of the six variables and the out-
come label were used to train and test SVM, GBM, NN 
and the LR classifier. The description of machine learning 
models is provided in Additional file 1: Table S1 Machine 
learning models.

Model development and parameter tuning Each ML 
model was trained with parameter (hyperparameter) tun-
ing to define the model architecture [37, 38]. The tune 
length was set to accommodate a range of random val-
ues of the tuning parameter or the unique combination 
of values if there were more than one tuning parameter 
for a ML model. Therefore, a range of candidate values 
were tested to determine the best tuning value or combi-
nation of values for optimal model architecture. Each ML 
algorithm was tuned via a tune length of 300 candidate 
parameter values or parameter value combination, with 
tenfold cross validation and repeated five times.

The parameters were referred to the tuning parameters 
of the ML models, which help define the model archi-
tecture in the training process [37]. The values of tuning 
parameter(s) need to be pre-determined to construct ML 
models. One or a few tuning parameters need to be set 
in a ML algorithm in classifier training. Tune length is 
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the total number of unique parameter values, or unique 
combinations of parameter values if there is more than 
one parameter, required for a ML model in the training 
process. For instance, the 300 candidate parameter val-
ues or combinations of parameter values concerning a 
respective ML model is the range of candidate values to 

be tested to determine the optimal model architecture. 
Each algorithm was tuned via a random grid search from 
300 candidate parameters or parameter combinations, 
with tenfold cross-validation repeated five times [39, 40].

Ensemble model (EM) We combined the results of the 
NN, SVM, and GBM models to generate an ensemble ML 

Fig. 1 Schematics of data processing. A shows selected models with variable sets of the highest accuracies in ninety RFE procedures; the models 
involved in the RFE procedures were logistic regression, Naïve Bayes, and random forest; B illustrates number of times a variable was selected 
among the ninety RFE procedures; the count was the frequency for a feature to be chosen among the RFE procedures; C numbers of variables 
retained and tested in the RFE procedure in which the final chosen model was generated; the accuracy was the ratio of the number of correct 
predictions to the total number of predictions; D The variable importance level of the chosen model concerning the first nineteen features; the 
importance was the scaled score of the variable importance for the linear model. Abbreviations. ACE, angiotensin converting enzyme; ICU, intensive 
care unit; SSRI, selective serotonin receptor inhibitors
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model, which is a single ML model that combines multi-
ple classification models using linear regression [41].

Development of a point‑based CORE‑COVID‑19 model
The six selected variable and an outcome label were 
used to develop the COR-COVID-19 point-based scor-
ing system using Xie and colleagues [42] method to 
risk-stratify patients for the composite outcome. Six 
variables and outcome label were used to train and 
test the four ML models i.e., SVM, GBM, NN and the 
LR classifier, here the LR ML model is the “reference 
model” i.e., baseline model. The training data of the six 
variables and outcome label were used to develop the 
CORE-COVID-19 model, using LR technique in score 
weighting. The testing data were used for validation. 
The data subset of the six variables and outcome label 
were used to run a simple LR, generating the estimates 
and odds ratio. Continuous independent variables were 
converted into categorical variables based on five quan-
tiles: 0.05, 0.2, 0.8, 0.95, and 1 [43]. The score weight-
ing for each variable category was performed by LR. 
The cutoff values of the continuous variables were fine-
tuned based on the first weighting results. Performance 
metrics were obtained from the validation dataset after 
fine-tuning. The total score was set to 16 for easy man-
ual calculations.

Validation and evaluation of existing risk‑prediction tools
Through an updated search to June 2022, we found that 
“International Severe Acute Respiratory and emerg-
ing Infections Consortium Coronavirus Clinical Char-
acterization Consortium (ISARIC-4C)” model [44], 
“Confusion, Urea, Respiratory rate, Blood pressure, and 
age ≥ 65 years (CURB-65) [19]”, “quick Sequential Organ 
Failure Assessment (qSOFA)” [45], and “Modified Early 
Warning Score (MEWS)” [46] were the most feasible for 
validation and recalibration. The ISARIC-4C was origi-
nally developed in a hospitalized COVID-19 population 
in the United Kingdom and was identified as the most 
promising prediction model for COVID-19 outcome pre-
diction [4, 5]. Although CURB-65, qSOFA, and MEWS 
were developed for the non-COVID-19 population, 
they share similar characteristics, and their prognostic 
implications in COVID-19 have recently been explored. 
In the present study, ISARIC-4C, CURB-65, qSOFA, 
and MEWS scores were calculated for each patient. 
The dichotomous Glasgow Coma Scale (15 vs. < 15) was 
replaced by the presence or absence of metabolic enceph-
alopathy. The unit of blood urea nitrogen (BUN) in mg/
dl was multiplied by a conversion factor of 0.3571 to 
convert to mmol/L for estimating the ISARIC-4C score 
[47]. ISARIC-4C, CURB-65, qSOFA, and MEWS scores 

were validated and recalibrated. A brief description of the 
existing risk prediction tool identified for external valida-
tion in Additional file 1: Table S2 Description of existing 
risk prediction tools, and Table S3 Risk prediction mod-
els and estimated scores in Additional file 1.

Outcome
The outcome was a composite of endotracheal intuba-
tion, intravenous vasopressor administration, or death 
from any cause within 30-days of hospitalization for 
COVID-19, whichever occurred first.

Statistical analysis
General. We reported the mean and standard deviation 
(SD) for normally distributed variables, the median and 
interquartile range (IQR) for non-normally distributed 
variables, and the number and proportion for categori-
cal variables. Univariate analyses were performed using 
the Student t test, Kruskal–Wallis test, and Pearson χ2 
test for univariate analyses as appropriate. Statistical 
significance was adjusted to P < 0.0005 to account for 
multiple comparisons using Bonferroni’s method.

Standard performance metrics. The ML models’ per-
formances were evaluated in the development and 
validation datasets, whereas the CORE-COVID-19, 
ISARIC-4C, CURB-65, qSOFA, and MEWS were 
assessed in the cumulative cohort. Receiver operating 
characteristic (ROC) curves were generated for each 
model. Discrimination was quantified using the area 
under the ROC curves (AUC). To account for outcome 
prevalence, we reported the sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value 
(NPV), and accuracy. The model performance was 
rated using the F1 score and Kappa statistics. Perfor-
mance metrics were compared using Kruskal–Wallis 
test across the models and the Hosmer–Lemeshow test 
for goodness-of-fit [48].

Calibration. The agreement between the probabil-
ity of prediction and actual observation was estimated 
for each model [49]. For each model, calibration per-
formance was assessed using the Brier score, Hosmer–
Lemeshow test, and calibration plots.

Decision curve analysis (DCA). We performed 
DCA to determine the model’s net benefit relative to 
harm in predicting the composite outcome [50]. DCA 
accounts for the tradeoff between harms and benefits 
across a range of thresholds associated with the use of 
the risk prediction model to ascertain whether or not 
to risk stratify the patients using the model [51]. In 
this study, the terms “treat all” and “treat none were 
replaced by “intervention for all” and “intervention for 
none,” respectively. These terms are more appropriate 
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in context of the present study and as recommended by 
Vickers et al. [52].

Analysis of the CORE-COVID-19 model. LR analy-
sis was conducted to regress the study outcome on the 
selected variables to compute estimates and odds ratios 
(ORs). The CORE-COVID-19 total scores were strati-
fied into tertiles of equal size to support clinical use 
and compared using Kaplan–Meier method and Cox 
regression models.

Results
Study population
Additional file 1: Figure S1 illustrates the STROBE flow 
diagram for patient selection. A total of 3845 patient 
hospitalized for COVID-19 were initially identified 
from the Mayo Clinic database. Data analysis was per-
formed in 1800 randomly selected patients owing to 
restriction on larger data sharing for patient privacy. 
The study cohort of 1800 patients were comparable to 
the remaining 2045 patients of the initial cohort. Four 
patients were excluded due to incomplete outcome 
data. The final study cohort comprised 1796 adults 
with a median age of 68 years (range 18–89 years), 42% 
women, and 83% whites. The development cohort and 
validation cohort were comparable in all measured 
characteristics (Additional file  1: Table  S4. Charac-
teristics of study population by the development and 
validation cohorts) whereas patients who progressed 
to composite outcomes significantly differed in mul-
tiple domains from those who did not (Table  1). The 
proportion of patients who experienced the compos-
ite outcome was similar across the participating states 
(P = 0.683). At a median of 8-days  (IQR 3, 13), 96 
patients (5.4%) were intubated for respiratory failure, 
63 patients (3.5%) received intravenous vasopressors 
for circulatory failure, and 119 patients (6.6%) died. 
The 30-day composite of death or critical organ fail-
ure requiring life support was observed in 278 (15.5%) 
patients. The median length of hospital stay was 6 days 
(IQR 4, 10).

Variable selection (Fig. 1)
Among the RFE procedures, the LR, NB, and RF selected 
5–21, 9–13, and 19–55 variables, respectively. The six 
variables selected by LR in a RFE procedure offered the 
best accuracy (0.8895) considering a small number of 
features needed. The levels of importance of the vari-
ables were calculated, and six variables were used for 
the development of four ML models and the point-based 
CORE-COVID-19 model. The six chosen variables were 
incident respiratory failure, hypotension, admission to 

intensive care unit (ICU), BUN, platelet count, and expo-
sure to antipsychotic medication. The respiratory failure 
was defined as a  PaO2 ≤ 60 mmHg,  SpO2 ≤ 90%,  PaO2/
FiO2 < 300, and/ or  PaCO2 ≥ 50 mmHg on ambient air; 
requiring 4 L/min or more oxygen to maintain  SpO2 
≥ 92% for a minimum of 2 hours; or requiring at least 2 
L/min of oxygen continuously for >  24 h. Hypotension 
was defined as a systolic blood pressure < 90 mmHg or 
a mean arterial pressure <  60 mmHg for >  30 min that 
responded to fluid boluses and/or adjustment of medi-
cations before the time to outcome event. For antipsy-
chotic medications, exposure was counted regardless of 
whether it was a reconciled by home medication list or 
newly administered in the hospital before the time to the 
outcome event. Of all the potential predictor variables, 
admitting service (admission to ICU, internal medicine, 
or other services) has been a hospital level characteristic. 
Notably, admission to the ICU could have varied based 
on the hospital, attending physician, and level of health-
care system strain, and finally contingent on clinician 
judgment. These events occurred prior to outcome event.

ML models
The performance metrics were comparable across the 
ML models and EM in development and validation data-
sets (Fig. 2A and B; Table 2). The ML models’ AUC, accu-
racy, F1 score, and Briers scores in the validation dataset 
were 0.852, 89%, 0.935, and 0.087 for NN; 0.851, 88%, 
0.933, and 0.089 for SVM; 0.849, 88%, 0.931, and 0.089 
for GBM; 0.856, 88%, 0.932, and 0.0861 for LR; and 0.851, 
88%, 0.935, and 0.088 for EM; respectively. Sensitivity, 
specificity, PPV, NPV, and Kappa values were similar 
across the models (Table 2). The Hosmer–Lemeshow test 
revealed P > 0.05 for all models in both the development 
and validation datasets. Figure  3 illustrates calibration 
plots with intercept, slope, and corresponding 95% con-
fidence intervals (CI) for each model in the development 
and validation datasets.

CORE‑COVID‑19 risk prediction model
Six variables with the greatest contribution to the model 
were fitted to develop the CORE-COVID-19 model, with 
estimated scores ranging from 0 to 16 points to pre-
dict the composite outcome. The score assigned to each 
predictor variable and their weighting in the CORE-
COVID-19 model are described in Table  3. To predict 
the composite outcome, the CORE-COVID-19 model 
achieved an AUC of 0.880 (95% CI 0.858–0.901). With a 
cutoff at 8 points, the CORE-COVID-19 model had 90% 
sensitivity (95% CI 0.889–0.919), 67% specificity (95% CI 
0.610–0.724), 94% PPV (95% CI 0.924–0.949), 56% NPV 
(95% CI 0.507–0.616) with a high F1 score of 0.921, low 
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Table 1 Characteristics of study population by composite outcome

Patients with no composite outcome, 
n = 1518

Patients with composite outcome, 
n = 278

P value*

Demographics

 Age, years (standard deviation) 65 (15) 71 (13) < 0.0001

 Female, n = (%) 654 (43) 102 (37) 0.0472

 White, n = (%) 1266 (84) 221 (79) 0.1129

Social indicators

 Married, n = (%) 919 (60) 156 (56) 0.1664

 Current smoker, n = (%) 73 (5) 13 (5) 0.9241

 Ever smoker, n = (%) 573 (38) 123 (44) 0.0409

 Substance use disorder, n = (%) 48 (3) 12 (4) 0.3247

Anthropometric measure

 Body mass index, kg/m2 31 (8) 30 (7) 0.0035

Admission source

 Home, n = (%) 1264 (83) 171 (61) < 0.0001

 Clinic, n = (%) 56 (4) 9 (3) 0.7109

 Acute care, n = (%) 126 (8) 70 (25) < 0.0001

 Nursing home, n = (%) 72 (5) 28 (10) 0.0004

Admitting service

 Intensive care unit, n = (%) 74 (5) 113 (40) < 0.0001

 Intern medicine, n = (%) 1009 (66) 100 (36) < 0.0001

 Other service, n = (%) 435 (29) 65 (23) 0.0712

Comorbid conditions

 Anemia, n = (%) 306 (20) 122 (44) < 0.0001

 Arthritis, n = (%) 164 (11) 41 (15) 0.0572

 Atrial fibrillation, n = (%) 301 (20) 103 (37) < 0.0001

 Asthma, n = (%) 108 (7) 15 (5) 0.2669

 Bone marrow disease, n = (%) 74 (5) 22 (8) 0.0384

 Bone marrow/stem cell transplant, n = (%) 14 (1) 2 (0.7) 0.7407

 Coronary artery disease, n = (%) 126 (8) 38 (14) 0.0043

 Cancer, active, n = (%) 80 (5) 24 (9) 0.0273

 Cancer with metastasis, n = (%) 36 (2) 5 (2) 0.5565

 Chronic kidney disease, n = (%) 331 (22) 80 (29) 0.0110

 Chronic obstructive pulmonary disease, n = (%) 215 (14) 60 (22) 0.0016

 Depression, n = (%) 228 (19) 53 (19) 0.9712

 Dementia, n = (%) 29 (2) 13 (5) 0.0050

 Diabetes mellitus, n = (%) 556 (37) 134 (48) 0.0003

 Diabetes with complications, n = (%) 321 (21) 73 (26) 0.0582

 Heart failure, n = (%) 223 (15) 72 (26) < 0.0001

Human immuno-deficiency virus, n = (%) 2 (0.1) 1 (0.3) 0.3922

Hyperlipidemia, n = (%) 770 (51) 168 (60) 0.0029

Hypertension, n = (%) 971 (64) 223 (80) < 0.0001

Immunodeficiency, n = (%) 66 (4) 20 (7) 0.0410

Liver disease, n = (%) 36 (2) 14 (5) 0.0130

Malnutrition, n = (%) 102 (7) 50 (18) < 0.0001

Obstructive sleep apnea, n = (%) 371 (24) 54 (19) 0.0705

Osteoporosis, n = (%) 98 (6) 22 (8) 0.3708

Other lung conditions, n = (%) 66 (4) 34 (12) < 0.0001

Other neurological conditions, n = (%) 51 (3) 12 (4) 0.4253

Other psychiatric conditions, n = (%) 128 (8) 9 (3) 0.0027

Peripheral artery disease, n = (%) 6 (0.3) 2 (0.7) 0.4555
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Table 1 (continued)

Patients with no composite outcome, 
n = 1518

Patients with composite outcome, 
n = 278

P value*

Solid organ transplant, n = (%) 71 (5) 14 (5) 0.7954

Stroke, n = (%) 54 (4) 28 (10) < 0.0001

Venous thrombo-embolism, n = (%) 143 (9) 54 (19) < 0.0001

Vitals

 Heart rate/min, (standard deviation) 89 (18) 93 (20) 0.0077

 Respiratory rate/min, (standard deviation) 22 (5) 25 (8) < 0.0001

 Systolic blood pressure, mmHg (standard deviation) 131 (19) 126 (21) < 0.0001

 Diastolic blood pressure, mmHg (standard deviation) 77 (12) 73 (13) < 0.0001

 Temperature in celcius (standard deviation) 37.1 (0.6) 37.2 (0.7) 0.6469

  SpO2, 94%–100%, n = (%) 970 (64) 127 (46) < 0.0001

  90–93%, n = (%) 450 (30) 83 (30) 0.9433

  < 90%, n = (%) 98 (6) 68 (24) < 0.0001

Laboratory measures

 Hemoglobin, g/dL (standard deviation) 12.9 (2.0) 12.4 (2.3) < 0.0001

 White blood cell count, ×10 (interquartile range) 6.3 (4.6, 8.5) 8.2 (5.3, 12.4) < 0.0001

 Neutrophils, ×10 (interquartile range) 4.7 (3.2, 6.6) 6.6 (4.2, 10.6) < 0.0001

 Lymphocytes, x10 (interquartile range) 0.8 (0.6, 1.16) 0.8 (0.5, 1.1) 0.0001

 Platelets, ×10 (interquartile range) 209 (86) 198 (93) 0.0503

 Sodium, mmol/L (standard deviation) 135 (4.5) 135 (6) 0.2301

 Bicarbonate, mmol/L (standard deviation) 23.7 (3.5) 22.1 (4.3) < 0.0001

 Anion gap, mmol/L (standard deviation) 12.4 (2.9) 13.4 (3.5) < 0.0001

 Blood urea nitrogen, mg/dL (interquartile range) 17 (12, 25) 28 (20, 41) < 0.0001

 Creatinine, mg/dL (interquartile range) 1.0 (0.8, 1.3) 1.1 (0.9, 1.7) < 0.0001

 Albumin, g/dL (standard deviation) 3.6 (0.5) 3.3 (0.6) < 0.0001

 Alanine aminotransferase, U/L (interquartile range) 28 (19, 46) 29 (19, 49) 0.4232

 Aspartate aminotransferase, U/L (interquartile range) 38 (29, 55) 47 (32, 71.3) < 0.0001

 Bilirubin, mg/dL (interquartile range) 0.6 (0.3, 0.9) 0.5 (0.3, 0.7) 0.0038

 Glucose, mg/dL (standard deviation) 137 (54) 154 (71) < 0.0001

 c-reactive protein, mg/L (interquartile range) 61.0 (24.7, 113.2) 104.7 (19.4, 362.6) < 0.0001

ECG measure

 QTc, msec (standard deviation) 449 (30) 455 (35) 0.0029

In-hospital complications

 Hypothermia, n = (%) 7 (0.5) 8 (3) < 0.0001

 Hypotension, n = (%) 155 (10) 124 (45) < 0.0001

 Myocardial infarction, n = (%) 13 (0.8) 17 (6) < 0.0001

 Cardiac arrest, n = (%) 2 (0.1) 20 (7) < 0.0001

 Respiratory failure, n = (%) 755 (50) 259 (93)

 Pulmonary edema, n = (%) 16 (1) 24 (9) < 0.0001

 Pulmonary embolism, n = (%) 91 (6) 61 (22) < 0.0001

 Secondary pneumonia, n = (%) 145 (10) 91 (33) < 0.0001

 GI complications, n = (%) 20 91) 36 (13) < 0.0001

 Electrolyte abnormality, n = (%) 890 (59) 230 (83) < 0.0001

 Disseminated intra-vascular coagulation, n = (%) 2 (0.1) 6 (2) < 0.0001

 Encephalopathy, n = (%) 62 (0.4) 66 (24) < 0.0001

Drugs

 Remdesivir, n = (%) 162 (11) 45 (16) 0.0081

 Tocilizumab, n = (%) 15 (1) 15 (5) < 0.0001

 Dexamethasone, n = (%) 338 (22) 83 (30) 0.0060

 Hydroxychloroquine, n = (%) 25 (2) 11 (4) 0.0115



Page 9 of 16Kwok et al. Respiratory Research           (2023) 24:79  

Table 1 (continued)

Patients with no composite outcome, 
n = 1518

Patients with composite outcome, 
n = 278

P value*

 Aspirin, n = (%) 534 (35) 111 (40) 0.1291

 Statin, n = (%) 564 (37) 105 (38) 0.8452

 ACEI/ARBs, n = (%) 426 (28) 60 (22) 0.0254

 Anti-psychotic medication, n = (%) 90 (6) 57 (21) < 0.0001

 SSRI, n = (%) 204 (13) 26 (9) 0.0609

Abbreviations: ACEI/ARBs, angiotensin converting enzyme inhibitor/Angiotensin II receptor blockers; SSRI, selective serotonin receptor inhibitor

*P value was significant at < 0.0001 for multiple comparison according to Bonferroni method

Fig. 2 Receiver operating characteristic curves (ROC) for predicting the composite of death or organ failure at 30 days after hospitalization for 
COVID-19. (A) development and (B) internal validation datasets stratified according to individual machine learning models; Fig. 2 C shows ROC for 
predicting outcome stratified by the new CORE-COVID-19 and 4 existing risk prediction tools. CORE-COVI-19 model consistently outperformed 
each existing risk prediction tools. Fig. 2 D and E showed decision curve analysis stratified according to machine learning models in development 
(D) and validation (E) data sets. Fig. 2 F illustrate decision curve analysis stratified by CORE-COVID-19 and other existing risk prediction tools for 
outcome prediction with net benefit of CORE-COVID-19 exceeding that of other models at wide range of thresholds. The "intervention for all" 
indicated net benefit from 0 to 0.15 below 20% of threshold probability. The ML models achieved the best net benefit at around .07–.08 when 
the threshold probability approached the minimum in the training dataset. The models still showed net benefit when the threshold probability 
rose to approximately 75%; the GBM even showed net benefit at above 80% of threshold probability. On the validation data set, the best net 
benefit ranged between .05–.07, and the models offered net benefit at around 70% of threshold probability at most. The maximum net benefit 
for CORE-COVID-19 model was best at 0.1 threshold and continued to show net benefit at above 55% of threshold probability which was higher 
than existing prediction tools. ISARIC-4C had its best net benefit, which was comparable to ML models in training, but the maximum threshold 
probability showing net benefit was only around 35%. The qSOFA presents net benefit at above 50% of threshold probability but its best net 
benefit was only approximately 0.03. Abbreviations: AUC, area under receiver operating characteristic curve; CORE-COVID-19, Collaboration 
for Risk Evaluation in COVID-19; CURB-65, confusion, urea, respiratory rate, blood pressure, and age ≥ 65 years; ISARIC-4C, International Severe 
Acute Respiratory and emerging Infections Consortium Coronavirus Clinical Characterization Consortium; qSOFA, quick sequential organ failure 
assessment; MEWS, modified early warning score



Page 10 of 16Kwok et al. Respiratory Research           (2023) 24:79 

Ta
bl

e 
2 

Pe
rf

or
m

an
ce

 m
et

ric
s 

fo
r e

ac
h 

m
od

el
 in

 d
ev

el
op

m
en

t, 
va

lid
at

io
n,

 a
nd

 c
um

ul
at

iv
e 

co
ho

rt
s

AU
C,

 a
re

a 
un

de
r t

he
 re

ce
iv

er
 o

pe
ra

tin
g 

ch
ar

ac
te

ris
tic

 c
ur

ve
; C

I, 
co

nfi
de

nc
e 

in
te

rv
al

; C
O

RE
-C

O
VI

D
-1

9,
 C

ol
la

bo
ra

tio
n 

fo
r R

is
k 

Ev
al

ua
tio

n;
 C

O
VI

D
-1

9;
 C

U
RB

-6
5 

sc
or

e 
ba

se
d 

on
 c

on
fu

si
on

, u
re

a,
 re

sp
ira

to
ry

 ra
te

, b
lo

od
 p

re
ss

ur
e,

 
an

d 
ag

e 
≥

 6
5 

ye
ar

s;
 E

N
, e

ns
em

bl
e 

m
od

el
; G

BM
, g

ra
di

en
t b

oo
st

in
g 

m
ac

hi
ne

; I
SA

RI
C-

4C
, I

nt
er

na
tio

na
l S

ev
er

e 
Ac

ut
e 

Re
sp

ira
to

ry
 a

nd
 e

m
er

gi
ng

 In
fe

ct
io

ns
 C

on
so

rt
iu

m
 C

or
on

av
iru

s 
Cl

in
ic

al
 C

ha
ra

ct
er

iz
at

io
n 

Co
ns

or
tiu

m
; L

R,
 

lo
gi

st
ic

 re
gr

es
si

on
; M

EW
S,

 m
od

ifi
ed

 e
ar

ly
 w

ar
ni

ng
 s

co
re

; N
N

, n
eu

ra
l n

et
w

or
k;

 q
SO

FA
, q

ui
ck

 s
eq

ue
nt

ia
l o

rg
an

 fa
ilu

re
 a

ss
es

sm
en

t; 
PP

V,
 p

os
iti

ve
 p

re
di

ct
iv

e 
va

lu
e;

 N
PV

, n
eg

at
iv

e 
pr

ed
ic

tiv
e 

va
lu

e;
 S

VM
, s

up
po

rt
 v

ec
to

r m
ac

hi
ne

*F
1 

sc
or

e 
=

 2
 ×

 (p
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e 
×

 se
ns

iti
vi

ty
)/

 (p
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e 
+

 se
ns

iti
vi

ty
); 

Ra
ng

es
 b

et
w

ee
n 

0 
an

d 
1,

 h
ig

he
r t

he
 v

al
ue

 b
et

te
r t

he
 p

er
fo

rm
an

ce
: s

co
re

 0
.8

–0
.9

 in
di

ca
te

s 
go

od
 a

nd
 >

 0
.9

 re
pr

es
en

t v
er

y 
go

od
 p

er
fo

rm
an

ce
†  K

ap
pa

 =
 A

 m
ea

su
re

 o
f t

he
 p

er
fo

rm
an

ce
 o

f a
 c

la
ss

ifi
ca

tio
n 

m
od

el
 c

on
tr

ol
lin

g 
fo

r t
he

 a
cc

ur
ac

y;
 s

co
re

 <
 0

 is
 in

di
ca

te
s 

no
 a

gr
ee

m
en

t, 
0–

0.
20

 a
s 

sl
ig

ht
, 0

.2
1–

0.
40

 a
s 

fa
ir,

 0
.4

1–
0.

60
 a

s 
m

od
er

at
e,

 0
.6

1–
0.

80
 a

s 
su

bs
ta

nt
ia

l, 
an

d 
0.

81
–1

 a
s 

al
m

os
t p

er
fe

ct
 a

gr
ee

m
en

t
¶  B

ri
er

 s
co

re
 =

 m
ea

n 
sq

ua
re

d 
di

ffe
re

nc
e 

be
tw

ee
n 

ob
se

rv
ed

 a
nd

 p
re

di
ct

ed
 o

ut
co

m
e,

 a
 m

ea
su

re
 o

f c
al

ib
ra

tio
n,

 ra
ng

es
 fr

om
 0

 to
 1

 w
ith

 0
 re

pr
es

en
tin

g 
th

e 
be

st
 a

nd
 1

 re
pr

es
en

t w
or

st
 c

al
ib

ra
tio

n

**
Yo

ud
en

 in
de

x 
=

 se
ns

iti
vi

ty
 (%

) +
 sp

ec
ifi

ci
ty

 (%
) –

 1
00

; r
an

ge
s 

fr
om

 0
 to

 1
 w

ith
 1

 re
pr

es
en

tin
g 

pe
rf

ec
t t

es
t

D
at

as
et

M
od

el
AU

C 
(9

5%
 C

I)
Se

ns
iti

vi
ty

 (9
5%

 
CI

)
Sp

ec
ifi

ci
ty

 (9
5%

 
CI

)
PP

V 
(9

5%
 C

I)
N

PV
 (9

5%
 C

I)
F1

 
sc

or
e*

Ka
pp

a†
Br

ie
r 

sc
or

e
Cu

t‑
off

Yo
ud

en
 

in
de

x*
*

D
ev

el
op

m
en

t
N

N
0.

90
7 

(0
.8

85
–0

.9
29

)
0.

97
3 

(0
.9

61
–0

.9
82

0.
49

5 
(0

.4
23

–0
.5

67
)

0.
91

3 
(0

.8
95

–0
.9

28
)

0.
77

0 
(0

.6
86

–0
.8

40
)

0.
94

2
0.

54
7

0.
07

8
0.

16
2

0.
67

0

SV
M

0.
89

7 
(0

.8
74

–0
.9

20
)

0.
96

9 
(0

.9
57

–0
.9

79
)

0.
44

9 
(0

.3
78

–0
.5

21
)

0.
90

5 
(0

.8
86

–0
.9

21
)

0.
72

7 
(0

.6
39

–0
.8

04
)

0.
93

6
0.

49
5

0.
08

5
0.

13
0.

65
4

G
BM

0.
91

4 
(0

.8
93

–0
.9

35
)

0.
98

2 
(0

.9
72

–0
.9

89
)

0.
43

9 
(0

.3
68

–0
.5

11
)

0.
90

5 
(0

.8
86

–0
.9

21
)

0.
81

9 
(0

.7
32

–0
.8

87
)

0.
94

2
0.

51
9

0.
07

7
0.

15
2

0.
67

8

EN
0.

90
8 

(0
.8

86
–0

.9
30

)
0.

96
9 

(0
.9

57
–0

.9
79

)
0.

50
5 

(0
.4

33
–0

.5
77

)
0.

91
4 

(0
.8

96
–0

.9
3)

0.
75

0 
(0

.6
67

–0
.8

21
)

0.
94

1
0.

54
7

0.
07

8
0.

09
0.

67
3

LR
0.

90
0 

(0
.8

78
–0

.9
23

)
0.

96
8 

(0
.9

56
–0

.9
78

)
0.

50
0 

(0
.4

28
–0

.5
72

)
0.

91
3 

(0
.8

95
–0

.9
29

)
0.

74
2 

(0
.6

59
–0

.8
15

)
0.

94
0

0.
54

0
0.

08
0

0.
14

3
0.

65
7

Co
m

pa
ris

on
s

χ2
1.

50
0

4.
21

3
1.

50
0

1.
37

1
2.

83
3

4
4

4

p
0.

82
7

0.
37

8
0.

82
7

0.
84

9
0.

58
6

0.
40

6
0.

40
6

0.
40

6

Va
lid

at
io

n
N

N
0.

85
2 

(0
.8

04
–0

.9
00

)
0.

96
9 

(0
.9

49
–0

.9
83

)
0.

42
7 

(0
.3

18
–0

.5
41

)
0.

90
4 

(0
.8

74
–0

.9
29

)
0.

71
4 

(0
.5

67
–0

.8
34

)
0.

93
5

0.
47

4
0.

08
7

0.
28

9
0.

56
4

SV
M

0.
85

1 
(0

.8
04

–0
.8

98
)

0.
97

4 
(0

.9
54

–0
.9

86
)

0.
36

6 
(0

.2
62

–0
.4

80
)

0.
89

5 
(0

.8
65

–0
.9

21
)

0.
71

4 
(0

.5
54

–0
.8

43
)

0.
93

3
0.

42
4

0.
08

9
0.

14
7

0.
55

6

G
BM

0.
84

9 
(0

.8
00

–0
.8

98
)

0.
97

4 
(0

.9
54

–0
.9

86
)

0.
34

1 
(0

.2
40

–0
.4

54
)

0.
89

2 
(0

.8
61

–0
.9

17
)

0.
70

0 
(0

.5
35

–0
.8

34
)

0.
93

1
0.

39
9

0.
08

9
0.

21
6

0.
58

7

EN
0.

85
1 

(0
.8

02
–0

.8
99

)
0.

96
5 

(0
.9

44
–0

.9
80

)
0.

43
9 

(0
.3

30
–0

.5
53

)
0.

90
5 

(0
.8

76
, 0

.9
30

)
0.

69
2 

(0
.5

49
–0

.8
13

)
0.

93
4

0.
47

5
0.

08
8

0.
21

6
0.

57
1

LR
0.

85
6 

(0
.8

09
–0

.9
03

)
0.

96
7 

(0
.9

46
–0

.9
81

)
0.

40
2 

(0
.2

96
–0

.5
17

)
0.

90
0 

(0
.8

70
–0

.9
25

)
0.

68
8 

(0
.5

37
–0

.8
13

)
0.

93
2

0.
44

5
0.

08
6

0.
22

7
0.

57
3

Co
m

pa
ris

on
s

χ2
1.

29
0

1.
43

3
1.

50
0

1.
50

0
1.

08
9

4
4

4

p
0.

86
3

0.
83

8
0.

82
7

0.
82

7
0.

89
6

0.
40

6
0.

40
6

0.
40

6

Cu
m

ul
at

iv
e 

co
ho

rt
CO

RE
-

CO
VI

D
-1

9
0.

88
0 

(0
.8

58
–0

.9
01

)
0.

90
4 

(0
.8

89
–0

.9
19

)
0.

66
9 

(0
.6

10
–0

.7
24

)
0.

93
7 

(0
.9

24
–0

.9
49

)
0.

56
2 

(0
.5

07
–0

.6
16

)
0.

92
1

0.
53

2
0.

15
6

8
0.

59
3

IS
A

RI
C

-4
C

0.
75

1 
(0

.7
20

–0
.7

81
)

0.
79

4 
(0

.7
73

–0
.8

14
)

0.
56

5 
(0

.5
04

–0
.6

24
)

0.
90

9 
(0

.8
92

–0
.9

24
)

0.
33

4 
(0

.2
91

–0
.3

79
)

0.
84

7
0.

28
0.

21
4

12
.6

0.
35

9

C
U

RB
-6

5
0.

73
5 

(0
.7

05
–0

.7
65

)
0.

93
6 

(0
.9

23
–0

.9
48

)
0.

29
5 

(0
.2

42
–0

.3
52

)
0.

87
9 

(0
.8

62
–0

.8
94

)
0.

45
8 

(0
.3

84
–0

.5
34

)
0.

90
7

0.
27

0.
13

3
2

0.
37

4

qS
O

FA
0.

67
6 

(0
.6

44
–0

.7
07

)
0.

96
7 

(0
.9

57
–0

.9
75

)
0.

20
9 

(0
.1

62
–0

.2
61

)
0.

87
0 

(0
.8

53
–0

.8
85

)
0.

53
7 

(0
.4

38
–0

.6
33

)
0.

91
6

0.
23

4
0.

13
5

1
0.

26
8

M
EW

S
0.

67
4 

(0
.6

40
–0

.7
08

)
0.

85
0 

(0
.8

31
–0

.8
67

)
0.

37
8 

(0
.3

20
–0

.4
38

)
0.

88
2 

(0
.8

64
–0

.8
98

)
0.

31
5 

(0
.2

66
–0

.3
68

)
0.

86
5

0.
21

0.
14

7
3

0.
25

8



Page 11 of 16Kwok et al. Respiratory Research           (2023) 24:79  

Brier score of 0.156, and Youden Index of 0.593 for pre-
dicting composite outcomes. Additional file  1: Table  S3 
illustrates the ORs with 95% CIs for each selected varia-
ble included in the CORE-COVID-19 model. The CORE-
COVID-19 scores were stratified into tertiles (0–4, 5–7, 
and ≥ 8) for clinical use. After multivariable adjustment 
for age, sex, and race, patients in the highest tertile (ter-
tile 3) had a 30-fold [hazard ratio (HR) 29.7; 95% CI 12.3–
72.1, P < 0.0001] and tenfold (HR 9.8, 95% CI 5.6–17.2) 
higher risk for the composite outcome than those in the 

lowest and middle tertiles, respectively. Patients with the 
composite outcome had a median score of 10, compared 
to 5 in those with no composite outcome (W = 50,530.5, 
P < 0.0001). These findings imply that with a cutoff at 8 
points, the CORE-COVID-19 model correctly classified 
88% of patients who potentially progressed to death or 
organ failure by day 30. The Kaplan–Meier curves are 
illustrated in Fig. 4.

Fig. 3 Calibration plots associated with each machine learning model in development (upper panel A–E) and validation (lower panel, A–E) 
datasets, all showed good calibration

Table 3 CORE-COVID-19 score for the composite of intubation, 
intravenous administration vasopressors, or death within 30-days 
of hospitalization for COVID-19

Score for each variable was derived from logistic regression model

Predictor variable Status Score

Respiratory failure No 0

Yes 4

Admission to critical care unit No 0

Yes 3

Exposure to psychoactive medications No 0

Yes 2

Hypotension No 0

Yes 2

Blood urea nitrogen, mg/dL < 12 0

12–30 2

≥ 31 3

Platelet count, ×109/L < 135 2

135–371 1

≥ 372 0

Fig. 4 Kaplan-Meir estimates for cumulative incidence of the 
composite of death or organ failure by the tertiles of COVID-19 organ 
failure CORE-COVID-19 scores: low, intermediate, and high-risk. In 
cumulative cohort of 1794 hospitalized COVID-19 patients, 42.5% 
composite events occurred in highest compared with 7.9% in the 
intermediate and 1.4% in the lowest tertile. Hazard ratios and 95% 
confidence intervals were adjusted to demographics. Abbreviations. 
aHR, adjusted hazard ratio; CI confidence interval
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Comparisons
There were no significant differences between ML models 
interm of performance metrics (Table 2; Figs. 2A, B, and 
3). Notably, the EM provided no additional improvement 
in discrimination over NN, SVM, GBM, and LR classifier 
in predicting the composite outcome. However, each ML 
algorithm and CORE-COVID-19 model outperformed 
ISARIC-4C, CURB-65, qSOFA, and MEWS in predict-
ing the composite outcomes (Table 2; Fig. 2C). The per-
formance of ISARIC-4C (AUC 0.710) was comparable 
to that of CURB-65 (AUC 728, P = 0.205), qSOFA (AUC 
0.678, P = 0.124) and MEWS (AUC 0.671, P = 0.075) in 
the study cohort (Table 2; Fig. 2C).

DCA
DCA results were similar across ML models in the develop-
ment and validation datasets (Fig. 2D and E). The ML mod-
els achieved the best net benefit, approximately 0.07–0.08 
when the threshold probability approached the minimum 
in the development dataset. The maximum net benefit 
for the CORE-COVID-19 model was at the 0.1 cutoff and 
continued to reveal net benefit at above 55% of thresh-
old probability which was higher than that of ISARIC-4C, 
CURB-65, qSOFA, and MEWS (Fig. 2F).

Check lists
STROBE check list is provided in Additional file 1: Table S5 
and TRIPOD check lis in Additional file 1: Table S6.

Discussion
Principal findings
Using artificial intelligence approaches, we developed 
four independent ML models, an EM, and a point-based 
CORE-COVID-19 risk prediction tool with discrimina-
tion and net clinical benefits analysis. The results dem-
onstrated that the ML models and the CORE-COVID-19 
model were consistently superior to four existing risk 
prediction tools for predicting the 30-day composite of 
death or organ failure in patients hospitalized for first-
ever COVID-19 with a broader clinical spectrum. Nota-
bly, the EM did not confer any additional benefit. Instead, 
the improved performances of the de novo models were 
likely from the feature selection process capturing high-
dimensional non-linear interactions, and rigorous ML 
training and tuning, which might not have been possible 
with standard statistical methods.

The feature selection process identified the six most 
predictive variables from multiple domains from a total 
of 92 potential candidate predictors. The six selected 
variables were used to train ML models and to develop 
a new 16-point-based CORE-COVID-19 model. Of 

the six variables, admitting service (admission to ICU, 
internal medicine, or other services) was a hospital 
level characteristic. The Mayo Clinic with its 16 hospi-
tals across four states is a highly integrated and closely 
regulated healthcare system in the United States. The 
clinical practice across the Mayo Clinic hospitals 
including admission to ICU is rather homogenous and 
all hospitals were continuously and remotely monitored 
by enhance ICU services. However, subtle differences 
in practice of admitting patients to the ICU across 
the differences multiple sites cannot be excluded. The 
CORE-COVID-19 model with an AUC of 0.880 accu-
rately classified hospitalized COVID-19 patients into 
low-, intermediate-, and high-risk tertiles for the com-
posite outcome. The CORE-COVID-19 model consist-
ently outperformed ISARIC-4C, CURB-65, qSOFA, and 
MEWS in outcome prediction. Our findings imply that 
compared with existing prediction tools; the CORE-
COVID-19 model can miss 12%-19% fewer patients at 
risk of a composite outcome. Furthermore, in the DCA, 
the CORE-COVID-19 model attained a higher net 
benefit across a range of thresholds than ISARIC-4C, 
CURB-65, qSOFA, or MEWS risk scores.

Compared with the ML-derived CORE-COVID-19 
model, the modest performance of existing tools could 
lead to underestimation of the risk, consequent inap-
propriate interventions, and sub-optimal outcomes. In 
contrast, the CORE-COVID-19 model improved the pre-
cision classification between COVID-19 patients with 
and without the composite outcome. Notably, the iden-
tified predictor variables provided potential insights into 
disease progression or death and probably accounted 
for the greater discriminatory ability of the CORE-
COVID-19 model in our study.

Clinical perspective
Comparison with previously identified predictors. We 
identified respiratory failure [53], hypotension, ele-
vated BUN [19], low platelet count [54, 55], admis-
sion to ICU [56, 57], and exposure to antipsychotic 
medication [58] in the hospital as the most predictive 
variables, all of which were recognized for their respec-
tive association with mortality in COVID-19 or other 
acute conditions. Importantly, the CORE-COVID-19 
model shared few predictor variables with ISARIC-4C 
[44], CURB-65 [19], qSOFA [45], and MEWS [46]. The 
CORE-COVID-19 is the first prediction model to use 
a combination of these variables and their respective 
weightings to predict the outcome. A notable finding of 
our study was that the risk of progression to composite 
outcome was strongly associated with disease-specific 
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and hospital-level characteristics as opposed to widely 
recognized socio-demographics and comorbidities, and 
certain other laboratory markers, which is supported 
by a few previous reports that suggested that COVID-
19 disease progression was independent of patient-level 
characteristics[44, 59–63]. We could not identify a few 
of the most frequently reported prognostic markers 
included in many risk-stratification scores for COVID-
19 such as sex, lymphocyte count, and inflammatory 
markers. These discordant results were attributed to 
differences in the study population, study time-frame 
[62], completeness of data collection [59, 64], distri-
bution of demographics [60], comorbidities [65], geo-
graphic sites [66], and class imbalance. Our study’s 
30-day composite outcome of death or organ failure 
was 15%, considerably lower than mortality alone (17–
32%) as reported in other regions [44, 61, 67, 68].

Comparison with existing risk prediction tools. The 
discriminatory performances of ISARIC-4C (AUC 
0.751 vs 0.767), qSOFA (0.676 vs 0.63) [13] and MEWS 
(0.674 vs 0.63 [13] in our study were similar to the esti-
mates in the original development and validation stud-
ies. In a previous comparative analysis, ML models 
consistently outperformed CURB-65 [69–71], qSOFA 
[70, 71] and MEWS [71, 72], which is consistent with 
our findings.

Comparisons with previous ML modeling studies. Stud-
ies that described ML prognostic models in patients with 
COVID-19 have yielded mixed results [4, 73]. Although 
previously identified ML models achieved modest to 
excellent discriminatory performance, the studies were 
at high-risk of bias when assessed using “Prediction 
model Risk Of Bias Assessment Tool (PROBAST)” [74] 
[4, 73]. Whereas single-center studies with a small sam-
ple size are at high risk for class imbalance, larger studies 
with pooled data from multiple participating centers are 
subject to bias related to between-center differences in 
practice, EHR quality, distribution of comorbidities and 
other patient characteristics, and treatment pattern [59, 
75, 76]. Most ML models for COVID-19 outcomes were 
developed early during the pandemic, when treatment 
has rapidly evolved, resulting in time bias [4, 59, 73, 76]. 
These models may not provide a valid prediction for deci-
sion-making in an individual patient, regardless of their 
accuracy in discrimination and calibration at the popula-
tion level [75]. In our stud, although drawn from multiple 
centers across geographically dispersed states, the study 
population, EHR quality, distribution of demographics 
and comorbidities, hospital-level care, and treatment pat-
terns were consistent across the integrated Mayo Health 
System in the United States. These advantages support 
translation of our findings to bedside clinical practice.

Clinical implications
Although, the ML algorithms in developing risk predic-
tion model were complex, the six variables that were 
identified are routinely available. The data collected at 
the bedside can be analyzed by the point-based, CORE-
COVID-19 model to stratify hospitalized COVID-19 
patients in to low, intermediate, or high-risk categories 
for critical organ failure or death at 30 days. The CORE-
COVID-19 tool was primarily developed for identifying 
patients at increased risk for progression to compos-
ite of endotracheal intubation, intravenous vasopres-
sor administration, or death. By providing enhanced 
support for clinical decision-making and allowing the 
early implementation of appropriate interventions, the 
CORE-COVID-19 model can potentially lead to lower 
morbidity and mortality among patients hospitalized for 
COVID-19.

Research implications
Our findings warrant further validation in separate data-
sets with a more heterogenous COVID-19 population, 
followed by a prospective evaluation of whether the early 
identification of at-risk patients can improve outcomes. 
Moreover, as the COVID-19 pandemic continues to 
evolve with the periodic emergence of SARS-CoV-2 vari-
ants with variable transmissibility and disease severity, 
new data may become available for real-time retraining 
of ML algorithms for up-to-date risk stratification and 
support clinical decision making.

Strengths and limitations
The major strengths were as follow: (1) a broad array 
of candidate predictors from multiple domains and 
large well characterized laboratory confirmed cohort 
of COVID-19 patients; (2) the cohort representative of 
geographically dispersed regions in the United States; 
(3) The data collection was nearly complete with mini-
mal variations in data recording and fewer missing data 
points than in previous studies ensuring robust and 
transportable findings [59]; (4) The results of the study 
are likely to enhance the generalizability of the findings 
and reduce spectrum bias [77]; (5) rigorous ML and data 
analytics were implemented including feature selection, 
model development, and calibration; (6) to assess clini-
cal utility of individual models, we compared the de novo 
models with existing and widely used prognostic tolls as 
exemplars and conducted DCA analysis for each model to 
estimate the net benefit across different thresholds (7) the 
results were displayed in visual graphics for easy under-
standing of clinical audience, and the report complied 
with TRIPOD and other recently developed guidelines. 
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Therefore, the present study overcomes many limitations 
of previously developed models in patients hospitalized 
for COVID-19. The major limitations of the study were 
as follow. The study was conducted in the pre-vaccination 
era before the emergence of delta or omicron variants in 
the United States. Therefore, the result may be different in 
contemporary patient populations. The study population 
was predominantly Caucasians, reflecting the composi-
tion of the Mayo Clinic catchment areas. The ML models 
were not fully automated as the investigators retained the 
selection of candidate predictors for training.

Conclusions
The CORE-COVID-19 classifier, based on six clini-
cal variables selected from 92 priori variables through 
an artificial intelligence approach, accurately assigned 
88% of patients who potentially progressed to compos-
ite events at 30  days, improving existing risk prediction 
models based on conventional statistics. These findings 
indicate that CORE-COVID-19 can be used at the bed-
side to guide clinical decision-making and improve clini-
cal outcomes.
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