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Abstract 

Background  COVID-19 remains a major public health challenge, requiring the development of tools to improve 
diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been 
implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate 
similarities from specific features.

Methods  We measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagu-
lation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter 
included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, 
and (iv) septic shock patients.

Results  We identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, 
although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic 
etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified 
biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher 
accuracy than standard clinical markers.

Conclusions  This study extends the understanding of host responses underlying sepsis and COVID-19, indicating 
varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the 
development of personalized management of COVID-19 and sepsis.
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Background
Infections caused by the severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2) emerged in 
December of 2019 and rapidly evolved into the global 
coronavirus disease 2019 (COVID-19) pandemic, which 
to date has led to over 600 million confirmed cases of 
COVID-19, including over 6.4 million deaths (covid19.
who.int). Although most SARS-CoV-2 infections are 
mild, the infections can develop into life-threatening 
conditions associated with acute respiratory distress 
syndrome (ARDS).

COVID-19 was early on reported as a cytokine-storm 
mediated disease and an aberrant host response has 
been implicated in severe cases [1]. This pathobiology 
resembles sepsis; the most recent clinical criteria (sep-
sis-3) defines it as life-threatening organ dysfunction 
caused by a dysregulated host response to infection [2]. 
The underlying responses in sepsis are complex and 
heterogenous, involving both pro- and anti-inflamma-
tory immune responses that may manifest as a state of 
hyperinflammation or immunosuppression [3, 4]. The 
sepsis-associated dysregulated host response is initi-
ated by pathogen-associated molecular patterns and 
damage-associated molecular patterns released by 
damaged host cells, resulting in a direct activation of 
immune and endothelial cells [5]. The activation leads 
to release of inflammatory mediators that affect not 
only the immune system but also the central nervous 
system, cardiovascular system, vascular endothelium, 
and the immune system, resulting in acute respiratory 
distress syndrome, acute kidney injury, multiorgan fail-
ure, and septic shock[6].

Early reports of COVID-19 showed elevated levels of 
pro-inflammatory cytokines, e.g., IL1b, TNF and IL6, 
especially among severe COVID-19 cases, implicating a 
cytokine-storm process [7]. In addition, comprehensive 
proteomics analyses of plasma samples collected from 
COVID-19 patients confirmed the elevation of these 
markers as well as many others, including factors of the 
immune-, complement-, and the coagulation-system, 
which could be linked to severity and specific COVID-
19 outcomes [8–13]. In all studies, an aberrant inflam-
matory response was evident, but the specific markers 
implicated as predictive classifiers for severity differed 
to a large extent. These differences likely reflect the het-
erogenic nature of the COVID-19 patients with respect 
to comorbidities and severity of infection, as well as 
technical aspects such as the analytic assays used and 
time of sample collection.

Considering the apparent similarities between COVID-
19 and sepsis regarding the role of a host-mediated 
pathophysiology, we set out to compare systemic host 
responses during the acute stages of COVID-19 and sep-
sis, to capture potential disease-, pathogen-, and organ-
specific proteomic profiles. Using targeted proteomics 
(covering 290 proteins) on samples from well-defined 
patient cohorts, we compared plasma proteome signa-
tures in COVID-19 and sepsis clinical endotypes. The 
COVID-19 cohort included patients enrolled during 
the first wave of the pandemic within the open resource 
Karolinska KI/K COVID-19 Immune Atlas effort during 
spring 2020 [14]. This resource provided insight of T-, B-, 
Natural Killer-, Mucosal associated invariant T-, Innate 
lymphoid-, mononuclear phagocyte-, and granulocyte-
cell immunotypes relevant for COVID-19 protective 
immunity and immunopathogenesis [15–21]. As com-
parator sepsis cohorts, we included (i) patients with com-
munity acquired pneumonia (CAP) caused by influenza, 
(ii) CAP caused by bacterial species, (iii) non-pneumo-
nia sepsis (NP sepsis), and (iv) septic shock. The results 
revealed a shared core host response to infection, as 
well as unique proteomics signatures related to specific 
microbiologic etiology and clinical endotypes. Although 
COVID-19 and sepsis shared a set of core proteins that 
were deregulated during infection, the levels of most of 
these inflammatory proteins were more pronounced 
in sepsis compared to COVID-19. The comprehen-
sive immune atlas resource from the same patients also 
allowed for correlation analyses of biomarkers to specific 
immune cell subpopulations implicated in COVID-19 
disease severity. In addition, we applied machine learning 
(ML) to identify potential biomarkers that could accu-
rately discriminate COVID-19 from CAP-sepsis patients.

Methods
Patient cohorts
Plasma samples from SARS-Cov-2 infected patients 
with COVID-19 admitted at the intensive care or high 
dependency unit (n = 17, severe COVID-19) or the infec-
tious disease clinic (n = 10, moderate COVID-19) at 
Karolinska University Hospital, Stockholm were collected 
for this study. Paired convalescent plasma samples from 
the COVID-19 groups were collected from 17 patients (8 
and 9, from the moderate and severe COVID-19 groups, 
respectively) approximately 4  months after hospital dis-
charge (median = 136 days, range = 89–153 days). Plasma 
samples from sepsis patients identified and enrolled in 
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the emergency department were also included. As con-
trols, plasma samples from age- and sex-matched SARS-
CoV-2 IgG seronegative healthy volunteers (n = 16) 
were collected on the same days as the acute COVID-
19 patients. Inclusion and exclusion criteria for patient 
enrollment and collected clinical information of the 
patients are provided below.

The COVID-19 patients were adult SARS-CoV-2 RNA 
positive patients who were admitted with acute illness at 
the Karolinska University Hospital, Stockholm, Sweden 
in April and May 2020, and were treated at the Infectious 
Diseases and Intensive Care Unit (ICU) Clinics. Patients 
with oxygen saturation of 90–94% and/or receiving 0.5–3 
L/min of oxygen admitted to the Infectious Diseases 
Clinic were included to represent moderately ill COVID-
19 cases. Patients treated at the ICU or high-dependency 
unit were included as severely ill COVID-19 cases. Exclu-
sion criteria were age ≥ 80 years, current malignancy, or 
immunomodulatory treatment prior to hospitalization, 
to minimize immunosuppression from other causes. 
Corticosteroid therapy at hospital prior to sampling had 
been given to 2 moderate- and 12 severe- COVID-19 
patients. Plasma samples from the acute phase were col-
lected at the day of study enrollment (i.e., 5–24 days after 
onset of illness and 1–8 days after hospital admission).

CAP, sepsis, and septic shock patients were identified, 
enrolled, and sampled for plasma within 2 h after arrival 
at the Emergency Department of Karolinska University 
Hospital Huddinge in 2017–2019, as they triggered the 
department´s sepsis alert [22]. The sepsis alert was trig-
gered in patients with clinical signs of infection combined 
with either (i) at least one of the following: oxygen satura-
tion < 90% despite oxygen supplementation, respiratory 
rate > 30 per minute, heart rate > 130 per minute, systolic 
blood pressure < 90  mmHg, or Glasgow Coma Scale < 8; 
or (ii) blood lactate > 3.2 mmol/L combined with at least 
one of the following: oxygen saturation < 95% on room 
air, respiratory rate > 25 per minute, heart rate > 110 per 
minute, altered mental status, or temperature > 38.5  °C 
or < 35 °C.

Patients with pulmonary infiltrates and Influenza 
virus RNA detected in respiratory tract samples, with-
out any bacterial microorganism detected were selected 
as Influenza CAP patients (n = 11). Patients with pul-
monary infiltrates without any virus detected, but with 
Streptococcus pneumoniae (n = 11), Haemophilus influ-
enzae (n = 4), or Staphylococcus aureus (n = 2) detected 
in blood culture or lower respiratory tract culture, or S. 
pneumoniae detected in nasopharyngeal culture (n = 1), 
or Mycoplasma pneumoniae (n = 3) detected by specific 
PCR on respiratory secretions were selected as bacterial 
CAP patients.

Patients with sepsis with a sequential organ failure 
assessment (SOFA) score of ≥ 2 within 12 h from arrival 
at the hospital and an infectious focus not including the 
lungs were selected as non-pneumonia sepsis patients. In 
these patients, blood culture was positive for Escherichia 
coli in 10 patients, Staphylococcus aureus in 3 patients, 
Group A Streptococcus in 1 patient, Group B Streptococ-
cus in 3 patients, and Group C Streptococcus in 1 patient.

Finally, patients with infection, total SOFA score of ≥ 2, 
lactate > 2, and who received vasopressors were selected 
as septic shock patients (n = 12). These patients had the 
following foci of infection: lungs (n = 3), urinary tract 
infection (n = 5), skin-joint infection (n = 2), abdomen 
(n = 1), and other (n = 1). Blood culture was positive for 
E. coli in 3 patients (one hade multi-bacterial growth), 
Streptococcus pyogenes in 2 patients, and other gram-
negative bacteria in 2 patients.

In the SOFA score calculation, registered values of 
creatinine, bilirubin, and platelet count values from the 
period 7–90 days prior to admission were used as base-
line values. In the total SOFA score at sampling, baseline 
SOFA points for pathologic values of creatinine, biliru-
bin, or platelet count were subtracted.

Plasma sampling
Plasma was collected in whole-blood tubes containing 
EDTA (ethylenediaminetetraacetic acid). The COVID-19 
patients and healthy controls were sampled using ordi-
nary EDTA tubes that were centrifuged within 2  h and 
plasma was aspirated and frozen in aliquots at − 80  °C. 
The sepsis patients were sampled using PPT plasma 
preparation tubes containing EDTA, that were centri-
fuged within 2 h and then frozen at − 80  °C. The tubes 
were thawed once for aspiration and refreezing into ali-
quots at − 80 °C.

Quantification of soluble factors
Proximity extension assays (PEA) assays (Olink AB, 
Uppsala, Sweden) were used for the quantification of 
selected soluble factors in plasma from all cohorts. All 
samples were measured using three biomarker panels: 
organ damage (v.3311), immune response (v.3203), and 
inflammation (v.3022), each of them targeting 92 pro-
tein analytes. Samples that had quality control (QC) 
warning in all three panels were excluded (1 sepsis and 1 
COVID-19 patient), and protein measurements with QC 
warnings were assigned as missing values. Four proteins 
were included in two of the panels and measured twice: 
IL6, CCL11, IL10, and IL5; we assigned the mean of the 
double measurements as NPX value for the correspond-
ing proteins. For further analyses, only analytes with 
less than 33% of data under the lower limit of detection 
(left censored) were considered, yielding a total of 193 
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proteins analyzed. Individual left-censored values from 
the analytes included in the study were imputed with the 
lower limit of detection value.

Protein annotation for GO (gene ontology) biologi-
cal process terms was performed on the STRING plat-
form [23], all terms related to Innate immune-, adaptive 
immune-, and Inflammatory- responses were grouped 
together. The association to specific immune cells was 
determined with the Human Protein Atlas (HPA) [24] 
data sets for RNA single cell type, RNA blood cell spe-
cific, and RNA blood lineage specific.

Coagulation factors were measured in plasma using 
three different multiplex panels, including the 6-, 4-, 
and 3-plex human ProcartaPlex panels (Thermofisher). 
The samples were measured according to the manufac-
turer’s instructions and the results are shown in arbi-
trary units (AU) indicating the log2 of the concentration 
in the samples in relation to reference plasma provided 
with the kit. In addition, Thrombomodulin and D-dimer 
were measured using a Multiplex Luminex® assay (R&D 
Systems, UK). Assays were performed according to the 
manufacturer’s guidelines and samples were acquired on 
a Luminex MAGPIX instrument using xPonent 4.0 Soft-
ware (Luminex).

Data analysis
For analysis of PEA data, two-tailed student t test was 
used for two-group comparisons, the test was paired in 
the acute-convalescent comparison. Statistical analysis 
of non-parametric data (clinical parameters and pro-
tein concentrations from multiplex) was performed 
with Mann Whitney U test for two group comparisons 
and Kruskal Wallis coupled with Dunn’s test. Statistical 
comparison of categorical variables was performed with 
Fisher test. All p-values were adjusted for multiple-group 
comparisons with the false discovery rate (FDR).

To account for the effect of confounders, we built a 
multivariate  limma  linear model [25] to adjust protein 
NPX values of COVID-19, CAP-Sepsis, Other Sep-
sis patients for age (in years), sex, Charlson comorbid-
ity index, and corticosteroid use prior to sampling. The 
model included no intercept and contrasted the COVID-
19 to CAP-Sepsis and COVID-19 to Other-Sepsis status 
separately, to derive estimated coefficients and standard 
errors for a corresponding comparison. Finally, moder-
ated two-sided  t  statistic and  F  statistic were calculated 
for the comparisons based on adjusted log2-Fold change 
(FC) and empirical Bayes moderation of the standard 
errors, and the p-values corrected for multiple testing 
with the FDR.

Based on the protein expression of all 193 proteins, 
we plotted the 122 samples on a principal component 

analysis (PCA) plot and further clustered the data with 
the partitioning around medoids (PAM) algorithm. For 
PAM, we tested different number of potential clusters k, 
ranging from k = 2 to the maximum number of samples 
groups (k = 9), and eventually selected the number of 
maximum k (k = 4) where the samples had clear separa-
tion and the minimum subgroup sample size (n = 8).

All analyses were performed with R (v.4.0.3), in R Stu-
dio (v.1.3.959).Correlation analyses were performed 
with two-tailed non-parametric Spearman test applied 
on pairwise complete observations using the packages 
factoextra (v1.0.7), FactoMineR (v2.3), PerformanceAn-
alytics (v2.0.4), ggplot2 (v3.3.1), gplots (v3.0.4), pheat-
map (v1.0.12), vegan (v2.5-6), corrplot (v0.84), lattice 
(v0.20-41) and latticeExtra (v0.6-29), stats (v4.0.1), and 
complexheatmap (v2.5.6). The plots were generated 
with ggplot2(v3.3.6). The package ggpubr (v0.4.0.999) 
was used for adding statistical significance stars into the 
plots. The heatmaps with dendrogram integrated were 
made with pheatmap (v1.0.12).

To build ML models that would accurately classify 
COVID-19 from CAP-sepsis, we partitioned the dataset 
(COVID-19 n = 27, CAP-sepsis n = 32) 1,000 times, with 
random allocation of 75% of the samples to the train-
ing & validation dataset (TrnVD) and 25% to the testing 
dataset (TstD), maintaining the probabilistic distribution 
of the two conditions in both TrnVD and TstD. On the 
1,000 TrnVD, we first ran iterations of random forest (RF) 
models (R package caret, v6.0-90) for protein selection, 
using a leave-one-out cross-validation (LOOCV) strat-
egy, with a minimum node size of 3 nodes, 1,000 trees, 
and Cohen’s kappa as a metric for model training. On 
the same 1,000 TrnVD, we then ran iterations of logistic 
regression with lasso regularization (LR-lasso) models 
(R package glmnet, v4.1-2) for protein selection, using a 
LOOCV strategy, alpha = 1, selecting minimal lambda 
for best model in an iteration. We opted for lasso regular-
ization of LR models because it was the best performer of 
the three modelling approaches, the other two including 
ridge regression (alpha = 0) and elastic net (EN) regulari-
zation (alpha = 0.5); EN had a comparable performance 
but selected more proteins in the models.

For each iteration of either model on both TrnVD 
and TstD, we calculated performance metrics: accu-
racy, F1 score, sensitivity, specificity, positive predic-
tive value, negative predictive value, and Mathew’s 
correlation coefficient (MCC). MCC is a more robust 
estimate of accuracy for unbalanced datasets, and it 
ranges from -1 (extremely low agreement) to 1 (perfect 
agreement). To be comparable to accuracy estimates, 
we transformed it to a normalized MCC (nMCC), 
with a range from 0 to 100%, following the equation: 
nMCC = (MCC + 1)/2 × 100%. We used the performance 
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metrics on TstD for the final comparison between the 
RF and LR-lasso models. The performance metrics were 
plotted on an accuracy radar plot where mean values of 
accuracy are presented, along with the range and with 
95% confidence intervals (CI) (± 1.9685 × SD).

Results
The study cohorts
This study included plasma samples from COVID-
19 patients (n = 27 acute and 17 paired convalescent) 
and sepsis patients (n = 62, all acute), as well as healthy 
controls (n = 16) to obtain baseline readings (Fig.  1A). 
COVID-19 patients were enrolled as having either mod-
erate or severe disease based on pre-defined inclusion 
and exclusion clinical criteria, as detailed in materials and 
methods. The sepsis patients were classified into different 
clinical endotypes, i.e., CAP caused by Influenza viruses 
or bacterial causes, non-pneumonia sepsis, and septic 
shock. The septic shock cohort includes mostly non-
pneumonia cases but also three cases with pneumonia.

Baseline characteristics and laboratory param-
eters of the study cohorts are shown in Tables  1 and 
2, respectively. The patients with severe or moderate 
COVID-19 did not differ with respect to age, sex, and 
comorbidities (Table 1; Fig. 1B). However, patients with 
severe COVID-19 had higher total SOFA score and 

significantly impaired lung function (e.g., increased res-
piratory SOFA, decreased PaO2/FiO2), as compared to 
patients with moderate COVID-19 (Additional file  2: 
Table S1; Fig. 1C). In addition, both COVID-19 cohorts 
displayed abnormal levels of common laboratory mark-
ers with the most pathologic levels seen among severe 
cases (Table 2; Fig. 1C). While lymphocyte and leuko-
cyte counts showed no significant differences between 
the two COVID-19 severity groups (Additional file  2: 
Table  S1), there was a significant increase of neutro-
phil counts during severe COVID-19 (Additional file 2: 
Table  S1; Fig.  1C). Compared with the COVID-19 
patients, the sepsis cohort patients were older and had 
higher Charlson comorbidity index (Tables  1; Addi-
tional file  2: Table  S1; Fig.  1B). Severe COVID-19 and 
septic shock groups had the highest total SOFA score, 
while the respiratory SOFA was significantly higher in 
the severe COVID-19 group as compared to the other 
groups, including those with pneumonia (Fig.  1C; 
Additional file  2: Table  S1). Additionally, higher levels 
of creatinine were noted in the non-pneumonia sepsis 
and septic shock cohorts. This last group also displayed 
higher levels of Procalcitonin in comparison to the 
other cohorts (Fig. 1C; Additional file 2: Table S1).

Fig. 1  Baseline characteristics of the study cohorts. A Number of healthy individuals and patients per group. B Distribution of sex, age, and 
Charlson comorbidity index per group. Colors depict patient subgroups, as indicated. C Clinical biomarkers of disease severity at sampling. The grey 
shadowed areas represent the reference values of the corresponding biomarkers. Significant differences between groups in Additional file 2: Tables 
S1 and S2. CAP-Infl CAP caused by influenza virus, CAP-Bac CAP caused by bacteria, NP-Sepsis Non-pneumonia sepsis, S. Shock Septic shock. NAcute 
Number of samples in acute COVID-19. NConv Number of samples during convalescence. NLR Neutrophil-to-lymphocyte ratio
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Differential plasma protein profiles reflect the microbial 
etiology and site of infection
Plasma protein profiles from the patient cohorts and 
from healthy controls were obtained through PEA using 
the three Olink 96-targets’ panels for inflammation, 
immune response, and organ damage. Among the 273 
analytes measured, proteins with more than 33% missing 
values (i.e., under the limit of detection) were excluded, 
yielding 193 proteins for the final comparative analyses 
(Additional file  2: Table  S3). Unsupervised clustering 

analyses grouped the patients into four groups, separat-
ing acute COVID-19 patients (cluster 1) from healthy 
controls and convalescent COVID-19 patients (cluster 
2), the two CAP groups caused by influenza and bacte-
ria (cluster 3), and septic shock and non-pneumonia sep-
sis patients (cluster 4) (Fig.  2A). The clearest separation 
was noticeable on the first principal component, where 
COVID-19 patients clustered closer to healthy individu-
als than to sepsis patients. Of note, the cluster dominated 
by CAP patients (cluster 3) also included three acute 

Table 1  Patient characteristics, severity parameters, and clinical course of patients with COVID-19 or sepsis

All p-values are adjusted and refer to Kruskal–Wallis test or Fisher’s test. Stars represent significance: *Adj. p-value < 0.05, **Adj. p-value < 0.01, ***Adj. p-value < 0.005. 
Numerical statistical results are available in Additional file 2: Tables S1 and S2

ICU intensive care unit, HDU high dependency unit, CAP community acquired pneumonia, NP-Sepsis non-pneumonia sepsis.
a Baseline SOFA score points from pathologic creatinine, bilirubin, and platelet counts were subtracted from the total SOFA score
b Four patients with NP-sepsis had a SOFA score of < 2 in the emergency room, but all of them deteriorated to a SOFA score of 2 within 12 h from admission
c During hospital stay

Characteristic COVID-19 CAP Other sepsis Adj. p-value
All

Moderate Severe Influenza Bacterial NP sepsis Septic shock

(n = 10) (n = 17) (n = 11) (n = 21) (n = 18) (n = 12)

Female sex, No. (%) 3 (30) 3 (17.6) 6 (54.5) 4 (19) 11 (61.1) 2 (17) *

Age, median (IQR) 57 (41–62) 58 (52–63) 76 (64–88) 64 (54–72) 72 (56–76) 70 (65–79) *

Charlson comorbidity index, 
median (IQR)

0 (0–1) 0 (0–1) 2 (1–3) 1 (0–3) 1 (0–4) 3 (2–3) *

Days symptom debut to admis-
sion, median (IQR)

9 (7–9.8) 9 (6–12) NA NA NA NA

Days admission to sam-
pling, median (IQR)

4 (2–6.5) 5 (4–7) 0 0 0 0

Comorbidities, No. (%)

 Heart failure 0 2 (12) 2 (18) 3 (14) 5 (28) 5 (42)

 Ischemic heart disease 2 (20) 1 (6) 2 (18) 3 (14) 2 (11) 2 (17)

 Chronic lung disease 1 (10) 2 (12) 4 (36) 8 (38) 1 (6) 1 (8)

 Diabetes mellitus 3 (30) 5 (29) 4 (36) 5 (24) 5 (28) 4 (33)

 Renal disease 0 1 (6) 1 (9) 3 (14) 3 (17) 3 (25)

 Liver disease 0 0 0 1 (5) 3 (17) 0

 Cerebrovascular disease 0 0 2 (18) 1 (5) 2 (11) 1 (8)

 Dementia 0 1 (6) 0 1 (5) 2 (11) 3 (25)

 Malignancy 1 (10) 0 1 (9) 3 (14) 1 (6) 2 (17)

 Connective tissue disease 1 (10) 0 3 (27) 2 (10) 2 (11) 0

Severity scores at sampling, 
median (IQR)

 Total SOFA scorea 1 (1–1) 6 (3–6) 3 (2–3) 2 (2–4) 3 (2–4) 5 (4–6) ***

 Respiratory SOFA score 1 (1–1) 3 (3–4) 2 (2–3) 2(1–2) 1 (0–2) 1 (0–2) ***

 PaO2/FiO2 ratio (kPa) 47.6 (42.0–52.0) 18.3 (12.6–22.4) 38.1 (28.6–39.5) 35 (28.8–50) 48.1 (38.9–68.5) 45.7 (35.8–76.3) ***

 Total SOFA ≥ 2b, No. (%) 1 (10) 17 (100) 9 (82) 17 (80) 14 (78) 12 (100) ***

Clinical course, No. (%)

 ICU or HDUc 0 17 (100) 1 (9) 2 (9.5) 5 (29) 12 (100) ***

 Invasive mechanical 
ventilationc

0 13 (92.2) 0 1 (5) 1 (6) 0 ***

 Vasopressorc 0 13 (92.2) 0 0 1 (6) 12 (100) ***

 Dead within 28 days 0 4 (23.5) 1 (9) 0 0 1 (8) *
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COVID patients as well as three septic shock patients; 
the latter of which all had pneumonia. Hierarchical clus-
tering based on the protein abundance revealed that the 
separation between the groups could be explained by 
higher levels of most of the measured proteins in the sep-
sis cohorts as compared to the COVID-19 patients and 

healthy controls (Fig.  2B). Severe COVID-19 patients 
displayed higher levels of proteins than in moderate 
COVID-19. Although COVID-19 has been reported as a 
cytokine-storm driven disease [26], the levels of the clas-
sical sepsis-associated proteins, i.e., IL6, CXCL8 (Inter-
leukin-8), IL10, IL12, TNF, and IFNγ, did not reach the 

Table 2  Laboratory parameters at sampling of study groups

ICU intensive care unit, HDU high dependency unit, INR international normalized ratio, CAP community acquired pneumonia, NP-Sepsis non-pneumonia sepsis, N.A. 
not available

All data is displayed as median levels and IQR in each cohort. All  p-values are adjusted and refer to Kruskal–Wallis test. Stars represent significance: *p-value < 0.05, 
**p-value < 0.01, ***p-value < 0.005. Numerical statistical results are available in Additional file 2: Table S1

Variable 
median (IQR)

Normal range COVID-19 CAP Other sepsis Adj. p-value
All

Moderate Severe Influenza Bacterial NP sepsis Septic shock

(n = 10) (n = 17) (n = 11) (n = 21) (n = 18) (n = 12)

C-reactive 
protein, mg/L

 < 3 104 (91–118) 203 (116–273) 60 (43–69) 139 (91–324) 107.5 
(29.3–198.3)

131.5 
(82.5–184)

*

Procalcitonin, 
µg/L

 < 0.5 0.40 (0.18–1.19) 0.52 (0.30–1.3) 0.2 (0.18–0.23) 0.63 (0.13–5.8) 5.1 (0.43–34) 39.0 (19.5–90) ***

Ferritin, µg/L 10–150 738 (474.5–
1442.5)

1832.5 
(934–2088)

N.A N.A N.A N.A N.A

d-dimer, mg/L  < 0.56 0.71 (0.41–0.83) 2.3 (1.45–3.8) N.A N.A N.A N.A N.A

Albumin, g/L 33–47 27 (22.5–29) 19 (18–22) 28.5 (24.8–
32.8)

29.5 (26–32.3) 24 (20.5–29) 23 (22.3–30.5) ***

Creatinine, 
µmol/L

 < 90 67.5 (55–75.3) 73 (54–92) 70 (61–93.5) 93 (74–117) 108 (93.3–
119.8)

182 (154–
208.8)

***

Bilirubin, 
µmol/L

 < 26 6 (4–7.8) 9 (8–11) 6 (3–9) 14 (9–22) 22.5 (12.5–30) 14 (8.5–30.5) ***

Platelet 
count,  × 109/L

165–387 324 (190–367) 361 (230–432) 242 (168.5–
274.5)

215 (193–251) 204.5 (149.5–
257.3)

184 (111.8–
262.8)

*

Neutrophil 
count,  × 109/L

1.6–5.9 5.4 (3.9–6.9) 10.9 (8.5–13.8) 9.4 (5.8–13.6) 10.0 (8.4–15.3) 9.2 (5.3–12) 9.2 (3.2–12.6)

Lymphocyte 
count,  × 109/L

1.1–3.5 1.2 (1–1.78) 0.8 (0.5–0.9) 0.9 (0.75–1.15) 0.9 (0.7–1.4) 0.55 (0.4–0.8) 0.5 (0.3–1.3) *

Neutrophil to 
lymphocyte 
ratio

3.48 (3.04–5.85) 13.67 (11.9–21.8) 10.44 
(6.25–15.58)

9.37 (6.42–
22.28)

11.5 (7.25–
17.22)

15.86 (7.38–32) **

Leukocyte 
count,  × 109/L

3.5–8.8 7.7 (5.63–9.65) 12.5 (10.4–13.3) 11.6 (7–15.6) 12.0 (10.2–
17.9)

11.9 
(5.2–13.05)

11.8 
(3.6–14.35)

Prothrombin 
complex, INR

 < 1.2 1.05 (1.0–1.1) 1.1 (1.0–1.2) 1.0 (1.0–1.1) 1.1 (1.0–1.2) 1.2 (1.0–1.4) 1.2 (1.15–1.3)

(See figure on next page.)
Fig. 2  Disease-specific plasma protein signatures in COVID-19 and sepsis. A Principal component (PC) analysis based on the levels of all proteins. 
The PAM clusters are shown by the dashed lines and encompass the samples closest to the cluster’s medoid. B Heatmap of mean expression (z 
scores) of all proteins (x axis) per group with hierarchical clustering (distance: Spearman’s ρ). The color-coded boxes denote statistically significant 
differences in comparison to healthy controls. C Plasma levels of classical sepsis-associated cytokines. D Venn diagram showing the number 
of proteins altered in the indicated patient groups compared to healthy controls. E Proteins from D color-coded based on their PEA panel. The 
adjacent bars represent the percentage of each PEA panel. Intersections (∩) between groups are denoted as: CAP-Infl ∩ CAP-Bac, “ALL CAP”; severe 
COVID-19 ∩ moderate COVID-19, “All COVID-19”; all COVID-19 ∩ all CAP, “Core—Pneumonia”; F Venn diagram showing the number of proteins 
altered in the indicated patient groups compared to healthy controls. G Proteins from F color-coded based on their PEA panel. The adjacent 
bar represents the percentage of each PEA panel. The “Core—other sepsis” group includes proteins with significantly different levels in the two 
COVID-19 groups, NP-sepsis, and septic shock; H, I Volcano plot depicting the difference in plasma levels of the Core-Pneumonia (H) and Core-other 
sepsis sets (I); color-coded based on the PEA panel. The horizontal dashed line indicates adjusted p values = 0.05; J Plasma proteins unique to 
COVID-19. Boxplots are labeled with gene names and stars represent significance in comparison to healthy controls: *Adj. p-value < 0.05, **Adj. 
p-value < 0.01, ***Adj. p-value < 0.005. PAM partitioning around medoids, PEA proximity extension assays
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same magnitude as in CAP-sepsis, non-pneumonia sep-
sis or septic shock (Fig.  2C). The hierarchical clustering 
also showed that during convalescence, most proteins 
normalized and displayed a similar profile to healthy con-
trols (Fig. 2B; Additional file 1: Fig. S1).

To detect alterations of plasma protein levels in 
each patient cohort, we used as reference the levels in 
healthy controls. First, we assessed the influence of eti-
ology by comparing the differential expression profiles 
between patients with lung infections caused by different 
microbes, i.e., SARS-CoV-2 (COVID-19), Influenza virus 
(CAP-Infl), or bacteria (CAP-Bac). The results revealed 
a shared response of 45 proteins, as well as 7, 6, and 5 
unique proteins specific for SARS-CoV-2, Influenza, and 
bacteria, respectively (Fig. 2D; Additional file 2: Table S4). 
In general, the response profiles, including both shared 
and unique proteins, showed an equal representa-
tion from all three PEA protein panels (inflammation, 
immune response, and organ damage), except for the set 
of proteins unique to severe COVID-19, which was domi-
nated by markers of the organ damage response (Fig. 2E). 
Next, we examined the response profiles in COVID-19 
versus other sepsis cases, i.e., non-pneumonia sepsis or 
septic shock (Fig. 2F). Again, the results revealed a shared 
core response of 43 proteins with altered abundance, 
while 5, 9, and 3 were unique to COVID-19, non-pneu-
monia sepsis and septic shock, respectively. The unique 
signatures revealed a similar dominance of organ damage 
proteins in severe COVID-19, while the non-pneumo-
nia sepsis showed a predominance of immune response 
related proteins (Fig. 2G; Additional file 2: Table S4). The 
shared core profiles in Fig. 2D, F were essentially identi-
cal (42 proteins) and likely depict the basal host response 
to infection independent of etiology or focus of infection. 
However, many of the shared factors differed in expres-
sion, including several of the pro-inflammatory markers 
that had substantially higher levels in both CAP-sep-
sis and other sepsis cohorts, as compared to COVID-
19 (Figs.  2H, I; Additional file  2: Table  S5). In contrast, 
only two proteins, pleiotrophin (PTN) and keratin-19 
(KRT19), were upregulated in COVID-19. By stratifying 
the comparison to CAP based on etiology, PTN was con-
sistently higher in COVID-19 compared to both CAP-Infl 

and CAP-Bac, while KRT19 was only higher when com-
pared to CAP-Bac but not to CAP-Infl (Additional file 1: 
Fig. S1). Moreover, we observed that the vast majority of 
these differences remain even after adjustment for the 
following confounders age, sex, Charlson comorbidity 
index and the use of corticosteroids prior to sampling 
(Additional file 1: Fig. S2; Additional file 2: Tables S5, S6).

Taking all patient cohorts into account, a set of five 
proteins were unique to COVID-19 (Fig.  2J). Among 
these, four (CLEC4A, DSG4, FAM3B, and RARRES1) 
displayed significantly lower levels in both moderate and 
severe COVID-19, as compared to the healthy controls 
and the sepsis cohorts. ITGB6 had higher levels in severe 
COVID-19 as compared to all other sepsis cohorts. In 
contrast, moderate COVID-19 patients had lower ITGB6 
levels compared to all other cohorts.

Plasma biomarkers aid differential diagnosis of COVID‑19 
and CAP‑sepsis
Moderate and severe forms of COVID-19 almost consist-
ently present with pneumonia [27–29], posing as a chal-
lenge to differentiate from CAP-sepsis caused by other 
agents [30, 31]. Therefore, to identify plasma proteins 
that can serve as biomarkers for accurate differentiation 
of COVID-19 and CAP-sepsis patients, we employed two 
ML algorithms, i.e., RF and LR-lasso (Additional file  1: 
Figure S3).

Seven proteins, i.e., TRIM21, CASP8, NBN, FOXO1, 
PIK3AP1, PTN, and BID, had higher average vari-
able importance for the models and were repeat-
edly selected as biomarkers in the 1000 iterations of 
the RF models (Fig.  3A). On average, the models had 
high accuracy in differentiating COVID-19 from CAP 
on both the training (mean accuracy = 95.01%, range: 
91.11–100%) and testing data (mean accuracy = 93.78%, 
range: 71.43–100%). Four of the five top models with 
highest accuracy (98% and 100% on training and test-
ing data, respectively), consisted of single proteins 
TRIM21, PIK3AP1 and NBN, and one model consisted 
of CASP8 and FLT3LG (Additional file 1: Fig. S4A). In 
comparison, among the 1000 iterations of the LR-lasso 
models, four proteins were selected in > 50% of the 
iterations: PTN, CASP8, CSF1, and TRIM21 (Fig.  3B). 

Fig. 3  Machine learning models for differentiating COVID-19 from CAP-sepsis. A Proteins above the 90th percentile of variable importance (dashed 
line) selected more frequently in the random forest models (RF-ML). B Lollipop plot showing the most frequently selected proteins in the logistic 
regression models with lasso regularization (LR-Lasso). C Accuracy radar plot comparing performance metrics of each model type calculated on 
testing datasets. The lines represent the mean value of the metric in position and the shadows represent the 95% CI (± 1.97 × SD) of the metric’s 
mean. D The LR-lasso model that had 100% accuracy in both training and testing data, which consisted of the smallest panel of proteins. Colors 
refer to the β coefficient as in B, and the ROC curve shows the model accuracy. The orange dashed line represents chance, the grey dotted lines 
represent AUCs for different values of lambda. E ROC curves demonstrating the diagnostic potential of existing clinical biomarkers in differentiating 
COVID-19 from CAP-sepsis. The dashed line represents chance. F ROC curves for the intersecting most frequently selected proteins in both RF and 
LR-Lasso models. Additional ROC curves of proteins, see Additional file 1: Fig. S4B, C

(See figure on next page.)
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Overall, the distribution of performance metrics of 
the LR-lasso was similar to the RF models, with higher 
accuracy of LR-lasso models in training data (mean 
accuracy = 97.24%, range: 93.33–100%, Wilcoxon test: 
p < 2.2 × 10–16) and no difference in testing data (mean 
accuracy: 93.97%, range: 71.43–100%, Wilcoxon test: 
p = 0.394). There was a trade-off between slightly better 
positive predictive value (PPV) and specificity versus 
worse sensitivity in the LR-lasso models compared to 
RF models (Fig. 3C, Wilcoxon test: p < 0.05). However, 
the best LR-lasso models outperformed the best RF 
models; 93 LR-lasso models had 100% accuracy in both 
training and testing data, where the algorithms selected 
from 4 to 17 proteins as predictors in the models. As a 
final biomarker panel, we selected the LR-lasso model 
with the smallest panel of plasma proteins that had 
100% accuracy in all the metrics, including the AUC 
(Area Under the Curve) in ROC (Receiver Operating 
Characteristics) curves (Fig. 3D). This model consisted 
of four proteins; PTN and CSF1, whose higher levels 
predicted COVID-19, and TRIM21 and CASP8, whose 
higher levels predicted CAP.

To assess how the most frequently selected plasma 
proteins performed as single biomarkers compared 
to existing clinical variables, we tested their sensitiv-
ity and specificity in differentiating COVID-19 from 
CAP through ROC curves. Among the existing clini-
cal biomarkers, plasma albumin had the best discrimi-
nating power (Fig.  3E). Nonetheless, most plasma 
protein biomarkers that were identified with the two 
ML algorithms outperformed all the clinical variables 
in differentiating COVID-19 from CAP, with TRIM21 
having the highest AUC (Fig. 3F, see Additional file 1: 
Fig. S4B, C for ROC curves of the remaining proteins). 
Single plasma proteins had higher accuracy in differ-
entiating the two conditions than any of the remaining 
clinical biomarkers, with only four proteins being suf-
ficient to obtain full differentiation between COVID-
19 and CAP.

Host response profiles associated with severity 
of COVID‑19
In comparison to healthy controls, 57 proteins were dif-
ferentially altered in both COVID-19 groups, regardless 
of severity, whereas 63 proteins were identified only in 
severe cases (Additional file  2: Table  S4). Most of these 
markers displayed higher levels than those observed in 
the healthy controls (Additional file 1: Fig. S5A). Further-
more, a direct comparison of severe to moderate COVID-
19 patients showed that among the shared proteins, 44 
had higher levels in severe cases, while only 3 proteins 
had higher levels in moderate cases (Fig. 4A; Additional 
file  1: Fig. S5B). Most of these proteins correlated with 
total SOFA, respiratory SOFA score, and PaO2/FiO2 ratio; 
as well as with leukocyte and neutrophil counts in the 
COVID-19 patients (Fig.  4B). In contrast, such associa-
tions were not recapitulated in any of the sepsis cohorts 
(Additional file 1: Fig. S6), not even in those with pulmo-
nary affection, i.e., the CAP cohort (Fig. 4C), implicating 
a particular role of these proteins in the pathophysiology 
of SARS-CoV-2 infections. To validate our findings, we 
analyzed a publicly available plasma proteomics dataset 
on acute phase COVID-19 samples classified according 
to the WHO severity grades [8]. We compared the WHO 
severity grades IV and II, which approximate our clas-
sification of moderate and severe cohorts, respectively. 
This dataset included 42 out of the 47 severity-associated 
proteins. Among these, 27 (64%) recapitulated the statis-
tically significant alterations between the patient groups 
(Additional file 1: Fig. S7).

To seek further functional insight, we annotated the 47 
COVID-19 severity-associated proteins with GO terms, 
which revealed that the most frequent terms related to 
innate immune responses and furthermore, that the pro-
teins’ main cellular sources were granulocytes and mono-
cytes (Fig. 4D). Developing on our previous studies using 
high-dimensional flow cytometry for immunophenotyp-
ing of subpopulations of granulocytes and monocytes 
on our COVID-19 patient cohort [16, 17], we were able 
to correlate severity-implicated plasma proteins to spe-
cific cell surface markers defining immune cell subpop-
ulations. Increased levels of almost all soluble proteins 

(See figure on next page.)
Fig. 4  Plasma proteins associated with COVID-19 severity in relation to immune response, clinical variables, and convalescence. A Volcano plot 
depicting the plasma proteome alterations in severe versus moderate COVID-19. The horizontal dashed line indicates the adjusted p values = 0.05. 
Colors indicate proteins’ PEA panel. B, C Heatmaps showing statistically significant correlations (Spearman’s, p < 0.05) between the 47 differentially 
altered plasma proteins in severe COVID-19 and clinical biomarkers of severity in (B) COVID-19 patients or (C) all CAP-sepsis patients. The bigger 
circle size and higher colour intensity represent higher correlations. D Diagram of the differentially altered plasma proteins in severe COVID-19 
annotated by GO terms related to immune responses (based on STRING annotations [23]) and cell types (based on Human Protein Atlas [24]). 
E–G Average protein expression (± SEM) during acute and convalescence phases of selected proteins that had higher levels in severe COVID-19 
compared to moderate. Proteins were labelled with gene names. E The only two proteins that had higher levels in severe COVID-19 in both 
acute and convalescence phases, as compared to healthy. F Proteins correlated (Spearman’s ρ > 0.7) with both KRT19 and HGF. G The only protein 
among the COVID-19-unique proteins (see Fig. 2J) that was higher in severe COVID-19. H Proteins that had lower levels in severe versus moderate 
(COVID-19)
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correlated to low expression of activation markers in both 
granulocyte and monocyte populations, indicating a link 
between the soluble markers and immature or exhausted 
innate immune cells in severe COVID-19 (Additional 

file  1: Fig. S8). In particular, we found an association 
between plasma proteins elevated in severe COVID-19, 
such as HGF, AREG, CKAP4, S100A12, NCF2, ITGB6, 
and a subpopulation of monocytes with lower expression 

Fig. 4  (See legend on previous page.)
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of CD86 and HLA-DR, which are characteristics of mye-
loid-derived suppressor-like cells (Figure S8A). Likewise, 
the high levels of most soluble factors correlated with 
decreased expression of activation markers in neutro-
phils, e.g., CD16 and CD69, indicating an association 
with increased frequency of immature CD16dim (Addi-
tional file  1: Fig. S8B). Similarly, most soluble factors 
were inversely correlated to the expression of activation 
markers in basophils (e.g., CD11b, CD62L and CD177) 
and eosinophils (e.g., CD66b and CD193), while a posi-
tive correlation was observed between the levels of many 
factors and the activation markers CXCR4 and FceR1 in 
eosinophils and basophils, respectively.

We further examined the levels of these 47 proteins 
during convalescent phase four months after acute dis-
ease. At this time point, all patients subjected to conva-
lescent sampling had recovered, although some presented 
with persisting cough. While most proteins associated to 
severity normalized during convalescence phase (Addi-
tional file  1: Fig. S5B), only HGF and KRT19 remained 
significantly higher as compared to healthy controls 
(Fig. 4E; Additional file 2: Table S4). Interestingly, a set of 
six proteins had a similar behavior to KRT19 and HGF 
during the acute phase of COVID-19, except that they 
reached healthy levels during convalescence (Fig.  4F). 
Among the five proteins uniquely upregulated in 
COVID-19 patients compared with controls (see Fig. 2J), 
only ITGB6 had higher levels in acute severe patients 
compared to healthy controls and remained higher dur-
ing convalescence (Fig. 4G). The three proteins that were 
lower in COVID-19 cases compared to healthy controls 
and had the lowest levels in severe cases, i.e., CLEC4C, 
LTA (Lymphotoxin α), and ITGA11, all normalized dur-
ing convalescence (Fig.  4H). Although statistically non-
significant at 5% FDR, IFNγ showed the largest difference 
with lower levels in severe compared to moderate cases 
(log2-FC = − 2.525, p-value = 0.036, adj. p-value = 0.104). 
Unlike the previous three proteins, IFNγ levels were 
above the healthy range in both the acute and convales-
cence phases.

Changes in the coagulation cascade are more profound 
during sepsis
Severe infections that trigger a systemic inflammatory 
response, like sepsis, commonly present coagulopathies 
[32]. This effect is also seen in patients with COVID-19 

admitted into intensive care, who frequently present with 
thrombotic complications. Since it has been reported 
that the coagulation abnormalities presented in COVID-
19 patients differ from those in patients with sepsis or 
trauma [33], we extended the plasma profiling to 14 coag-
ulation factors assessed by Luminex® multiplex.

In our cohorts, there were no significant differences in 
prothrombin time (INR) and platelet counts as compared 
to reference levels (Fig. 1C), not even in three out of the 
four severe COVID-19 cases with reported thromboem-
bolic events. The Luminex® d-dimer measurements in 
our patient cohorts were significantly higher compared 
to healthy controls, but no differences were observed 
between patients with pulmonary infections of different 
etiology (COVID-19 vs. CAP). The highest concentra-
tions of D-dimer were measured in septic shock patients 
and their levels were only significantly higher in com-
parison to COVID-19 patients, but not to other septic 
cohorts (Fig. 5A; Additional file 2: Tables S7, S8).

When comparing COVID-19 cases to healthy controls, 
significant differences were observed in the von Wille-
brand factor (vWF) and factor XIII levels. Additionally, 
severe COVID-19 cases also displayed elevated levels 
of factor VIII and thrombomodulin. All these factors, 
except thrombomodulin, returned to normal levels in the 
convalescence phase (Fig.  5A). In contrast, sepsis cases 
showed more profound changes in the coagulation path-
way. Plasma samples from all sepsis cases also displayed 
an increase in vWF concentration as well as differences 
in the concentrations of factors VII, V, prothrombin, 
and thrombomodulin (Fig.  5A). Moreover, differences 
in factors XII and XI were also noted for CAP and NP 
patients. Like COVID-19, lower levels of factor XIII were 
found in CAP-Bac, NP sepsis and septic shock. When 
comparing the concentrations of antithrombin, protein 
C and protein S, which regulate the coagulation cascade, 
we observed that COVID-19 and influenza pneumonia 
patients did not show significant differences in the con-
centration of these proteins. In contrast, patients with 
CAP bacteria and NP sepsis had lower levels of all three 
of them (Fig. 5A; Additional file 2: Tables S7, S8).

Assessing coagulation factors to clinical markers of 
severity, we observed that in COVID-19 patients, vWF, 
XIII, VIII, and thrombomodulin levels correlated with 
lung function impairment (defined by SOFA respira-
tory score), whereas such correlation was not seen in the 

Fig. 5  Coagulation cascade-related proteins altered in COVID-19 and sepsis. A Coagulation cascade diagram displaying associated protein 
levels, boxplots are labeled with protein names and stars represent significance in comparison to healthy controls: *Adj. p-value < 0.05, **Adj. 
p-value < 0.01, ***Adj. p-value < 0.005. B Heatmap showing statistically significant correlations (Spearman’s ρ, Adj. p-value < 0.05) between clinical 
characteristics and coagulation-related proteins. The bigger circle size and higher colour intensity represent higher correlations. The arrows indicate 
correlation of a coagulation protein with SOFA respiratory and PaO2/FiO2 ratio (black), or INR (white). The coagulation cascade sketch was adapted 
from BioRender.com (2022), https://​app.​biore​nder.​com/​biore​nder-​templ​ates. AU arbitrary units

(See figure on next page.)

https://app.biorender.com/biorender-templates
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Fig. 5  (See legend on previous page.)
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other sepsis cohorts (Fig.  5B). Although our study does 
not directly conclude on the incidence of coagulopathies 
in either COVID-19 or sepsis patients, possible tissue 
damage could have contributed to changes observed in 
the coagulation cascade, where all proteins altered during 
COVID-19 (vWF, thrombomodulin, Factor XIII and Fac-
tor VIII) are linked to injury and wound repair [34–36]. 
Overall, these results indicate that the pathophysiology 
underlying the coagulation abnormalities in COVID-19 
may differ from those in sepsis.

Discussion
In this comparative targeted-proteomics study, we ana-
lyzed proteins related to immune-response dysregula-
tion, inflammation, and organ damage in COVID-19 
and different sepsis subgroups. As expected, plasma 
proteome disturbances in both diseases indicated a 
skewed immune response, hyperinflammation, and 
organ damage. We demonstrate that COVID-19 and sep-
sis share a core host response to infection, consisting of 
42 plasma proteins that were differentially altered in all 
infected patient cohorts as compared to healthy controls. 
Although shared, there was a striking difference in the 
magnitude of response between the cohorts, with sepsis 
patients displaying higher levels of most proteins. Among 
them, several of the classical inflammatory markers, e.g., 
IL6, IL8, IL10, IL12B, TNF, and IFNγ had substantially 
higher levels in sepsis compared to COVID-19, lead-
ing to the conclusion that the inflammatory response is 
more pronounced in sepsis regardless of etiology or focus 
of infection. In addition, the plasma proteome altera-
tions identified unique features associated with respec-
tive disease, allowing the discovery of potential plasma 
biomarkers for differential diagnosis of COVID-19 and 
CAP-sepsis, among them TRIM21, PTN and CASP8.

Very few proteins had higher levels in COVID-19 
compared to sepsis in this study, among them PTN and 
KRT19. Higher levels of PTN were observed in both 
COVID-19 cohorts compared to healthy controls and 
other sepsis cohorts, excluding septic shock. PTN levels 
were not different between severe and moderate COVID-
19; a finding recapitulated in our re-analysis of the data 
from Filbin et  al. [8]. However, Filbin et  al. reported no 
difference in PTN between COVID-19 patients and 
PCR-negative hospital controls, likely due to the het-
erogeneous selection of controls. Of note, PTN has been 
reported as a multifunctional cytokine with potential role 
in inflammation, leukocyte recruitment and tissue regen-
eration [37]. In accordance with our findings, Filbin et al. 
found higher levels of KRT19 in severe COVID-19 (grade 
II) as compared to moderate (grade IV) COVID-19. We 
further showed that KRT19 had higher levels in COVID-
19 as compared to CAP-Bac and NP-Sepsis, but similar 

levels compared to CAP-Infl and septic shock. In line 
with a previous report suggesting that KRT19 is involved 
in ARDS-related lung epithelial damage [38], it is tempt-
ing to assume that elevated circulating levels of KRT19 
are a result of viral-elicited lung tissue injury. It was inter-
esting to observe that both severe and moderate COVID-
19 patients had elevated KRT19 even four months after 
acute disease, suggesting a lingering release of the protein 
into the bloodstream after lung damage. Similarly, hepat-
ocyte growth factor (HGF), a protein involved in tissue 
regeneration after damage [39–41], had higher levels in 
severe COVID-19 during acute phase that persisted dur-
ing convalescence, indicating its release during tissue 
repair. This is in line with a previous report implicating 
HGF in COVID-19 disease severity [42]. This dynamic of 
protein levels in acute and convalescent phase was spe-
cific to KRT19 and HGF, as most proteins upregulated in 
severe COVID-19 during acute phase normalized during 
convalescence. Thus, it could be relevant to prospectively 
monitor KRT19 and HGF in COVID-19, to evaluate 
their potential value in prognosis of lung impairment 
post-COVID-19.

We identified a set of 47 proteins dysregulated in severe 
COVID-19 that were also associated with clinical param-
eters of disease severity. Among these proteins, KRT19, 
TOP2B, AREG, HGF, CKAP4, ITGB6, and NCF2 had a 
higher expression (> twofold) in plasma samples of severe 
compared to moderate COVID-19 patients, whereas 
CLEC4C and LTA were among the few proteins that were 
expressed at lower levels in severe patients. We repro-
duced these findings in a reanalysis of a public COVID-
19 PEA dataset [8]. CLEC4C is of interest as it is a factor 
linked to anti-viral responses and similarly, low clec4C 
expression has been linked to a particular COVID-19 
severity-interaction expression quantitative trait loci [43]. 
Also, LTA have been reported to be linked to anti-viral 
responses, i.e. interferon-stimulated genes, and COVID-
19 severity [44]. Furthermore, we demonstrated that 
these proteins correlated with clinical severity scores, 
such as total SOFA, respiratory SOFA and PaO2/FiO2 
ratio, in COVID-19 patients, whereas no such correla-
tion was observed in any of the sepsis cohorts, not even 
in CAP patients. Notably, we found a similar association 
between respiratory dysfunction and the coagulation 
response, in that several markers, i.e., vWF, Thrombo-
modulin, Factor XII, and Factor VIII; correlated with res-
piratory SOFA and PaO2/FiO2 ratio solely in COVID-19 
patients. Taken together, these results underscore impor-
tant differences in the molecular systemic responses driv-
ing the pathophysiology of COVID-19 and CAP-sepsis.

Further analysis of the 47 COVID-19 severity-associ-
ated proteins showed strong linkage to monocytes and 
granulocytes. Utilizing the detailed immunophenotyping 
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published on the same patient cohort [16, 17], allowed 
for correlation analyses between soluble markers and 
specific immune cell subpopulations. Several plasma pro-
teins, including HGF, AREG, CKAP4, S100A12, NCF2, 
and ITGB6, correlated with low expression of CD86 and 
HLA-DR in all subpopulations of monocytes. In a report 
by Kvedaraite et  al. [16], these cell populations express 
a myeloid-derived suppressor cells-like phenotype that 
were enriched in severe COVID-19 cases. Likewise, 
plasma proteins in severe COVID-19 were associated 
with reduced activation makers of different granulocyte 
subpopulations, including neutrophils, basophils and 
most notably eosinophils, which have been reported by 
Lourda et  al. [17] to be elevated in severe COVID-19 
cases. Taken together, these results show an association 
between a distinct set of plasma proteins and imma-
ture myeloid cell subpopulations reported as elevated in 
severe COVID-19 disease [16, 17]. These findings are in 
line with reports pointing to myeloid cells, in particu-
lar their immature forms, as important contributors to 
cytokine-rich environment in COVID-19 [45, 46]. Yet, 
it is difficult to infer whether these processes are simply 
conjoined or whether the plasma proteins’ dysregulation 
precedes the impaired innate immune cell response.

Finally, in light of the observed differences in plasma 
proteins between COVID-19 and CAP-sepsis, we sought 
to identify biomarkers with potential use in clinical 
practice, differentiating the two conditions with similar 
presentation to aid prompt diagnosis. Although clinical 
examination, radiological imaging, real-time polymerase-
chain reaction (RT-PCR) and bacterial cultures are helpful 
in differentially diagnosing COVID-19 from CAP-Sepsis, 
the diagnosis can sometimes be challenging due to incon-
clusive clinical presentation and/or radiological exams 
[30], false negative SARS-CoV-2 RT-PCR results [29], or 
false negative bacterial cultures [3]. This poses as a clini-
cal differential diagnosis problem. Using machine learn-
ing, we identified a set of diagnostic plasma biomarkers 
(e.g., TRIM21, CASP8, PTN and CSF1) that had very 
high accuracy in differentiating COVID-19 from CAP, 
and outperformed standard laboratory parameters used 
in clinical practice. Although some of the models showed 
perfect accuracy, it is likely overestimated due to the small 
sample sizes of the two cohorts. One should consider that 
our findings might be confounded by the different stages 
of disease, difference in some patient characteristics, and 
different sampling time periods between the COVID-19 
and the sepsis cohorts. The latter also introduces a poten-
tial confounder linked to treatment such as corticoster-
oid use. Even though corticosteroids have been shown 
to alter blood protein levels in COVID-19 [47, 48] our 
findings of  a more pronounced inflammatory response 
in CAP-sepsis versus COVID-19 patients were consistent 

even when adjusting for corticosteroid use and other con-
founders. Furthermore, the identified potential biomark-
ers for differential diagnosis in the ML models remained 
significant in the adjusted multivariate linear models.

One strength of our study design is the inclusion of a 
prospective sepsis cohort with detailed clinical infor-
mation allowing for classification into specific clinical 
endotypes such as CAP caused by Influenza or bacte-
rial causes. We opted for a sepsis cohort enrolled prior 
to pandemic onset, to ensure that these patients did not 
have COVID-19, with a limitation in using different sam-
ple collection tubes. Both tubes contained EDTA, but the 
procedure differed as the sepsis samples were collected 
in PPT tubes (see methods). Although we demonstrate 
that there are notable differences in plasma protein lev-
els in COVID-19 compared to sepsis, and that they can 
serve as biomarkers with high accuracy, our findings 
must be validated in future studies, using larger cohorts. 
These studies should include cohorts balanced for differ-
ent clinical characteristics and using samples collected in 
parallel in the clinical setting.

In this study, we demonstrate that the systemic inflam-
matory response is higher in sepsis patient as compared 
to COVID-19 patients. Similar observations have been 
reported previously using specific sepsis groups, such 
as bacterial sepsis ARDS or Influenza sepsis [12, 49–52]. 
Here we show that this difference is observable regardless 
of microbiologic etiology, site of infection, or septic shock 
development. In severe COVID-19, immunosuppres-
sive therapy with corticosteroids, interleukin inhibitors, 
and Janus kinase inhibitors have been shown to improve 
survival [53–55]. However, corticosteroid therapy may 
be harmful in the subgroup of hospitalized COVID-19 
patients who do not require oxygen therapy[53, 56]. Con-
sidering our finding that the inflammatory response was 
more prominent in sepsis, a greater therapeutic effect of 
anti-inflammatory agents in sepsis could be expected. 
However, previous clinical trials showed modest to no 
clinical efficacy of corticosteroids, interleukin inhibitors, 
and other anti-inflammatory drugs in sepsis [3, 57–59]. 
Recent understandings of the high heterogeneity in the 
sepsis cohorts, including the inter-individual difference 
in systemic biological host responses to infection, may 
explain the lack of effect at a group level, highlighting 
the need for personalized medicine. For example, in sep-
tic shock, corticosteroid therapy was recently found to 
decrease survival in a particular patient subgroup defined 
by a specific whole-blood transcriptomic signature [60]. 
Contrary, monocytic HLA-DR-guided immunostimu-
latory therapy with CSF2 (Granulocyte–macrophage 
colony-stimulating factor) [61] or IFNγ [62], have shown 
promising results in patients with severe sepsis. Recently, 
IFNγ therapy was followed by clinical improvement in 
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five critically ill COVID-19 patients with bacterial com-
plications [63]. This is interesting in light of the low IFNγ 
found in COVID-19 patients in our study, particularly in 
the severe group, where six patients had secondary bacte-
rial complications. Thus, identification of circulating bio-
markers reflecting endotype-specific disease traits could 
enable tailored immunomodulatory therapy in sepsis and 
perhaps also in protracted severe COVID-19.

Conclusions
Our comparative targeted plasma proteomics study 
allowed profiling of COVID-19 systemic responses 
in the context of other severe infectious diseases. The 
results extend the understanding of the dysregulated 
host responses underlying severe infections, indicating 
varying disease mechanisms and hence, the potential of 
plasma protein signatures as diagnostic tools. Key find-
ings include a shared core response to infection with a 
skewed immune response, hyperinflammation, and organ 
damage. While a more pronounced cytokine storm was 
measured on sepsis, respiratory dysfunction in COVID-
19 was linked to a plasma protein signature characterized 
by markers of tissue damage and wound repair. Further-
more, we used machine learning to pinpoint a set of bio-
markers that could accurately discriminate COVID-19 
from CAP-sepsis. Such signatures could have potential 
diagnostic value for management of patients without 
any positive microbiological results. Overall, the results 
emphasize the need for personalized medicine in these 
severe infections and present interesting biomarker can-
didates for further validation, with the goal of improving 
the management of COVID-19 and sepsis.
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