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Abstract 

Background  Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease with high 
morbidity and mortality, especially in advanced patients. We aimed to develop multi-omics panels of biomarkers for 
the diagnosis and explore its molecular subtypes.

Methods  A total of 40 stable patients with advanced COPD and 40 controls were enrolled in the study. Proteomics 
and metabolomics techniques were applied to identify potential biomarkers. An additional 29 COPD and 31 controls 
were enrolled for validation of the obtained proteomic signatures. Information on demographic, clinical manifesta-
tion, and blood test were collected. The ROC analyses were carried out to evaluate the diagnostic performance, and 
experimentally validated the final biomarkers on mild-to-moderate COPD. Next, molecular subtyping was performed 
using proteomics data.

Results  Theophylline, palmitoylethanolamide, hypoxanthine, and cadherin 5 (CDH5) could effectively diagnose 
advanced COPD with high accuracy (auROC = 0.98, sensitivity of 0.94, and specificity of 0.95). The performance of the 
diagnostic panel was superior to that of other single/combined results and blood tests. Proteome based stratification 
of COPD revealed three subtypes (I–III) related to different clinical outcomes and molecular feature: simplex COPD, 
COPD co-existing with bronchiectasis, and COPD largely co-existing with metabolic syndrome, respectively. Two 
discriminant models were established using the auROC of 0.96 (Principal Component Analysis, PCA) and 0.95 (the 
combination of RRM1 + SUPV3L1 + KRT78) in differentiating COPD and COPD with co-morbidities. Theophylline and 
CDH5 were exclusively elevated in advanced COPD but not in its mild form.

Conclusions  This integrative multi-omics analysis provides a more comprehensive understanding of the molecular 
landscape of advanced COPD, which may suggest molecular targets for specialized therapy.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a pro-
gressive lung disease characterized by chronic inflam-
mation, airway obstruction, and destruction of the 
parenchyma. It is the fourth leading cause of death glob-
ally, and is projected to be the third leading cause of mor-
tality by 2030 [20]. Current therapies for patients with 
advanced COPD mainly treat symptoms such as chronic 
cough and excessive sputum production, as well as pre-
vent disease progression. However, 46–91% of adults 
still suffer from persistent and disabling breathlessness 
at rest and on minimal exertion [25]. To date, no therapy 
has been developed for reducing disease progression and 
lower mortality rates. Therefore, additional approaches 
for accurate diagnoses of advanced COPD are urgently 
needed.

In 2011, the Society for Qualification of Biomark-
ers for COPD was established to accelerate research 
and development of biomarkers. To date, however, 
only a handful of biomarkers associated with COPD 
have been discovered [21]. Integrated multi-omics 
data analysis can provide insights into the pathologi-
cal mechanisms of COPD. Analysis of the proteome 
can provide studying disease-related mechanisms and 
diagnostic biomarkers, which reveals disease pheno-
type [21]. Compared to traditional proteomic tech-
niques, TMT-LC–MS/MS is a more comprehensive 
and efficient method for capturing and quantification 
of proteins, with a smaller sample requirement without 
offset. In addition, the metabolome, which is defined 
as the total collection of small molecular metabolites 
present in a given type of cell or organism, is the final 
downstream product of metabolism. Particularly, it 
provides an exact reflection of the current metabolic 
status of the organic body. To date, some progress has 
been made in the fields of functional proteomics and 
metabolomics. For example, researchers have applied 
proteomic approaches to identify novel biomarkers, 
such as plasma sRAGE for detecting presence and 
progression of emphysema [33], whereas others have 
adopted metabolomics approaches to identify potential 
disease severity markers or therapeutic candidates such 
as purines [8], sphingolipids [2], and glycerol phospho-
lipids [4]. However, no discovery-based approach has 
yet resulted in validated clinical biomarkers. Although 
findings from these omics-centric studies have added 
to the existing knowledge base, there are several gaps 
that are yet to be filled. We hypothesize that integrat-
ing contemporary proteomics and metabolomics 
approaches can effectively evaluate metabolic pathways 
and diagnostic biomarkers in advanced COPD. More-
over, most of the previous multi-omics studies have 
focused on patients derived from European, American, 

and African populations [24]. Therefore, it is important 
to systematically analyze the metabolic and proteomic 
profile of Chinese patient cohorts to generate new 
insights for this region.

Patients with COPD are often predisposed to vari-
ous co-morbidities, such as cardiovascular disease, 
metabolic syndrome, and bronchiectasis [15, 20, 22]. 
Additionally, smoking is a risk factor for such co-mor-
bidities, with previous evidence showing that some 
smokers develop a predominately emphysema pheno-
type, characterized by alveolar damage, while others 
developing predominantly airway disease. Evidence 
from other studies has shown that proteases, inflam-
mation, oxidative stress, immune defects, and infec-
tions play a role in the development and progression 
of COPD [25]. Since COPD is a heterogeneous dis-
ease, grading the severity and identifying phenotypes 
according to the concomitant diseases (i.e., subpopu-
lations of subjects with similar disease characteristics) 
can expand our understanding of the biological mecha-
nisms underlying the disease’s development and pro-
gression. This will facilitate accurate diagnoses of 
the disease. Particularly, lowering mortality rates in 
patients with advanced COPD relies on early and accu-
rate diagnosis and differentiation of different subtypes 
using simple and objective diagnostic assessments. The 
heterogeneity of COPD also exists at the molecular 
level, and thus molecular sub-phenotyping is the first 
and crucial step in the identification and classification 
of these subgroups. Previous studies have shown that 
omics approaches, based on appropriate sample sizes, 
can not only efficiently reveal heterogeneity of these 
subtypes but also facilitate diagnosis and reveal the 
exact mechanisms underlying COPD subgroups [22, 
24]. Proteomics techniques, based on mass spectrom-
etry, have shown strong power in detecting disease 
phenotypes.

In this study, we hypothesized that changes in pro-
teomic and metabolic profiles of patients with stable 
COPD would produce a unique pattern of molecules 
compared to those without COPD, and that these molec-
ular profiles would change with disease complications. 
Therefore, we first performed quantitative shotgun pro-
teomic analyses to investigate COPD-related proteins 
molecular portrait and reveal COPD-related functional 
modulation. Next, we applied a targeted proteomics 
approach to validate specific members of dysregulated 
proteins in another independent sample set. In addi-
tion, untargeted metabolomics was performed using the 
same participants as the proteome. Our findings not only 
reveal the profiles of COPD biomarkers and molecu-
lar subtypes, but also provide data that will guide future 
studies seeking to develop tools for clinical application.
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Methods
Biospecimen collection and clinical data
The previously published design of GIRD COPD Biobank 
(Clinical trial www.​chictr.​org.​cn, number ChiCTR-
CCC-12002950) was adopted in this study [19]. The 
GIRD COPD Biobank collection, which was established 
in 2010, comprises specimens from patients and controls 
for research purposes. All patients were diagnosed with 
COPD through pulmonary function testing and clinical 
symptoms. The enrolled patients and controls were aged 
between 40 and 80 years, and were permanent residents 
(lived in Guangzhou for years). Permission to access 
medical records was sought from each individual, after 
which his/her management information was retrieved 
before and after hospitalization. The participants were 
also requested to provide blood samples and other mate-
rials for research purposes. The cross-sectional analysis 
presented in this work is based on clinical and biomarker 
data obtained at baseline.

Inclusion criteria of patients were as follows: male 
subjects aged 55–75  years, had a Global Initiative for 
Obstructive Lung Disease (GOLD) stage 1–4, and were 
current or ex-smokers with a smoking history of greater 
than or equal to 10 packyears, as well the patients were 
all stable COPD without therapies including steroid, 
theophylline, antibiotics etc. at least 1 week before join-
ing the group. The exclusion criteria were: patients suf-
fering from lung disease except extensive bronchiectasis, 
such as cystic fibrosis, and pulmonary fibrosis; with other 
inflammatory diseases, or reported COPD exacerbation 

within 4 weeks of enrollment. Participants were assigned 
to the control group if they had normal spirometry, 
cancer-free without suffering from any lung disease, 
aged between 40 and 80  years, current or ex-smokers, 
and were permanent residents of Guangzhou (lived in 
Guangzhou for several years).

Finally, 70 advanced COPD patients and 70 healthy 
controls were recruited for multi-omics study. Additional 
10 mild-to-moderate COPD and 11 healthy controls 
were enrolled for protein biomarker validation. For the 
validation of final metabolites, the results of 46 mild-to-
moderate COPD and 48 healthy controls were obtained 
with the help of professor Zhou [36]. For proteomics 
analysis, subjects were divided into a discovery (compris-
ing 40 COPD patents and 40 controls) and validation (30 
COPD patients and 30 controls) groups. Metabolomics 
analyses were only performed on the discovery cohort. 
Blood samples were obtained from all participants 
before breakfast, and immediately processed according 
to a previously published standard protocol [19]. Briefly, 
blood was collected into serum separating tubes (SST, 
Vacutainer SST II Tube 8.5 mL, #368972; BD), manually 
inverted 10 times, then centrifuged for 10 min at 1300×g. 
Serum samples were aliquoted and stored at − 80 °C until 
proteomics analysis. Peripheral Blood Mononuclear cells 
(PBMCs) were isolated using lymphocyte separation 
medium as described previously [34]. The study design is 
shown in Fig. 1.

Furthermore, we collected each patient’s demographic, 
clinical manifestation, anthropometric information, 

Fig. 1  Overview of the experimental design and the number of samples for proteomics, metabolomics, and protein validation. 40 stable advanced 
COPD along side 40 controls were recruited, then applied proteomics and metabolomics techniques to detect potential biomarkers. An additional 
30 COPD vs 30 controls was used to validate the resultant proteomic signatures. Molecular subtyping performed using proteomics data. Receiver 
operating characteristics (ROC) analyses used to evaluate predictive capability of the biomarkers, and then experimentally validated the predictions 
on mild-to-moderate COPD

http://www.chictr.org.cn
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individual and family disease history, and other co-mor-
bidities. Moreover, information on other parameters, 
such as indoor living and working environment, dietary 
habits and smoking habits was collected. Family history 
of cancer was defined as any self-reported cancer in his/
her first-degree relatives, such as parents, siblings, or 
children. A summary of the characteristics of all COPD 
patients and control subjects with complete data is pre-
sented in Table  1 in discovery stage. Each patient vol-
untarily provided a written informed consent prior to 
inclusion in the study and data collection. The study was 
approved by the Institutional Review Board of Guang-
zhou Medical University, Ethics Committee of the First 
Affiliated Hospital (approval number: GZMC 2009-08-
1336), and was conducted in accordance with the princi-
ples of the Declaration of Helsinki.

Proteomics analysis
Protein extraction and trypsin digestion of identified 
proteomics
Cellular debris were first removed from serum samples 
via a 10-min centrifugation at 12,000×g at 4 °C, and the 
supernatant transferred to a new centrifuge tube. The 
top 12 high abundance proteins were then removed by 
Pierce™ Top 12 Abundant Protein Depletion Spin Col-
umns Kit (Thermo Fisher), and the protein concentration 
determined using the BCA kit according to the manufac-
turer’s instructions. For digestion, the protein solution 
was reduced by treating it with 5 mM dithiothreitol for 
30  min at 56  °C, then alkylated with 11  mM iodoaceta-
mide for 15 min at room temperature in darkness. Next, 
the prote in sample was diluted by adding 100 mM TEAB 
to urea concentration less than 2  M. Trypsin, at 1:50 

Table 1  Characteristics of proteomics cohorts in discovery stage and in validation stage

Bold values indicate significant differences

CRD chronic respiratory disease, severe COPD Global Initiative for Obstructive Lung Disease stage 3–4
a P-values for a two-sided χ2 test or t-test. Data are median (P25–P75), n (%)

Discovery stage Pa Validation stage Pa

COPD Controls COPD Controls

N 40 40 29 31

Male, % 100 100 1.0 100 100 1.0

Smoking, % 100 100 1.0 100 100 1.0

Packyears ≥ 30, % 100 100 1.0 100 100 1.0

Age (years), mean (SD) 64.6 (11.7) 63.7 (5.3) 0.656

Height (cm), mean (SD) 165.0 (5.2) 166.0 (5.9) 0.824 164 (4.9) 169 (5.9) < 0.001
Weight (kg), mean (SD) 63.1 (12.5) 65.7 (8.2) 0.266 60.60 (9.3) 69.10 (9.4) 0.001
BMI (kg/m2), mean (SD) 23.8 (2.9) 23.1 (4.6) 22.40 (3.2) 23.90 (2.5) 0.054

Fan in kitchen, % 93.2 92.7 0.475 92.3 93.6 1.000

Good room ventilation, % 38.6 63.4 0.022 62.1 51.6 0.414

Often preserved food, % 18.8 7.1 0.106 10.3 3.2 0.346

Often cook, % 25.0 29.3 0.658 17.2 35.5 0.110

Comorbidity, %

 CRD 29.8 12.2 0.045 34.6 3.2 0.002
 Hypertension 42.6 31.7 0.294 34.6 22.6 0.314

 Diabetes 12.8 7.5 0.498 0 10 –

 Heart diseases 40.4 12.5 0.004 19.2 6.7 0.231

 Stroke 4.3 0 – 3.8 0 –

Family history, %

 Cancer 6.3 9.5 0.563 23.1 22.6 0.965

 RD without COPD 19.1 15.8 0.759 7.1 3.2 –

 Severe COPD, % 100 0 – 100 0 –

Pulmonary function, mean (SD)

 pre_FVC_%Pred 74.9 (28.1) 98.0 (15.0) < 0.001 78.5 (16.3) 94.3 (10.4) < 0.001
 pre_FEV1_%Pred 59.7 (32.1) 88.4 (26.1) < 0.001 47.1 (14.3) 94.5 (9.6) < 0.001
 pre_FEV1/FVC_%Pred 62.7 (15.9) 71.3 (15.5) 0.036 57.4 (15.8) 96.8 (9.7) < 0.001
 post_FVC_%Pred 74.6 (24.6) 99.8 (12.5) < 0.001 88.3 (14.6) 104 (13.0) 0.061

 post_FEV1_%Pred 57.1 (28.6) 90.8 (25.4) < 0.001 53.8 (15.8) 101 (10.4) < 0.001
 post_FEV1/FVC_%Pred 60.7 (15.2) 70.9 (15.4) 0.021 57.7 (15.4) 76.9 (6.3) 0.025
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trypsin-to-protein mass ratio, was added for the first 
digestion overnight, followed by 1:100 trypsin-to-protein 
for a second 4 h-digestion. After tryps indigestion, pep-
tide was desalted using Strata X C18 SPE columns (Phe-
nomenex), vacuum-dried, then reconstituted in 0.5  M 
TEAB and labeled for TMT pro11 plexkit according to 
the manufacturer’s protocol.

Liquid chromatography–mass spectrometry (LC–MS/MS)
The tryptic peptides were fractionated into fractions by 
high pH reverse-phase HPLC using Thermo Betasil C18 
column (5 μm particles, 10 mm ID, 250 mm length). The 
peptides were first separated with a gradient of 8% to 
32% acetonitrile (pH 9.0) over 60 min into 60 fractions. 
Then, the peptides were combined into 6 fractions and 
dried by vacuum centrifuging. An electrospray, at a volt-
age of 2.0 kV, was applied with a m/z scan range of 350 to 
1800 for full scan, while intact peptides were detected in 
the Orbitrap at a resolution of 70,000. The peptides were 
then selected for MS/MS using NCE setting as 28, while 
the fragments were detected in the Orbitrap at a resolu-
tion of 17,500. A data-dependent procedure, which alter-
nated between one MS scan followed by 20 MS/MS scans 
with 15.0  s dynamic exclusion, was also applied. Auto-
matic gain control (AGC) was set at 5E4, while the fixed 
first mass was set at 100 m/z.

Analysis of proteomics data
Differentially expressed proteins (DEPs) were identified 
using the empirical Bayesian algorithm implemented 
in the limma package in R software. Up-regulated and 
down-regulated proteins were defined by a fold change 
of ≥ 1.2 or ≤ 0.83 and a P-value < 0.05. We performed 
Gene Ontology (GO) annotation of the proteome, using 
the UniProt-GOA database (http://​www.​ebi.​ac.​uk/​GOA), 
then identified enriched pathways using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis. Next, 
we used the “heatmap.2” function in “ggplot” package in 
R to perform hierarchical clustering and visualization 
of the DEPs. We used the GO terms to classify the pro-
teins into three categories, namely biological process, 
cellular components, and molecular function. Accession 
numbers for all DEPs or their sequences were searched 
against the STRING database version 10.1 for protein–
protein interactions (PPI).  The STRING algorithm uses 
a metric called “confidence score” to define interaction 
confidence. Thus, we fetched all interactions with a con-
fidence score of ≥ 0.7 (high confidence). The resulting 
interaction was among proteins was visualized using the 
“networkD3” package in R.

Principal Component Analysis (PCA) is a data reduc-
tion technique used to convert a large set of variables 
into a smaller set which still contains most of the original 

information. Principal components were extracted as 
a linear combination of the variables. This variance was 
then removed and a second linear combination was built, 
which iteratively explains the maximum proportion of 
the whole information. This is called the principal axis 
method, which leads to orthogonal (uncorrelated) fac-
tors. Furthermore, it involves the computation of eigen-
values and eigenvectors of covariance matrices. These 
eigenvectors were sorted in the descending order of their 
eigenvalues, followed by the actual data [13].

Validation using targeted proteomics analysis
For validation, 30  μL of serum, collected as earlier 
described, was treated with Pierce™ Top 12 Abundant 
Protein Depletion Spin Columns Kit (Thermo Fisher) 
according to the manufacturer’s instructions. The mix-
ture was digested with trypsin in a similar fashion to the 
discovery study. All samples were analyzed via LC–MS, 
operated under the parallel-reaction monitoring (PRM) 
acquisition scheme. PRM data were analyzed using Sky-
line (v.3.6) to identify transitions and peak area integra-
tion, while protein intensities were Log2 transformed. 
Proteins with missing values, in more than 60% samples, 
were excluded, while the remaining missing values were 
considered to be low abundance due to limited MS sen-
sitivity. Therefore, we replaced them using random num-
bers drawn from a normal distribution with a mean value 
1.8× lower and a standard deviation 0.3× of the original 
data.

Metabolomics analyses
Untargeted metabolomics analysis using UPLC‑Q‑TOF/MS
Metabolic profiling of serum samples was performed on 
an Agilent 1290 Infinity LC system (Agilent Technolo-
gies, Santa-Clara, California, USA), coupled with an AB 
SCIEX Triple TOF 6600 System (AB SCIEX, Framing-
ham, MA, USA). Chromatographic separation and aque-
ous phase of extracts used for both positive and negative 
models, was implemented on ACQUITY HSS T3 1.8 μm 
(2.1 × 100 mm) columns with a temperature of 25 °C. The 
mobile phases, comprising 0.1% formic acid in water (A) 
and 0.1% formic acid in acetonitrile (B), were used in the 
positive ionization mode, while 0.5 mM ammonium fluo-
ride in water (C) and acetonitrile (D) were used in nega-
tive ionization mode. In the positive (negative) model, 
the elution gradient initially started with 1% B (D) for 
1 min, linearly increased to 100% B (D) at 8 min, where 
it was maintained for 2 min, then returned to 1% B (D) 
for about 2 min of equilibrium. Delivery was achieved at 
a flow rate of 300 μL/min, and 2 μL aliquot of each sam-
ple injected onto the column. TOF/MS was performed 
on both positive and negative ion modes. We applied the 
information-dependent acquisition (IDA), an artificial 

http://www.ebi.ac.uk/GOA
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intelligence-based production scan mode, for detection 
and identification of MS/MS spectra.

Metabolomics data analysis
The datasets were normalized and integrated using sup-
port vector regression, then uploaded into the Metabo 
Analyst software for further analysis (www. metaboana-
lyst.ca). Datasets from both positive and negative models 
were log-transformed and pareto-scaled. Next, they were 
subjected to principal component analysis (PCA) and 
partial least square discriminant analysis (PLS-DA). We 
calculated variable importance in the projection (VIP) 
value, for each variable in the PLS-DA model, to deter-
mine its contribution to the classification. Metabolites 
with the VIP value > 1 were further analyzed using the 
Student t-test at the univariate level to determine the sig-
nificance of each metabolite. Differences at P-value < 0.05 
were considered statistically significant. The secondary 
metabolites screened by metabolomics were analyzed 
using Spearman correlation. R language and Cytoscape 
software were jointly used to analyze the matrix heat 
map, hierarchical clustering, association network, and 
other variables.

Validation of expressions or regulatory roles of prioritized 
molecules upon mild‑to‑moderate COPD
The total RNA was extracted from PBMCs obtained 
from patients with COPD and healthy individuals using 
Trizol reagent (Invitrogen). It was reversely transcribed 
to cDNA using PrimeScript™ RT reagent Kit (TaKaRa, 
China). The qRT-PCR assay was performed on CFX96-
C1000 system (Bio-Rad, CA) using SsoFast™ EvaGreen® 
supermix kit (Bio-Rad). Primers used for qRT-PCR 
were as follows: human CDH5: 5′-ATG​AGA​TCG​TGG​
TGG​AAG​CG-3′ (forward), 5′-TGT​GTA​CTT​GGT​CTG​
GGT​GA AG′ (reverse); human GAPDH: 5′-ACA​ACT​
TTG GTA​TCG​TGG​AAG​G-3′ (forward), 5′-GCC​ATC​
ACG​CCA​CAG​TTT​ C-3′ (reverse). The relative expres-
sion of each gene was normalized to GAPDH expression 
and calculated using the 2−△△Ct method. Validation of 
metabolites (theophylline and hypoxanthine) was per-
formed on an Ultimate 3000 UHPLC system coupled 
with Q-Exactive MS (Thermo Scientific).

Statistical analysis
Data of quantitative and categorical traits were analyzed 
using the Mann–Whitney U and t tests, with P < 0.05 
considered statistically significant. The combined values 
for diagnosing disease severity were calculated by binary 
logistic regression using a stepwise method (with a vari-
able entered and removed if P < 0.05 and P > 0.1, respec-
tively). The accuracy of each independent or combined 

indexes was determined using the auROC. The optimal 
threshold value was obtained by calculating the correct 
classification ratio (CCR). PCA seeks a linear combina-
tion of variables such that the principal components (PC) 
can be extracted. Loadings from the first and second PCs 
were used to form the weighted component scores (Y1, 
Y2) as a linear combination of the original 12 variables 
for each participant. Eigen equations showed by Y1, Y2 
were combined to obtain a composite disease expres-
sion score (Y3 = |Y1 λ1| + |Y2 λ2|) where λi is the variance 
explained by each PC (eigenvalue) that accounts for most 
of the variation. All statistical analyses were performed 
using packages implemented in R (v3.2.0).

Results
Clinical characteristics of participants
Blood samples were collected from 70 patients with 
advanced COPD and 70 healthy controls from GIRD 
COPD Biobank (Table  1). There were statistically sig-
nificant differences between COPD patients and healthy 
controls in terms of room ventilation, heart diseases, and 
pulmonary function (P < 0.05), but sex, smoking, pack 
years, age, height, weight, BMI, fan in kitchen, preserved 
food consumption, cooking, other comorbidities, and 
family history were not significantly different between 
the two groups (P > 0.05). Additional proteomics analy-
sis was conducted using an independent validation set 
comprising COPD patents (n = 29) and controls (n = 31) 
(Table  1 on the validation stage). Results indicated that 
COPD patients had significantly lower mean height, 
weight, and pulmonary function than healthy individuals 
(Pmax = 0.001). Moreover, COPD patients, but not healthy 
controls, reported complications related to chronic res-
piratory disease (CRD) at admission (P = 0.02). Pul-
monary function (except post-FVC_%Pred) and mean 
platelet volume (MPV) were significantly lower in COPD 
patients than in healthy individuals (Pmax = 0.025). Simi-
larly, COPD patients exhibited significantly higher mono-
cytes than healthy subjects (P = 0.027) (Table 2). Next, we 
used proteomics results to stratify COPD patients into 3 
subgroups (Table 3): subtype I were mainly COPD with-
out other respiratory diseases (simplex COPD, n = 19), 
subtype II largely for COPD co-existing with bronchi-
ectasis (COPD-BE, n = 9), and subtype III focused on 
COPD co-existing with metabolic syndrome (COPD-
MD, n = 12). Further analysis revealed that participants 
in the COPD-BE and COPD-MD groups had significantly 
lower room ventilation and COPD without chronic res-
piratory disease than the simplex COPD (P = 0.002 and 
0.014, respectively), while those in the COPD-BE group 
had significantly lower pre_FEV1_%Pred relative to those 
in other groups (P = 0.025).
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Proteomic profiles and functional alterations related 
to COPD
Serum samples were obtained from 40 patients with 
advanced COPD and 40 healthy controls for TMT-
labeled proteomic analysis. The proteomic patterns of 
serum from COPD patients were distinct from those 
of serum obtained from healthy controls. A total of 
1432 proteins were identified and quantified. Quality 
control analysis was carried out, the lengths and mass 
errors of peptides, as well as coverage and sequence 

distribution of the proteins were calculated (Additional 
file  1: Fig. S1A–D). Consequently, 251 differentially 
expressed proteins (DEPs) were identified between the 
two groups, of which 151 and 100 were significantly 
up-regulated and down-regulated, respectively (fold 
change ≥ 1.2 or ≤ 0.83 and a P < 0.05) (Additional file 1: 
Fig. S1E). Moreover, 31.43% of these proteins were 
involved in extracellular matrix, whereas 29.29 and 
18.57% among them regulated functions in the cyto-
plasm and nucleus, respectively (Additional file  1: Fig. 
S1F). The DEPs were divided into Q1–Q4 according to 
the multiple of fold change, and the heatmap of enrich-
ment analysis (GO and KEGG) shown in Additional 

Table 2  Blood count of validation cohorts for targeted 
proteomics

CRD chronic respiratory disease, RDW-SD standard deviation of RBC distribution 
width, RDW-CV coefficient variation of RBC distribution width, PDW platelet 
distribution width, PCT thrombocytocrit, NRBC nucleated red cells absolute 
value, severe COPD Global Initiative for Obstructive Lung Disease stage 3–4

In bold is P < 0.05
a P values for a two-sided χ2 test or t-test. Data are median (P25–P75), n (%)
b COPD patients exhibited significantly higher monocytes than healthy subjects

COPDb Controls Pa

N 29 31

Male, % 100 100 1.0

Smoking, % 100 100 1.0

Pack_years ≥ 30, % 100 100 1.0

Severe COPD, % 100 0 –

White blood cells, WBC 7.55 (1.91) 6.76 (1.8) 0.11

Neutrophil ratio 62.15 (8.25) 59.67 (8.3) 0.25

Lymphocyte ratio 24.95 (7.54) 28.98 (7.52) 0.04

Monocyte ratio 8.77 (2.27) 7.77 (2.09) 0.09

Eosinophil ratio 3.47 (2.89) 2.88 (1.66) 0.34

Basophilic cell ratio 0.66 (0.24) 0.71 (0.23) 0.44

nucleated red cells ratio 0.21 (0.72) 0.10 (0.07) 0.42

Neutrophil count 4.59 (1.47) 4.05 (1.32) 0.15

Lymphocyte count 1.85 (0.8) 1.94 (0.78) 0.66

Monocyte countb 0.65 (0.28) 0.52 (0.15) 0.027
Eosinophil count 0.26 (0.27) 0.19 (0.13) 0.24

Basophil count 0.22 (0.94) 0.04 (0.05) 0.28

NRBC 5.59 (30.08) 0.01 (0.01) 0.31

Red blood cells, RBC 4.84 (1.0) 4.80 (0.51) 0.85

Hemoglobin, HGB 141.53 (16.42) 145.3 (11.13) 0.31

Hematocrit, HCT 3.29 (11.02) 3.19 (10.43) 0.97

Mean corpuscular volume, MCV 97.17 (47.81) 94.64 (8.52) 0.77

Mean hemoglobin content, MCH 29.45 (4.33) 30.54 (3.16) 0.27

Mean hemoglobin concentration, 
MCHC

326.9 (10.73) 322.4 (11.9) 0.13

RDW-SD 43.94 (4.89) 43.99 (3.39) 0.96

RDW-CV 14.14 (1.08) 13.56 (1.06) 0.04

Platelet, PLT 255.9 (57.97) 236.1 (60.46) 0.20

Mean platelet volume, MPV 8.14 (1.04) 8.76 (0.94) 0.019
PDW 16.50 (1.2) 16.19 (1.65) 0.41

PCT 0.21 (0.04) 0.20 (0.05) 0.97

Table 3  Characteristics of proteomics-driven subtype cohorts by 
using the discovery proteomics data

Bold values indicate significant differences

CRD chronic respiratory disease, severe COPD Global Initiative for Obstructive 
Lung Disease stage 3–4, COPD-BE COPD co-existing with bronchiectasis, 
COPD-MD COPD co-existing with metabolic syndrome
a P-values for a two-sided χ2 test or oneway-ANOVA, or Fisher’s exact test, non-
parametric test.as appropriate. Data are median (P25–P75), n (%)

COPD Pa

COPD COPD-BE COPD-MD

N 19 9 12

Male, % 100 100 100 1.0

Smoking, % 100 100 100 1.0

Packyears ≥ 30, % 100 100 100 1.0

Age (years), mean (SD) 59.8 67.8 63.6 0.22

Height (cm), mean (SD) 167 164 165 0.54

Weight (kg), mean (SD) 87.3 53.1 85.7 0.17

BMI (kg/m2), mean (SD) 32.2 18.8 32.0 0.22

Fan in kitchen, % 17 (94.4) 8 (100) 12 (100) 1.00

Good room ventilation, % 13 (72.2) 1 (12.5) 2 (16.7) 0.002
Often preserved food, % 3 (16.7) 0 0 0.54

Often cook, % 5 (27.8) 3 (37.5) 3 (25) 0.88

Comorbidity, %

 CRD 6 (31.6) 3 (33.3) 4 (33.3) 0.99

 Hypertension 8 (42.1) 3 (33.3) 5 (41.7) 0.90

 Diabetes 4 (21.1) 1 (11.1) 1 (8.3) 0.85

 Heart diseases 6 (31.6) 3 (33.3) 5 (41.7) 0.84

 Stroke 2 (10.5) 0 0 0.71

Family history, %

 Cancer 3 (15.8) 0 0 0.30

 CRD without COPD 6 (42.8) 1.0 (11.1) 0 0.014
Severe COPD% 100 100 100 1.0

 pre_FVC_%Pred 81.1 (29.5) 53.2 (12.0) 63.4 (19.7) 0.19

 pre_FEV1_%Pred 69.8 (31.5) 24.1 (4.4) 41.0 (16.9) 0.025
 pre_FEV1/FVC_%Pred 81.8 (29.5) 53.2 (12.1) 63.4 (19.7) 0.19

 post_FVC_%Pred 77.5 (28.4) 64.0 (4.4) 71.7 (17.6) 0.69

 post_FEV1_%Pred 66.1 (29.1) 29.3 (7.3) 44.1 (18.1) 0.07

 post_FEV1/FVC_%Pred 77.5 (28.4) 64.0 (4.4) 71.7 (17.6) 0.69
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file  2: Fig. S2. In sum, the quality control analysis 
showed the data were acquired with a high degree of 
consistency and reproducibility, and the significantly 
up-regulated DEPs indicated a generally activated effect 
of biological processes in COPD.

The detailed data processing protocols for COPD 
and healthy controls are showed in Fig.  2A. In total, 
251 dysregulated DEPs were identified between the 
two groups (Fig.  2B). For biological processes, these 
proteins were mainly involved in immune response, 
myeloid leukocyte activation, neutrophil mediated 
immunity, granulocyte activation, platelet activation, 
and homotypic cell–cell adhesion. For molecular func-
tions, the proteins were primarily involved in seven 
function processes, namely identical protein binding, 
structural molecule activity, cadherin binding, oxidore-
ductase activity, structural constituent of cytoskeleton, 
tetrapyrrole binding, and heme binding. Most of these 

proteins were located in vesicle lumen and secretory 
granule (Fig.  2C). Results from KEGG pathway analy-
ses revealed that these DEPs were significantly enriched 
in carbon metabolism, and glycolysis/gluconeogenesis. 
Heatmap analyses showed higher antioxidant activ-
ity and activated glycosaminoglycan binding in COPD 
compared to healthy controls (Fig.  2D). Among these 
DEPs, the final dysregulated proteins were selected 
(Fig. 2E), and validated by targeted proteomics accord-
ing to differential significance levels, including ORM1, 
HP, HBB, VCL, TPIA, HBA1, CA2, SOD1, FGA, 
PRDX2, CDH5, ALDOA, CA1, TNC, CAT, and LRG1 
(Fig.  2F). In final, 16 DEPs were selected associated 
with COPD compared with healthy controls.

Protein validation via targeted proteomics (PRM)
The COPD-related proteomics and functional altera-
tion results from the discovery study were then used to 

Fig. 2  Proteomic profiles and functional alterations related to COPD. A Data process. B Venn plot showing identification of the COPD specific 
proteins among COPD vs healthy controls. C Gene Ontology annotation and KEGG enrichment analysis of differentiated expressed proteins (DEPs). 
D Heatmap showing the differentiated expressed proteins (DEPs). The red and colors in the heatmap denote higher gene expression and lower 
gene expression, respectively. E The final selected dysregulated proteins. F Protein validation via targeted proteomics (PRM)
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develop protein marker panels for accurate prediction 
of severity of COPD. Thus, we analyzed members of 
upregulated functional groups based on top Pmin value 
and fold changes (max). Finally, 16 DEPs with confident 
quantitation data were validated in an additional cohort 
comprising 29 COPD and 31 healthy controls (Additional 
file 6: Table S1). Considering the challenge of quantifying 
dozens of protein candidates in parallel, we employed a 
median-throughput mass spectrometry-based approach 
as the Parallel Reaction Monitoring (PRM) for analysis of 
176 tryptic peptides. Eventually, this targeted proteomic 
analysis approach detected 16 protein candidates with 
robust signal across the validation set. The trends of the 
marked proteins in COPD samples corroborated results 
from the discovery study (Fig.  2F). To sum to, the final 
5 significantly dysregulated proteins were selected after 
validating via targeted proteomics, including ORM1, HP, 
HBB, VCL, and CDH5.

Proteomic subtypes of COPD and their association 
with clinical outcomes
Consensus clustering based on the 107 most variable pro-
teins in COPD identified three proteomic subtypes (each 
disease normalized by health and SD > 0.5) (Fig.  3A). 
They were designated as subtype I (n = 19), subtype II 
(COPD-BE, n = 9), and subtype III (COPD-MD, n = 12). 
The resulting heatmap revealed that the DEPs were sig-
nificantly enriched in metabolic pathways and comple-
ment and coagulation cascades in subtype I. Moreover, 5 
highly expressed proteins, including B4GAT1, GNPTG, 
ADAMTSL4, CFP, and EXTL2 were identified. We found 
that the subtype II was enriched in metabolic pathways, 
biosynthesis of antibiotics, carbon metabolism, bio-
synthesis of amino acids, and glycolysis/gluconeogen-
esis, and the involved proteins included SOD1, PRDX2, 
CAT, PRDX6, HBB, GSTO1, and HBA1. For subtype III 
group, the complement and coagulation cascades were 
significantly enriched, and the following proteins were 
enriched: HP, LBP, SERPINA (1, 3), SAA1, CRP, ORM1, 
ORM2, and CRP. GO enrichment analysis was performed 
to annotate the putative functional implications of the 
grouped DEPs (Fig. 3B–D, F).

A tridimensional plot via PCA showed the configura-
tion of indexes on COPD and COPD with co-morbidities 
in Fig.  3E. Plots of individual component scores for the 
first principal component (PC1) versus the second prin-
cipal component (PC2) versus the third principal com-
ponent (PC3) were provided. PC1, PC2, and PC3 showed 
clear separation of COPD from COPD subtypes. Combi-
nations of PC1, PC2, and PC3 could explain 58.4% pro-
portion of the whole variances. Based on the selected 
proteins panel, as indicated in Fig.  3G, ROC analysis of 
PCA and the combination of RRM1 + SUPV3L1 + KRT78 

was calculated, and results showed that the auROC was 
0.95 and 0.96, respectively. There was no significant dif-
ference between PCA analysis and the combination 
of RRM1 + SUPV3L1 + KRT78 (P > 0.05). In addition, 
basophil count showed the ability to distinguish COPD 
from COPD-BE or COPD-MD, while white blood cells 
and neutrophil ratio was able to distinguish COPD from 
COPD-BE, as well COPD-BE from COPD-MD (Fig. 3H).

In sum, COPD were subtyped into three based on 
their corresponding clinical outcomes. We also iden-
tified that both PCA analysis and the combination of 
RRM1 + SUPV3L1 + KRT78 could effectively differenti-
ate COPD and COPD with co-morbidities.

Metabolomic profiles and functional alterations associated 
with COPD
A library of known metabolite standards (APPLIED 
PROTEINS TECHNOLOGY Co. Ltd) was employed to 
identify 210 differentially expressed metabolites (DEMs) 
in COPD compared to healthy controls. In addition, 
quality control analyses were carried out based on cor-
relation distributions for total and separately metabo-
lites (or by group). The EBAM plots, normalization, 
PLS-DA, and t test were conducted (Additional file  3: 
Fig. S3A, B). Results indicated that PLS-DA produced a 
model that could separate positive and negative metabo-
lites. Heatmaps depicting clustering of total and selected 
metabolites in positive and negative modes, respec-
tively, are shown in Fig. 4A, B. Notably, 44 differentially 
expressed metabolites between the two groups were 
identified, among which 15 and 29 were positive and 
negative metabolites, respectively. The functions of the 
selected metabolites were displayed on VIP and volcano 
plots, and these metabolites were palmitoylethanola-
mide, trans-Dehydroandrosterone, decanoyl-l-carnitine, 
betaine, pseudouridine, camphor, 1-stearoyl-2-hydroxy-
sn-glycero, hypoxanthine, theophylline, l-isoleucine 
pregnenolone, androsterone sulfate, azelaic acid, suni-
tinib, bisindolymalemide1 (Fig.  4C, D). By using the 
complementary approach, the weighted gene co-expres-
sion network analysis (WGCNA), we identified several 
co-expression modules (Additional file  5: Fig. S5). The 
Betaine in MEcyan module was found to be significantly 
associated with COPD. Summary, 8 positive- and 6 neg-
ative-metabolites were selected by metabolomic analysis.

Integrated analyses of proteomics and metabolomics data
Correlation analysis
After appropriate sample quality control (QC) and nor-
malization procedures, we performed PCA on the prot-
eomics and metabolomics data. All datasets effectively 
distinguished COPD from healthy controls, with the best 
separation observed with the combined proteomics and 
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metabolomics analysis (Fig.  5E). We found that a con-
siderable number of proteins and metabolites were both 
involved in mineral absorption, proximal tubule bicar-
bonate reclamation, inflammatory mediator regulation, 

lysosome, neuroactive ligand-receptor interaction, cAMP 
signaling pathway, biosynthesis of amino acids, purine 
metabolism, fructose and mannose metabolism, glyco-
lysis/gluconeogenesis Fig.  5C. However, P value of 0.05 

Fig. 3  Proteomic subtypes of COPD and their association with clinical outcomes. A Data process. B Heatmap showing the DEPs among COPD 3 
subtypes. Proteome based stratification of COPD revealed three subtypes (subtype I–III) related to different clinical outcomes and molecular feature: 
subtype I were patients with simplex COPD, and subtype II were COPD mainly co-existing with bronchiectasis, and subtype III were COPD largely 
co-existing with metabolic syndrome. The red and colors in the heatmap denote higher gene expression and lower gene expression, respectively. 
C Pathways for dysregulated proteins enriched. D Gene Ontology annotation and KEGG enrichment analysis of DEPs among COPD 3 subtypes. E 
A tridimensional plot via Principal Component Analysis (PCA) showing the configuration of indexes on COPD and its co-morbidities. F The final 
selected dysregulated proteins. G ROC analysis of PCA and the combination of (RRM1, SUPV3L1, KRT78). H The corresponding information on blood 
tests
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as a cutoff, the significant enrichment pathways were 
enriched including both proteomics and metabolomics 
data in Fig. 5A, B. Heatmap analyses of the differentially 

expressed proteins and metabolites identified relatively 
strong or weak proteins-metabolites correlations. Pro-
teins or metabolites with strong or weak correlations 

Fig. 4  Metabolomic profiles and functional alterations associated with COPD. A Heatmaps depicting clustering of total and selected metabolites 
across positive modes. B Heatmaps depicting clustering of total and selected metabolites across negative modes. C The functions of the selected 
positive metabolites depicted using variable importance in the projection (VIP) value and volcano. D The functions of the selected negative 
metabolites depicted using VIP and volcano
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were detailed in Fig.  5F. The final differential proteins 
(DEPs) or DEMs were selected as the target proteins or 
metabolites. To analyze the interactions between them, 
the network between DEPs and DEMs was analyzed by 
Cytoscape, and the results detailed in Fig.  5G. In sum, 
enrichment analyses of DEPs and DEMs were performed 
to investigate the potential correlations between them, 
and the results showed that there were strong or weak 
correlations between these proteins or metabolites.

Establishment of diagnostic panels for COPD (diagnostic 
efficacy of single biomarkers)
Before the biomarkers were integrated, the profile of 
each biomarker was first analyzed separately (Fig.  5Ha, 
Hb). Subsequently, the ROC models were applied to cal-
culate the auROC, specificity, and sensitivity of single 
biomarkers. The calculations were performed using the 
following formula: %sensitivity = [true-positive/(true-
positive + false-negative)] * 100; %specificity = [true-neg-
ative/(true-negative + false-positive)] * 100. Thereafter, 7 
positive and 7 negative metabolites, alongside 6 proteins 
that had shown significant changes in COPD patients 

(Pmax = 0.029) were individually subjected to ROC analy-
sis, to evaluate their sensitivity and specificity and help 
discriminate COPD from healthy controls. As showed in 
Additional file  7: Table  S2, results indicated that palmi-
toylethanolamide, which was used as a positive metabo-
lite had a maximal auROC of 78.0%, with sensitivity 
and specificity of 68.0 and 72%, respectively. On the 
other hand, 1-Stearoyl-sn-glycerol (used as a negative 
metabolite) had an auROC of 78.0% and a sensitivity of 
71.0% against controls. For the proteomics data, CDH5 
recorded a maximum auROC of 85.0%, with a sensitivity 
and specificity of 80.0 and 78%, respectively. Results from 
blood routine tests showed that MPV had an auROC 
of 64.0%, with a sensitivity and specificity of 59.0 and 
53.0% respectively, while monocytes recorded an auROC 
of 68.0%, with a sensitivity of 62.0%, and specificity of 
63.0%. In sum, diagnostic efficacy of single biomarker 
was established based on metabolites, proteins, and 
blood routine test. The result indicated that palmitoyle-
thanolamide, 1-Stearoyl-sn-glycerol, and CDH5 had the 
highest auROC values for positive metabolites, negative 
metabolites, and proteins, respectively.

Fig. 5  Integrated analyses of proteomics and metabolomics data. A KEGG enrichment analysis of differentiated expressed proteins (DEPs) and 
differentiated expressed metabolites (DEMs). B The number of DEPs and DEMs. C Number of proteins and metabolites common involved in one 
pathway. D Validation study of the final predicted model on mild-to-moderate COPD patients. E PCA analysis of proteomics or (and) metabolomics 
data. F Heatmap analyses of DEPs and DEMs identified relatively strong or weak proteins-metabolites correlations. G The network analysis between 
DEPs and DEMs. H Establishment of predictive panels for COPD (single and combined biomarkers analysis)
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Diagnostic capability of combined biomarkers
The data shown in Additional file  8: Table  S3 and 
Fig.  5H indicate that analysis of predictive capability of 
a combination of 4 positive metabolites, namely palmi-
toylethanolamide, trans-dehydroandrosterone, decanoyl-
l-carnitine, and betaine, obtained an auROC of 91.0%, 
with a sensitivity and specificity of 83.0 and 85.0%, 
respectively. When 4 negative metabolites (theophylline, 
l-isoleucine, 1-stearoyl-sn-glycerol, and hypoxanthine) 
were combined, an auROC of 95.9%, was obtained with a 
sensitivity of 90.0%, and specificity of 90.0%. On the other 
hand, combining scores from 3 positive metabolites (pal-
mitoylethanolamide, decanoyl-l-carnitine, and betaine) 
with those from 2 negative ones (theophylline and hypox-
anthine) resulted in ROC curve with an auROC of 97.0%, 
a sensitivity of 88.0%, and specificity of 93.0%. The same 
model was used to construct a logistic model using the 5 
markers, dubbed diagnostic P5, and observed differential 
abundance in predicting serious COPD as follows:

Using this P5 score, advanced COPD participant can 
be distinguished predicted with high sensitivity and 
specificity, and the auROC reached 0.97 in our data set 
(Fig. 5Hc).

Combining scores from all proteins resulted in an 
auROC of 93.6%, with a sensitivity and specificity of 
88.0 and 90.0%, respectively (Fig.  5Hd). The 3-protein 
(ORM1, CDH5, and PRDX2) based logistic model gener-
ated a dichotomous score, dubbed diagnostic P3, which 
allowed classification of each participant. The relation-
ship between the probability score of a participant being 
positively diagnosed with advanced COPD and the log2 
intensity value of each protein marker was defined as 
follows:

Combining scores from 3 metabolites and that of 1 
protein resulted in a high auROC value of 98.0%, with a 
sensitivity of 94.0%, and specificity of 95.0% (Additional 
file  9: Table  S4). The final logistic model, dubbed P4, 
comprised palmitoylethanolamide, theophylline, hypox-
anthine, and CDH5 (all auROCmin > 0.724), and was 
expressed as follows:

Y(COPD=1|control=0) =− 14.645+
(

0.41 ∗ palmitoylethanolamide

+1.41 ∗ decanoyl-L carnitine− 4.83 ∗ betaine

+0.15 ∗ theophylline+ 1.17 ∗ hypoxanthine
)

/10000.

Y(COPD=1|control=0) =− 10.323+ 2.354 ∗ORM1

+ 6.834 ∗ CDH5+ 1.694 ∗ PRDX2.

Y(COPD=1|control=0) =− 17.934 + 0.46 ∗ palmitoylethanolamide

+0.13 ∗ theophylline+ 0.77 ∗ hypoxanthine

/10000+ 8.340 ∗ CDH5.

The scores from the P4 model had significantly higher 
power than scores from other models in predicting 
advanced COPD. The sensitivity, specificity, and auROC 
of P4 for COPD prediction were greatest (Fig. 5He). The 
highest Youden index (0.835), which indicates the model’s 
ability to correctly diagnose true serious COPD patients, 
was achieved at the cut-point. Taken together, results 
from the logistic model indicated that a combination of 
palmitoylethanolamide, theophylline, hypoxanthine, and 
CDH5 was the best signature of serum biomarkers for 
predicting advanced COPD.

Validation study of the final predicted model
The final predictors were further verified on mild-to-
moderate COPD patients and healthy controls. For 
CDH5, it was found that its expression was not signifi-
cantly different between COPD and controls (Fig.  5D). 
The clinical and demographic characteristics of partici-
pants are presented in Table 4. A total of 30 patients with 
COPD and 30 healthy controls were enrolled. Of note, 
there were statistically significant differences between 
COPD patients and controls in terms of pack_years, age, 

Table 4  Characteristics of validation cohorts on mild-to-
moderate COPD for CDH5

Bold values indicate significant differences

CRD chronic respiratory disease
a P-values for a two-sided χ2 test or t-test. Data are median (P25–P75), n (%)
b Mild-to-moderate COPD, Global Initiative for Obstructive Lung Disease stage 
1–2

Controls COPDb Pa

N 30 30 –

Male, % 96.67 83.33 0.20

Smoking, % 93.33 76.67 0.15

Pack_years, median (IQR) 25 (14, 40) 40 (20, 50) 0.01
Age (years), mean (SD) 59.97 ± 4.66 65.0 ± 7.00 < 0.01
BMI (kg/m2), mean (SD) 23.97 ± 3.86 22.36 ± 2.59 0.06

Cough without having a cold 7 (23.33) 14 (46.67) 0.06

Phlegm without having a cold 10 (33.33) 13 (43.33) 0.43

Chronic respiratory diseases 3 (10.00) 9 (30.00) 0.05

Poison exposure 14 (46.67) 14 (46.67) 1.00

Good room ventilation, % 19 (63.33) 19 (63.33) 1.00

Offen cook, % 10 (33.33) 15 (50.00) 1.00

Comorbidity, %

 Hypertension 9 (30.00) 8 (26.67) 0.77

 Diabetes 2 (6.67) 2 (6.67) 1.00

 Heart disease 0 5 (16.67) 0.02
 Stroke 2 (6.67) 1 (3.33) 0.55

Family history of cancer, % 8 (26.67) 11 (36.67) 0.41

Pulmonary function, mean (SD)

 FEV1_%Pred 100.51 ± 13.12 68.66 ± 6.90 < 0.01
 FEV1/FVC_%Pred 80.25 ± 3.68 62.23 ± 6.53 < 0.01
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heart disease, and pulmonary function (P < 0.05), but no 
significant difference was found between the two groups 
in terms of sex, smoking, BMI, respiratory symptoms, 
chronic respiratory diseases, poison exposure, room ven-
tilation, cook, other comorbidities, and family history of 
cancers (P > 0.05). Among the metabolites, theophylline 
was not significantly different between the two groups, 
but hypoxanthine showed significant differences in the 
validation cohort (data missing for palmitoylethanola-
mide) (Fig.  5D). The detailed clinical and demographic 
characteristics for participants was described in the pre-
vious study [36].

In sum, theophylline and CDH5 had not significantly 
different between mild-to-moderate COPD patients and 
healthy controls.

Discussion
Globally, COPD kills more than 3 million people every 
year. Although several advances have been achieved in 
the symptomatic treatment and prevention of acute clini-
cal cases, there are few interventions for ameliorating 
disease progression or decrease mortality. Therefore, it 
is important to identify biomarkers that can predict dis-
ease occurrence or aid in diagnose of advanced COPD. 
This will facilitate early intervention and prevent pro-
gression. In this study, we found that a combination of 
theophylline, palmitoylethanolamide, hypoxanthine, and 
CDH5 provides a high diagnostic accuracy. Proteomics 
facilitates the differentiation of COPD from COPD with 
co-morbidities. We also found that basophil count could 
effectively distinguish COPD from COPD-BE or COPD-
MD. Moreover, hypoxanthine was still significantly dif-
ferent between mild-to-moderate COPD and controls.

In clinical practice, plasma or serum is the most widely 
used specimen for biomarker discovery because proteins/
metabolites in the circulatory system likely reflect disease 
pathophysiology. Our dataset can be used to identify 
potential predictive biomarkers of advanced COPD. The-
ophylline and the other three methylxanthine derivatives 
(aminophylline, etophylline, and caffeine), are the first 
four compounds to have been approved for use in clini-
cal practice [12]. Among them, as bronchodilators, theo-
phylline is the most effective and is widely used for the 
treatment of asthma and COPD. Evidences showed that 
corticosteroids and theophylline, both in low doses, have 
synergistic and clinically useful anti-inflammatory effects 
in COPD [26]. The underlying molecular mechanisms 
suggest that this happens through theophylline increas-
ing the activity of the nuclear enzyme histone deacety-
lase-2 (HDAC2), which is decreased in COPD, therefore 
preventing the anti-inflammatory effect of corticosteroids 
[1]. Scientists have identified that low-dose theophylline, 
especially below those which lead to bronchodilatation, 

can reverse corticosteroid insensitivity in COPD [9, 26]. 
Another study has demonstrated an effect for low-dose 
theophylline on the forced expiratory volume in one sec-
ond (FEV1) as well as exacerbations [37]. The metabolic 
disposition of theophylline in humans was first reported 
by Brodie et  al. [3]. Following a therapeutic dose, only 
85% has been accounted for by measurement of known 
metabolites, and unchanged drug excreted in urine. 
Therefore, about 10% of theophylline administered to 
man appears in urine in an unchanged form. This would 
be one of the main sources of theophylline in the body, 
and the main reason for deviations between patients and 
controls. It may also explain why there were no differ-
ences in theophylline between mild-to-moderate COPD 
and control in the present study. In addition, as one of the 
methylxanthines, theophylline is also a natural and syn-
thetic compound found in tea, most of which is metabo-
lized by some types of bacteria and fungi, some of which 
exist in blood circulation in the human body [35]. How-
ever, the information about tea drinking was lacking in 
this study. This need to be investigated in the future.

Hypoxanthine is a product of ATP degradation, and its 
conversion to uric acid is facilitated by the enzyme xan-
thine oxidase, generating free oxygen radicals [5]. It is 
a metabolite that is involved in purine biosynthesis and 
nucleotide metabolism, and often serves as a biomarker. 
For instance, hypoxanthine is a potential marker for oxi-
dative stress in cystic fibrosis [31]; a combination of eight 
metabolites including uric acid, stearic acid, threitol, 
acetylgalactosamine, heptadecanoic acid, aspartic acid, 
xanthosine and hypoxanthine were found to accurately 
diagnose asthma while discriminating between healthy 
control and asthma subgroups. In preschool children 
with cystic fibrosis, hypoxanthine concentrations were 
found to be elevated in BALF from lobes of the lung 
containing localized bronchiectasis and were correlated 
with neutrophil counts and important clinical outcomes 
[7, 32]. Elevated hypoxanthine concentrations in vari-
ous body fluids are as a result of vital tissue hypoxia. For 
mild-to-moderate COPD, higher level of hypoxanthine 
has also been demonstrated, and this might explain 
that tissue hypoxia exists in COPD at early time. Sup-
pressed serum hypoxanthine levels have been reported 
in lung cancer [14] and cystic fibrosis lung disease [17]. 
Increased conversion to uric acid during exacerbation, 
may result in a reduction in the concentration of hypox-
anthine, generating superoxide and hydroxyl radicals in 
which cause cellular damage. However, this phenomenon 
needs to be investigated in COPD.

Vascular endothelial cadherin 5 (CDH5), an endothe-
lial specific cell–cell adhesion molecule, plays impor-
tant roles in the formation, maturation, and remodeling 
of the vascular wall [10]. RAB26 is a newly identified 
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small GTPase involved in regulation of endothelial cell 
(EC) permeability [6]. It confers protective effects on EC 
permeability, which is in part dependent on autophagic 
targeting of active SRC, and the resultant CDH5 dephos-
phorylation maintains adherent junction stabilization. 
During inflammation, CDH5 phosphorylation at tyros-
ine residues induces opening of endothelial adherent 
junctions [30]. Post-translational modifications of CDH5 
at tyrosine residues are involved in vascular permeabil-
ity and leukocyte transmigration. Moreover, cell surface 
CDH5 phosphorylation is directly linked to EC barrier 
integrity. These results suggest that any change in CDH5 
will impact endothelial barrier functions at multiple lev-
els and CDH5 inhibition may lead to a marked increase 
in permeability [11, 27]. Enhanced permeability is an 
early step in the angiogenic process, enabling endothelial 
migration out of the primary vessel in order to format the 
tumor neovasculature in the next [18]. Moreover, induc-
tion of CDH5 during epithelial mesenchymal transfor-
mation accentuates breast cancer progression via TGF-β 
signaling, indicating that in certain tumor cells, CDH5 
can induce cellular responses that counteract its inhibi-
tory role in cell–cell contact growth in EC [16]. There-
fore, CDH5 has two functions in angiogenesis and cancer 
progression. Smoking, a key factor that regulates COPD 
development, causes hypoxia, which is an important 
driver of angiogenesis which participates in the patho-
genesis of COPD.

COPD is a heterogeneous condition that presents the 
opportunity for precision therapy based on more pre-
cise disease subtypes. Subtype directed therapies, such as 
inhaled corticosteroids for patients with frequent exacer-
bations, have had only moderate success. This is likely due 
to imprecise phenotype categorization, the limited num-
ber of drugs for treating COPD, and the generally modest 
effects of most of these drugs. It is, therefore, crucial to 
provide precise therapies for patients with specific COPD 
subtypes based on specific biomarkers. Since comor-
bidities have a tremendous impact on the prognosis and 
severity of COPD, the 2015 American Thoracic Society/
European Respiratory Society (ATS/ERS) Research State-
ment on COPD urgently called for studies to elucidate 
on the pathological mechanisms involved in the associa-
tion between COPD and its comorbidities. Since comor-
bidities have influence the clinical outcomes of COPD, 
identification of the mechanisms linking COPD to its 
comorbidities is key to developing effective therapies. 
Presently, it has not been established whether BE or MD 
is an independent co-existing condition or a direct conse-
quence of progressive lung pathology in COPD patients. 
In this study, we developed a pipeline for proteomic dom-
inated subtyping of COPD, which complements subtyping 
approaches based on clinical or imaging data [23, 29], as 

well clustering by omics in Chinese. In particular, based 
on proteomics results, COPD patients were grouped into 
three clusters according to prominent molecular features, 
including simplex COPD, COPD-BE, and COPD-MD. 
To further differentiate the disease subtypes, we identi-
fied that COPD-MD is highly involved in complement 
and coagulation cascades processes, and was enriched 
with various proteins, including HP, LBP, SERPINA1, 
SERPINA3, SAA1, ORM1, ORM2, and CRP. COPD-BE 
participates in complement and coagulation cascades pro-
cesses, and is enriched with various proteins, including 
metabolic pathways, biosynthesis of antibiotics, carbon 
metabolism, biosynthesis of amino acids, and glycolysis/
gluconeogenesis. Moreover, SOD1, PRDX2, CAT, PRDX6, 
HBB, GSTO1, and HBA1 were highly expressed in COPD-
MD. Since advanced COPD possess unique metabolic 
pathways and typically express protein isoforms that may 
have special functions, proteomic approaches for studies 
of metabolic pathways are especially important.

This study has some limitations. First, no follow-up 
investigation of the same participants was carried out. 
Further multi-center and longitudinal studies are need 
to the prediction performance of the identified biomark-
ers in advanced COPD. Second, this was a retrospective 
study, therefore, laboratory tests might be underesti-
mated in medical records, making it difficult to explore 
their effects on outcomes. Moreover, information on 
medication, disease control status, and disease pheno-
types before admission were incomplete. The impact of 
these factors on disease expression should be further 
evaluated. Third, the study population was relatively 
small. Thus, large prospective studies should be per-
formed to validate the present findings. Finally, although 
traditional methods, such as logistic regression used in 
this study, are often used to establish prediction mod-
els, it has been suggested that Artificial Intelligence 
(AI) based machine learning (ML) approaches may be 
more accurate than traditional logistic regression. This 
is because AI-based ML can overcome many of the dis-
advantages of conventional statistical approaches used 
for analyses of high-volume next generation sequencing 
data. For instance, ML does not require full details of 
sequencing measurements and can extract features from 
sequences [28]. Therefore, ML approaches should be 
considered in further studies.

Conclusion
An integrated array of proteins and metabolites, includ-
ing theophylline, palmitoylethanolamide, hypoxanthine, 
and CDH5 showed the potential to diagnose advanced 
COPD patients with a high accuracy. Based on prot-
eomics, advanced COPD patients were assigned into 
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3 subgroups. In particular, COPD-MD was found to be 
highly involved in complement and coagulation cascades 
processes, and HP, LBP, SERPINA1, SERPINA3, SAA1, 
ORM1, ORM2, and CRP were highly enriched.
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