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Abstract 

Background:  Lung ultrasound allows lung aeration to be assessed through dedicated lung ultrasound scores (LUS). 
Despite LUS have been validated using several techniques, scanty data exist about the relationships between LUS 
and compliance of the respiratory system (Crs) in restrictive respiratory failure. Aim of this study was to investigate the 
relationship between LUS and Crs in neonates and adults affected by acute hypoxemic restrictive respiratory failure, as 
well as the effect of patients’ age on this relationship.

Methods:  Observational, cross-sectional, international, patho-physiology, bi-center study recruiting invasively ven-
tilated, adults and neonates with acute respiratory distress syndrome (ARDS), neonatal ARDS (NARDS) or respiratory 
distress syndrome (RDS) due to primary surfactant deficiency. Subjects without lung disease (NLD) and ventilated for 
extra-pulmonary conditions were recruited as controls. LUS, Crs and resistances (Rrs) of the respiratory system were 
measured within 1 h from each other.

Results:  Forty adults and fifty-six neonates were recruited. LUS was higher in ARDS, NARDS and RDS and lower 
in control subjects (overall p < 0.001), while Crs was lower in ARDS, NARDS and RDS and higher in control subjects 
(overall p < 0.001), without differences between adults and neonates. LUS and Crs were correlated in adults [r = − 0.86 
(95% CI − 0.93; − 0.76), p < 0.001] and neonates [r = − 0.76 (95% CI − 0.85; − 0.62), p < 0.001]. Correlations remained 
significant among subgroups with different causes of respiratory failure; LUS and Rrs were not correlated. Multivariate 
analyses confirmed the association between LUS and Crs both in adults [B = − 2.8 (95% CI − 4.9; − 0.6), p = 0.012] and 
neonates [B = − 0.045 (95% CI − 0.07; − 0.02), p = 0.001].
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Conclusions:  Lung aeration and compliance of the respiratory system are significantly and inversely correlated irre-
spective of patients’ age. A restrictive respiratory failure has the same ultrasound appearance and mechanical charac-
teristics in adults and neonates.

Keywords:  Acute respiratory distress syndrome, Lung mechanics, Lung ultrasound, Neonates

Background
Lung ultrasound allows a semi-quantitative assessment 
and monitoring of lung aeration in patients affected by 
acute hypoxemic respiratory failure [1, 2]. In fact, pro-
gressive changes in lung aeration are associated to spe-
cific ultrasound patterns, so that several scoring systems 
have been proposed to assess loss of aeration by scanning 
anterior, lateral, and posterior lung regions [1, 2].

Ultrasound-based semi-quantitative evaluation of 
lung volume has been proven to strongly correlate with 
extravascular lung water, oxygenation and aeration esti-
mated with CT-scan density or computerized grey scale 
analysis in critically ill adults and neonates [3–8]. These 
data, coupled with those obtained in animal models, sup-
port the use of a lung ultrasound score (LUS) in critical 
care to reliably assess lung aeration at the bedside [8].

To the best of our knowledge, in patients with acute 
restrictive respiratory failure, scanty data exist about 
the relationships between LUS and lung compliance. 
A typical example of this condition is acute respiratory 
distress syndrome (ARDS), whose clinical definitions 
are available for patients of any age [9]. ARDS morbid-
ity and mortality are lower in children and neonates than 
in adults, although they are still relevant [10–12]. Thus, 
it would be important to know if the age influences lung 
compliance and its relationship with LUS, as this can fur-
ther characterize the respiratory failure and help under-
standing the outcome difference in patients of varying 
age. However, these data are lacking and we only know 
that, in adult ARDS patients, lung compliance correlates 
with the amount of aerated lung tissue being propor-
tional to the residual ventilable lung volume: the smaller 
the open lung, the lower the compliance [13]. Further-
more, a recent case series reported a negative correla-
tion between LUS and dynamic compliance in 10 adults 
undergoing veno-venous extra-corporeal membrane oxy-
genation (ECMO) [14].

There is a need for cross-disciplinary awareness, as 
concepts well clarified in adult or neonatal critical care 
are rarely verified in the alternate specialty and this may 
delay a comprehensive understanding of lung patho-
physiology and ultrasound findings. We designed this 
study to investigate the relationship between LUS and the 
compliance of the respiratory system (Crs) in adults and 
neonates affected by acute hypoxemic restrictive respira-
tory failure, as well as the effect of patients’ age on this 

relationship. We hypothesized that LUS would be signifi-
cantly correlated with Crs irrespective of patients’ age.

Methods
Design
This was an observational, cross-sectional, international, 
pathophysiological, bi-center study conducted between 
December 2019 and July 2021 in two academic referral 
intensive care (one neonatal and one adult) units (ICU). 
Two institutional review boards independently approved 
the study (n.9596/17/1513 and n.16/58) for adults and 
neonates, respectively. Informed consent was obtained 
from parents or guardians upon ICU admission of neo-
nates. For ICU-admitted adults, informed consent was 
obtained as per local regulations, following the local Ethi-
cal Committee recommendations. The participation to 
the study did not change the routine clinical care. The 
study was conducted in accordance with the Helsinki 
declaration, was completely anonymous and respected 
local and European privacy regulations. The manuscript 
was prepared following STROBE guidelines [15].

Patients
Cases consisted of adult and newborn patients admitted 
to ICUs for restrictive respiratory failure. To be enrolled 
adults must have fulfilled all the following criteria: (1) 
age > 18  years; (2) diagnosis of ARDS according to the 
Berlin definition [12]; (3) need of invasive mechanical 
ventilation. Neonates could have been enrolled if they 
fulfil all the following criteria: (1) postnatal age ≤ 7 days; 
(2) diagnosis of neonatal ARDS (NARDS), or diagno-
sis of respiratory distress syndrome (RDS; i.e., hyaline 
membrane disease due to primary surfactant deficiency), 
both according to the criteria detailed in the Montreux 
definition [16]; (3) need of invasive mechanical ventila-
tion. Both RDS and NARDS patients were enrolled, since 
these ideally represent examples of moderate and severe 
restrictive respiratory failure, respectively [16, 17].

Additionally, two other groups of subjects were 
enrolled as controls and consisted of adult and new-
born patients admitted to the ICU with no lung disease 
(NLD). These patients fulfilled all the following criteria: 
(1) need of invasive ventilation for non-pulmonary rea-
son; (2) no need for supplemental oxygen (i.e., ventilation 
in room air) as well as steadily normal blood gases and 
vital parameters; (3) normal chest clinical examination; 
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(4) absence of thoracic trauma and any respiratory dis-
order in the last month or week, in adults and neonates, 
respectively.

Exclusion criteria for adults with and without ARDS 
were: acute or chronic obstructive conditions (i.e., 
chronic obstructive pulmonary disease, asthma), neu-
romuscular diseases, interstitial lung diseases, rib cage 
anomalies, home long-term oxygen therapy, need for 
ECMO. Exclusion criteria for neonates with and without 
NARDS or RDS were: major congenital malformations, 
genetic syndromes and chromosomopathies, neuromus-
cular diseases, congenital lung or rib cage anomalies, 
airway obstruction due to meconium plugging, need for 
rescue high frequency oscillatory ventilation, as previ-
ously described [18], or ECMO.

Lung mechanics measurements
Adult patients were on apneic sedation or paralyzed 
when clinically indicated, according to current best prac-
tice principles [19]. Volume-controlled ventilation was 
provided with a tidal volume (Tv) of 6 mL/kg of predicted 
body weight; inspiratory  time and   flow were 60 L/min 
and 0.3  s, respectively. Respiratory rate was titrated to 
obtain pH between 7.35 and 7.45 with a maximal rate of 
30  bpm. Positive end-inspiratory pressure (PEEP) was 
titrated according to current international guidelines [20] 
and inspired oxygen fraction (FiO2) was set to obtain a 
peripheral oxygen saturation (SpO2) no lower than 90%. 
Crs was measured in a “quasi-static” way using a stand-
ard 500 ms end-inspiratory pause to obtain plateau pres-
sure (Pplat) and do the following calculation:

Crs = Tv/(Pplat − (PEEP + auto-PEEP)). Crs in adults 
was indexed to the ideal body weight. Respiratory system 
resistances (Rrs) were estimated as Rrs = (Peak inspira-
tory pressure − Pplat)/flow.

Neonates were sedated and time-cycled, pressure-
regulated, assisted-controlled ventilation was provided 
as previously described [18]; no muscle relaxants were 
used. The same blood gas values of adult patients were 
targeted, but FiO2 was as low as possible to guarantee 
pre-ductal SpO2 between 90 and 95%. They were on con-
tinuous flow neonatal ventilators equipped with a low 
dead-space, hot-wire anemometers coupled with pres-
sure sensors at the Y-piece to maximize the accuracy of 
lung mechanics assessment [21]. Sensors underwent 
serial technical quality controls [22] and were calibrated 
before each use, following manufacturers’ recommenda-
tions. Lung mechanics measurements were performed 
as previously described [23]: Crs and Rrs were dynami-
cally estimated by breath-to-breath analysis shown by the 
ventilator software but measurements were considered 
only after airway suctioning, once neonates were stable 
and using our previously described technique to reduce 

ventilatory drive and increase measurement precision 
[24]. In detail, spontaneous breathing was temporally 
avoided by increasing the mechanical rate, whereas the 
flow was decreased to 5  L/min to reach a “quasi-static” 
situation. Under these conditions, when leaks were < 5% 
and pressure/flow-volume loops were steady, Crs and Rrs 
were averaged on 10 mechanical breaths. In neonates, 
Crs was indexed to the birth weight and was measured 
before surfactant administration, if any. Lung mechan-
ics was assessed in all adults and neonates upon ICU 
admission as per our clinical routine and all patients were 
supine during the assessment.

Lung ultrasound
Lung ultrasound was performed upon ICU admission 
as per our routine clinical protocols and anyway within 
1 h from the lung mechanics measurements. Lung ultra-
sound exams were conducted with convex [5 MHz, using 
Xario-200® (Toshiba, Tokyo, Japan)] or micro-linear, 
“hockey-stick” (15  MHz, using CX-50®, Philips, Ein-
dhoven, Netherlands) probes in adults and neonates, 
respectively. In both adults and neonates, ultrasound set-
ting was as follows: gain was automatically adjusted with 
the dedicated software function, depth and focus were 
adjusted according to patients’ size and the sign of inter-
est and no harmonics was used. Ultrasound exams were 
always performed by attending physicians with at least 
2 years of training with daily use of lung ultrasound, or by 
residents in training under the supervision of the former 
[25]. Lung ultrasound is the first-line lung imaging tech-
nique in both recruiting ICUs, which are known to use 
lung ultrasound on a daily basis integrated in the clinical 
routine.

LUS was calculated using a standardized simple pro-
tocol already validated for both adults and neonates [5, 
26]. In detail, a total of six lung areas (3 for each lung) 
were examined, with both transverse and longitudinal 
scans, while patients were supine; a score from 0 to 3 was 
assigned to each lung area and LUS could range from 0 
to 18 (the higher the score, the worse the lung aeration). 
The scoring system was based on classical lung ultra-
sound semiology: 0 indicated a normal lung with pres-
ence of lung sliding, visible A-lines with less than three 
B-lines per intercostal space; 1 was given to mild alveolo-
interstitial pattern, depicted by at least three B-lines or 
presence of multiple subpleural consolidations (with a 
maximal size ≤ 1  cm); 2 was attributed to a severe alve-
olo-interstitial pattern, represented by multiple, crowded 
and coalescent B-lines (i.e., “white” lung) and/or multi-
ple subpleural consolidations separated by thickened or 
irregular pleura; 3 was given to severe loss of lung aera-
tion represented by consolidations (i.e., subpleural echo-
poor or tissue-like echotexture zones with size > 1  cm 
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and irregular borders, which may also have bronchogram 
as mixed hypo- and hyperechogenic zones).

Statistics
A formal sample size calculation was unfeasible since 
only one case series of 10 adult patients with respiratory 
failure reported the relationship between ultrasound-
assessed lung aeration and Crs, without investigating 
the effect of age [14]. Thus, we decided to enroll a larger 
population and we choose a convenience sample size of 
at least 40 adult and 40 newborn patients.

Continuous variables were expressed as means (stand-
ard deviation). Categorical variables were presented 
as number (%). LUS and Crs were compared between 
adults and neonates with different respiratory conditions 
using one way-ANOVA followed by post hoc Sidak test, 
if appropriate. LUS and Crs were studied with correla-
tion analysis using Pearson correlation coefficient (r) and 
its 95% confidence interval (CI), estimated with Fisher 
method. Results were also graphically shown using scat-
ter plots analyzed with local (smoother) regression with 
95% Epanechnikov kernel. The relationship between Crs 
and LUS was finally investigated with multivariable mod-
els built by multivariate linear regressions with backward-
stepwise method. Covariates inserted in the models were: 
BMI, patient age (or gestational age for neonates) and the 
respiratory condition (considered as NLD = 0, RDS = 1, 
NARDS = 2 for neonates and NLD = 0, ARDS = 1 for 
adults). These covariates were chosen as they are known 
to potentially influence the severity of respiratory failure 
[27–31]. Multi-collinearity was evaluated considering 
the variance inflation factor, as previously described [32]. 
Birth weight was not considered as it is known to have 
significant multi-collinearity with the gestational age. 
Analyses were performed with SPSS 28 and p < 0.05 was 
considered statistically significant.

Results
Basic details of enrolled patients are presented in Addi-
tional file 1: Table S1. In adults ARDS was triggered by 
COVID-19 pneumonia (n = 10), multiple trauma (n = 9) 
or pneumonia of other etiology (n = 4). The adults with 
NLD enrolled as controls were ventilated for neurosur-
gical reasons (n = 9) or traumatic brain injury (n = 8). 
In neonates, NARDS was triggered by sepsis (n = 5), 

pneumonia (n = 4), lung hemorrhage (n = 1), meconium 
aspiration (n = 1), necrotizing enterocolitis (n = 1). The 
neonates with NLD enrolled as controls were ventilated 
for hypoxic-ischemic encephalopathy due to perinatal 
asphyxia (n = 22) or hemodynamic instability due to 
diabetic hypertrophic cardiomyopathy (n = 1). Neo-
nates were enrolled at a mean postnatal age of 1.5 (0.9) 
days. All patients survived and were discharged from 
the ICU.

The Fig. 1 shows LUS and Crs in adults and neonates 
classified according to their respiratory condition. The 
distribution of mean LUS (higher in ARDS, NARDS and 
RDS patients, lower in control subjects with NLD) and 
Crs (lower in ARDS, NARDS and RDS patients, higher 
in control subjects with NLD) are similar in adults and 
neonates. Mean LUS and Crs are significantly differ-
ent between patients with different respiratory con-
ditions (overall p < 0.001 for both): patients with any 
type of restrictive respiratory failure have higher LUS 
and lower Crs compared to control subjects with NLD 
(results of post hoc significant comparisons are shown 
in Fig. 1).

LUS and Crs are significantly and similarly correlated 
in adults [r = − 0.86 (95% CI − 0.93; − 0.76), p < 0.001] 
and in neonates [r = − 0.76 (95% CI − 0.85; − 0.62), 
p < 0.001] and their relationship is shown in Fig.  2; 
there is no clear overlap between subgroups except, 
partially, between RDS and NARDS. Subgroup analy-
sis per respiratory condition show that LUS and Crs 
are also significantly correlated in each subgroup of 
patients (NLD (adults and neonates): r = − 0.39 (95% 
CI − 0.62; − 0.09), p = 0.041; ARDS: r = − 0.46 (95% 
CI − 0.73; − 0.06), p = 0.027; NARDS: r = − 0.94 (95% 
CI − 0.98; − 0.79), p < 0.001; RDS: r = − 0.58 (95% CI 
− 0.81; − 0.19), p = 0.006. The correlation between LUS 
and Crs in adults remains similar if Crs is indexed per 
actual body weight [r = − 0.92 (95% CI − 0.95; − 0.85), 
p < 0.001]. There is no significant correlation between 
LUS and Rrs, neither in adults (r = 0.10, p = 0.952), nor 
in neonates (r = 0.113, p = 0.510).

Multivariate analyses confirm (Additional file  2: 
Table S2) that LUS is significantly and inversely associ-
ated to Crs both in adults and neonates, while patients’ 
age and the other considered possible confounders are 
not.

Fig. 1  Lung ultrasound score (A) and compliance of the respiratory system (B) in all patients. Data were shown per each group of cases (adults with 
ARDS: N = 23; neonates with NARDS: N = 12; neonates with RDS: N = 21) and controls subjects (adults with no lung disease: N = 17; neonates with 
no lung disease: N = 23). Data from all patients are depicted. LUS is a dimensionless number; compliance is indexed per predicted ideal body weight 
and birth weight in adults and neonates, respectively. Short horizontal lines and T-bars represent means and standard deviations, respectively. Long 
horizontal lines represent one-to-one post hoc significant comparisons. ARDS acute respiratory distress syndrome, Crs compliance of the respiratory 
system, LUS lung ultrasound score, NARDS neonatal acute respiratory distress syndrome, NLD-A adults with no lung disease, NLD-neo neonates with 
no lung disease, RDS respiratory distress syndrome due to primary surfactant deficiency (i.e., hyaline membrane disease)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Discussion
Our findings show that LUS and Crs have a mirror-like 
trend as they are respectively higher and lower in patients 
with any type of restrictive respiratory failure, than in 
control subjects without lung disease. Thus, LUS and Crs 
are significantly and inversely correlated in patients with 
acute hypoxemic restrictive respiratory failure, irrespec-
tive of patients’ age. These results are novel, since, to the 
best of our knowledge, no studies had investigated the 
relationship between ultrasound-assessed lung aeration 
and compliance, in patients of very different age, affected 
by acute hypoxemic restrictive respiratory failure. These 
findings are particularly interesting to build cross-disci-
plinary awareness and they may be useful for neonatal 
and pediatric practice, where lung ultrasound is still rela-
tively uncommon, as they indicate how the experience in 
adults may help understanding patients’ pathophysiology.

Our data are also important for the following reasons. 
First, in patients with respiratory failure due to restrictive 
pathophysiology, LUS and Crs are significantly correlated 
and this allows to “visualize” the loss of compliance by 
estimating the loss of lung aeration, suggesting a possible 
usefulness of LUS to titrate the respiratory support [2, 33, 
34]. Second, these results have been obtained in a well-
selected population without any obstructive or mixed 
respiratory failure. Interestingly, both patients and ani-
mal models of broncho-pulmonary dysplasia (which has 
a mixed pattern characterized by non-homogeneously 
decreased compliance and increased resistances) show 
no correlation between LUS and Crs [35]. This is due to 
the small airway obstruction, as significantly obstructed 
lung areas are less ventilated and do not contribute to the 
Crs calculation [35], thus LUS may be less informative in 
non-restrictive disorders. Third, and most importantly, 
patients’ age has no significant effect on the relation-
ship between LUS and Crs: in fact, these variables have 
the same tendency in adults and neonates with or with-
out restrictive respiratory failure (Fig.  1). This is also 
fully consistent with the accuracy of LUS in identifying 
neonates affected by RDS who fail continuous positive 
airway pressure (CPAP) and need surfactant replace-
ment [5, 36, 37]. Interestingly, RDS is a purely restric-
tive respiratory failure due to the primary surfactant 
deficiency and is usually milder than ARDS which has a 

more complex pathobiology [16]; however, CPAP failure 
identifies severe cases and, in fact, RDS patients enrolled 
in our study had LUS and Crs comparable to ARDS 
patients, which explains the partial overlap in Fig.  2. 
Finally, as shown by the multivariate analyses, the asso-
ciation between LUS and Crs is not influenced by patient 
or gestational age, nor by other covariates: this strength-
ens the results confirming that LUS can detect the loss 
of lung aeration due to a restrictive process in patients of 
any age.

As lung ultrasound is becoming more widely used, 
these findings might also be important to refine ARDS 
definitions. They are still mainly based on conventional 
radiology although modifications including lung ultra-
sound are available or accepted, if clinicians have suf-
ficient expertise [38, 39]. Conversely, as ARDS has 
different morbidity and mortality in neonates and adults 
[10–12], whereas LUS and Crs follow the same trend 
in both types of patients, these variables are not useful 
to understand the reasons behind the different sever-
ity of ARDS across patients’ age. One can conclude that 
a restrictive respiratory failure has the same ultrasound 
appearance and mechanical characteristics irrespective 
of patients’ age, while other biological factors are respon-
sible for the different outcomes of ARDS in neonatal and 
pediatric patients [40]. Conversely, LUS can generally 
serve as “densitometer” to assess the fluid/gas ratio, mon-
itor its evolution and integrate clinical decision-making 
algorithms in patients of any age affected by respiratory 
failure due to a restrictive disorder [2, 41].

Our study limitations include a relatively small sample 
size, not free from few outliers, although it was larger 
than previously reported case series [14] and was rep-
resented by a homogeneous population with restric-
tive pathophysiology, whose main characteristics was 
the difference in patients’ age. The inclusion of control 
groups without lung disease also allowed to study more 
in detail the relationship between LUS and Crs. We did 
not recruit children beyond neonatal age, however neo-
natal and pediatric ARDS are known to have very similar 
epidemiology and pathophysiology [10], thus it is unlikely 
that patients of intermediate age would present differ-
ent results. We used different ultrasound machines and 
probes for patients of different age and this was needed 

(See figure on next page.)
Fig. 2  Relationship between respiratory system compliance and ultrasound-assessed lung aeration. A and B represent adults (N = 40) and 
neonates (N = 56), respectively. Different symbols indicate the patient subgroups. Data from subgroups and all patients (ie: cases and control 
subjects together) are depicted in the main figures and in the inserts, respectively. Lung ultrasound score is a dimensionless number; compliance 
is indexed per predicted ideal body weight and birth weight in adults and neonates, respectively. Correlation lines are shown per each subgroup  
(main figures), while the hatched curves are drawn  for the whole adult and newborn population (inserts) and represent the best fitting data curves 
generated with local smoother regression. ARDS acute respiratory distress syndrome, Crs compliance of the respiratory system, LUS lung ultrasound 
score, NARDS neonatal acute respiratory distress syndrome, NLD-A adults with no lung disease, NLD-neo neonates with no lung disease, RDS 
respiratory distress syndrome due to primary surfactant deficiency (i.e., hyaline membrane disease)
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because of their size (convex and linear probes are always 
used in routine clinical care for adults and infants, 
respectively). Nonetheless, the ultrasound setting was 

identical for adults and neonates and inter-rater agree-
ment for LUS calculation is known to be very high even 
when using different probes [25]. Ultrasonographers 

Fig. 2  (See legend on previous page.)
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were not blinded to patients diagnosis and our data 
cannot directly support the use of LUS to guide alveo-
lar recruitment and titrate respiratory support, as this 
requires dedicated blinded clinical trials. This was out 
of our scopes as our study aimed to clarify relationship 
between lung pathophysiology and ultrasound imag-
ing and the effect of patient age on that relationship. We 
referred to the Crs, rather than lung compliance, since 
the partitioning is unfeasible in many neonates due to the 
patients’ size and, to ensure the uniformity of measure-
ments, Crs was assessed in a “quasi-static” way in both 
types of patients. Finally, we did not use other techniques 
to measure lung volume and mechanics, such as CT-scan 
or gas dilution, since these are unavailable in neonates, 
and we wanted to keep a feasible comparison between 
patients of different age.

Conclusions
In conclusion, ultrasound-assessed lung aeration appears 
similar in adults and neonates, with or without acute 
hypoxemic restrictive respiratory failure: thus, a restric-
tive respiratory failure has the same ultrasound appear-
ance and mechanical characteristics irrespective of 
patients’ age. Consistently, lung aeration and compliance 
of the respiratory system are significantly and inversely 
correlated irrespective of patients’ age. These data 
improve our understanding of lung pathophysiology and 
ultrasound imaging.
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