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Abstract 

Ischaemia–reperfusion injury (IRI) encompasses the deleterious effects on cellular function and survival that result 
from the restoration of organ perfusion. Despite their unique tolerance to ischaemia and hypoxia, afforded by their 
dual (pulmonary and bronchial) circulation as well as direct oxygen diffusion from the airways, lungs are particularly 
susceptible to IRI (LIRI). LIRI may be observed in a variety of clinical settings, including lung transplantation, lung resec‑
tions, cardiopulmonary bypass during cardiac surgery, aortic cross‑clamping for abdominal aortic aneurysm repair, as 
well as tourniquet application for orthopaedic operations. It is a diagnosis of exclusion, manifesting clinically as acute 
lung injury (ALI) or acute respiratory distress syndrome (ARDS). Ischaemic conditioning (IC) signifies the original para‑
digm of treating IRI. It entails the application of short, non‑lethal ischemia and reperfusion manoeuvres to an organ, 
tissue, or arterial territory, which activates mechanisms that reduce IRI. Interestingly, there is accumulating experimen‑
tal and preliminary clinical evidence that IC may ameliorate LIRI in various pathophysiological contexts. Considering 
the detrimental effects of LIRI, ranging from ALI following lung resections to primary graft dysfunction (PGD) after 
lung transplantation, the association of these entities with adverse outcomes, as well as the paucity of protective or 
therapeutic interventions, IC holds promise as a safe and effective strategy to protect the lung. This article aims to 
provide a narrative review of the existing experimental and clinical evidence regarding the effects of IC on LIRI and 
prompt further investigation to refine its clinical application.

Keywords: Lung ischaemia–reperfusion, Ischaemic conditioning, Ischaemia–reperfusion injury, Acute lung injury, 
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Background
Ischaemia–reperfusion injury (IRI) encompasses the 
deleterious effects on cellular function and survival that 
result from the restoration of organ perfusion [1]. Coun-
terintuitively, IRI further aggravates ischaemic organ 
damage as the degree of injury after reperfusion sur-
passes that caused by ischaemia per se [2]. It is mediated 
by sterile inflammation, enhanced oxidative stress and 
coagulation, endothelial dysfunction, and activation of 

cellular death pathways [1, 2]. Crucially, it is a systemic 
process with the potential to evoke distant organ injury 
and progress to multiple organ dysfunction syndrome 
[2]. Despite their unique tolerance to ischaemia and 
hypoxia, afforded by their dual (pulmonary and bron-
chial) circulation as well as direct oxygen diffusion from 
the airways [3], lungs are particularly susceptible to IRI 
(LIRI) [4]. Importantly, the cessation of ventilation leads 
to functional impairments similar to those induced by 
hypoperfusion [3], to which it is also interrelated by way 
of hypoxic pulmonary vasoconstriction (HPV) [5]. LIRI 
may be observed in a variety of clinical settings, includ-
ing lung transplantation [4, 6], lung resections [7, 8], 
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cardiopulmonary bypass (CPB) during cardiac surgery 
[9–12], aortic cross-clamping for abdominal aortic aneu-
rysm (AAA) repair [13], as well as tourniquet applica-
tion for orthopaedic operations [14]. It culminates in 
the breakdown of lung endothelial and epithelial bar-
riers, leading to pulmonary oedema with attendant gas 
exchange impairment [4] and increased pulmonary vas-
cular resistance resulting in pulmonary hypertension 
[15].

Ischaemic conditioning (IC) signifies the original par-
adigm of treating IRI. It entails the application of short, 
non-lethal ischemia and reperfusion manoeuvres to an 
organ, tissue, or arterial territory, which activates mech-
anisms that reduce IRI [16]. The concept of IC has sev-
eral temporal and anatomical variations. In specific, the 
protective ischaemic stimulus may be applied before, 
during, or following the index reperfusion episode (pre-, 
per-, and post-conditioning respectively) with similar 
beneficial effects [16]. Furthermore, this intervention 
has systemic protective properties which are exploited 
by remote ischemic conditioning (RIC): biochemical 
and neuronal mechanisms confer protection to organs 
distant to the conditioning stimulus [16]. There is accu-
mulating experimental and clinical evidence that IC may 
ameliorate LIRI in various pathophysiological contexts. 
In specific, it reduces the underlying oxidative stress and 
sterile inflammation in animal [17] and human models 
[7]. This is translated into decreased histologic damage 
[18], reduced pulmonary oedema [19], and improved res-
piratory function [8, 19] and pulmonary vascular haemo-
dynamics [10, 20]. Considering the detrimental effects 
of LIRI, ranging from acute lung injury (ALI) following 
lung resections [15] to primary graft dysfunction (PGD) 
after lung transplantation [4], the association of these 
entities with adverse outcomes [4, 21], as well as the pau-
city of protective or therapeutic clinical interventions 
[4], ischaemic conditioning holds promise as a safe and 
effective strategy to protect the lung. This article aims to 
provide a review of the existing experimental and clinical 
evidence regarding the effects of IC on LIRI.

The pathophysiology of lung ischaemia 
reperfusion injury
Enhanced oxidative stress appears to play a prominent 
role in the pathophysiology of LIRI [22]. Ischaemia, in the 
presence or not of apnoea as determined by ventilatory 
manoeuvres, creates a hypoxic environment with inhib-
ited mechanotransduction in the arterioles and capillaries 
[23]. This triggers the production of reactive oxygen spe-
cies (ROS) by endothelial cells, macrophages, and other 
immune cells [24]. The lung antioxidative mechanisms are 
overwhelmed upon reperfusion, resulting in an imbalance 
between ROS production and clearance [22]. Eventually, 

direct oxidative damage ensues with carbonylation of pro-
teins and peroxynitration of proteins, lipids, and DNA 
[25]. Furthermore, ROS instigate a robust innate immune 
response by activating alveolar macrophages, which in 
turn release proinflammatory cytokines, including inter-
leukin (IL)-8, -12, 18, and tumour necrosis factor (TNF)-
a [26]. Additionally, neutrophils are recruited [26], and 
in concert with macrophages further enhance ROS gen-
eration; thus, a self-perpetuating cycle of oxidative stress 
enhancement is created [27, 28]. These activated leu-
cocytes transmigrate into the extravascular space and 
cause increased microvascular permeability, thrombosis, 
oedema, and parenchymal cell death, by way of proteases, 
elastases, and ROS production [2]. Adherence of neutro-
phils to the endothelium further promotes the forma-
tion of gaps between the endothelial cells [6]. Moreover, 
these inflammatory cascades trigger platelet aggregation 
and coagulation, leading to formation of microthrombi 
and microvascular constriction [29]. The attendant acti-
vation of vasoactive agents, including thromboxane A2 
and platelet activating factor, further promotes oedema 
formation [29, 30]. LIRI is also characterised by apoptotic 
phenomena, in part initiated by inflammatory cytokines 
(including IL-1β, -2, -8, and TNF-a) and enhanced by the 
release of proapoptotic factors due to mitochondrial rup-
ture [31]. More specifically, the hypoxia-induced adeno-
sine triphosphate (ATP) deficiency induces dysfunction of 
ATP-dependent ion pumps that results in mitochondrial 
calcium overload [29]. This leads to increased perme-
ability of the mitochondrial transition pores and swelling, 
eventually leading to rupture [31]. Type II epithelial cells 
play a key role as both victim and as culprit of LIRI, as 
their reperfusion-induced dysfunction leads to impaired 
production and composition of pulmonary surfactant 
[32]. Crucially, the above described prooxidative and 
inflammatory signalling may exert systemic effects: on 
the one hand, distant IRI is known to cause pulmonary 
injury [33]; on the other hand, LIRI induces remote organ 
inflammatory and oxidative damage [34], while unilateral 
lung reperfusion may lead to similar deleterious processes 
in the contralateral, non-ischaemic lung [35] (Fig. 1).

The clinical impact of lung ischaemia reperfusion 
injury
The end result of LIRI is disruption of the alveolar-capil-
lary barrier, causing non-cardiogenic pulmonary oedema 
and ventilation-perfusion (V/Q) [5]. Total and extravascu-
lar lung water is increased, causing gas exchange and lung 
mechanics impairment, with decreased arterial oxygen ten-
sion (PaO2) [36], increased airway pressures and increased 
alveolar-arterial oxygen gradient [(A-a) DO2] [37]. In 
addition, the attendant defective surfactant production 
and composition leads to reduced static (Cs) and dynamic 
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lung compliance (Cd), while further increasing (A-a) DO2 
[38]. Moreover, pulmonary vascular resistance (PVR) is 
increased up to three-fold following reperfusion, mainly 
due to pulmonary precapillary vasoconstriction [39]. Thus, 
LIRI is further compounded by pulmonary hypertension, 
which might also additionally hydrostatically promote the 
formation of pulmonary oedema [40].

In the absence of specific diagnostic criteria, LIRI is a 
diagnosis of exclusion, manifesting clinically as ALI or 
acute respiratory distress syndrome (ARDS) [41]. It has a 
detrimental impact in various clinical scenarios, particu-
larly following lung transplantation: LIRI leads to PGD, 
which is the major cause of both short- and long-term 
morbidity and mortality in this setting [15, 42]. Impor-
tantly, the incidence of severe (grade 3) PGD within 72 h 
of transplantation is approximately 30% [42], while PGD 
is also associated with late graft rejection, which is the 
primary mortality aetiology beyond 1  year of the pro-
cedure [43, 44]. ALI/ARDS is frequent following lung 
resections, with a reported incidence of 0.88%, 2.96%, 
and 7.9% following sublobar, lobar/bilobar resection, 

and pneumonectomy respectively [21]. The associated 
mortality is considerable, ranging from 22% in sublobar 
resections to 50% following pneumonectomy [21]. LIRI 
is also a major source of morbidity and mortality after 
cardiac surgery, as it contributes to the development of 
ARDS, with an incidence of up to 20% and a mortality 
reaching 80% [45]. Interestingly, hepatosplanchnic IRI in 
aortic surgery has been found to cause lung injury, with 
increased pulmonary leak index (PLI) in up to 74% of the 
patients, especially in cases involving clamping of major 
aortic branches and in direct correlation with the aor-
tic clamping time [46]. ALI also complicates 30–50% of 
major trauma cases, with an associated mortality of 10% 
depending on the severity of lung dysfunction [47].

The protective effects of ischemic conditioning 
on lung ischaemia reperfusion injury—effects 
on oxidative stress and inflammation
Experimental evidence
One of the critical mechanisms mediating the protective 
effects of IC against LIRI is the alleviation of oxidative 

Fig. 1 The pathophysiology of lung ischaemia reperfusion injury. Lung ischaemia reperfusion injury is the result of a robust inflammatory response 
and oxidative stress enhancement, which are instigated by ischaemia and further promoted by reperfusion. The attendant leucocyte migration 
and platelet activation result in alveolar‑epithelial barrier impairment and pulmonary vasoconstriction, manifesting as noncardiogenic pulmonary 
oedema, pulmonary hypertension and deterioration of ventilation mechanics
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stress and inflammation. Li et al. were among the first to 
demonstrate this, in a canine model of lung transplanta-
tion (in situ LIRI). Specifically, IC by donor pulmonary 
hilar occlusion/reperfusion before transplantation was 
associated with reduced infiltration of the transplanted 
lung interstitium by polymorphonuclear leukocytes 
(PMNs) and reduced blood levels of malondialdehyde 
(MDA) and thromboxane B2 (TXB2) following reperfu-
sion; on the contrary, superoxide dismutase (SOD) levels 
were higher, denoting a preserved antioxidant reserve 
[48]. Similarly, in a rat model experiment, IC decreased 
thiobarbituric acid reactive substances (TBARS) after 
lung storage, reflecting the decreased MDA levels [49]. 
Focusing on the fluid shifts caused by enhanced oxida-
tive stress and inflammation, Gasparri et al. showed that 
15, but not 5, minutes of transient lung ischaemia before 
lung preservation mitigated lung oedema upon reperfu-
sion [50]. Soncul et  al. utilised isolated lungs mounted 
on a modified Langendorff perfusion apparatus, where 
IC was related with reduced tissue and perfusate MDA 
levels [51]. In a similar IC protocol, tissue MDA levels 
were reduced, glutathione levels increased, intra-alveolar 
oedema and capillary congestion were prevented, while 
type II alveolar and endothelial cells were preserved [52]. 
Li et al. applied IC before sustained lung ischemia–reper-
fusion to rabbits. Lung MDA levels were lower and SOD 
levels were higher in the preconditioned lungs, with an 
attendant reduction in lung oedema and alveolar damage 
[53]. Friedrich et al. applied IC on a canine model of LIRI, 
whereby the reperfusion insult was preceded by either a 
single 5-min occlusion with a 15-min reperfusion period 
or two successive 10-min ischemia–reperfusion stimuli, 
and was followed by bronchoalveolar lavage (BAL). Inter-
estingly, the former protocol resulted in reduced BAL 
fluid protein and TNF-a content, while the latter had 
no effect, highlighting the importance of the IC stimu-
lus duration [54]. Jun et  al. elucidated the genetic back-
ground of IC: conditioning of the donor lung resulted 
in downregulation of a vast array of inflammatory and 
immune mediator genes, including IL-1, IL-2, IL-3, IL-6, 
IL-15, TNF-a, intercellular adhesion molecule-2 (ICAM-
2), vascular cell adhesion molecule-1 (VCAM-1), and 
activated leukocyte adhesion molecules [55].

Remote ischemic conditioning (RIC) appears to have 
similar effects to local IC on in  situ LIRI, as demon-
strated by Song et  al.: 6 cycles of 10-s aortic occlusion/
reperfusion protected from LIRI induced by lung hilar 
clamping. In more detail, alveoli were preserved with 
less neutrophilic infiltration and oedema, the increase 
in lung wet-to-dry weight ratio was prevented, while 
plasma IL-6, TNF-a, and ROS levels were reduced [17]. 
Waldow et  al. similarly concluded that RIC prevented 
the IL-1β increase and abrogated the lung macrophage 

infiltration induced by LIRI [20]. RIC by hepatic hilar 
clamping also ameliorated the increase in IL-6 and TNF-
a, reduced myeloperoxidase (MPO) activity (reflecting 
the respective lung neutrophil accumulation) and the 
BAL fluid leucocyte levels, in parallel with inhibited alve-
olar damage and reduced wet-to-dry lung ratio; apop-
totic cascades were attenuated, with decreased cleaved 
caspase-3 expression and fewer apoptotic nuclei [19]. An 
interesting study by Zhou et  al. highlighted the protec-
tion conferred against CPB-induced LIRI: RIC alleviated 
intra-alveolar neutrophil infiltration and alveolar wall 
thickening, reduced BAL fluid protein levels and lung 
wet-to-dry weight ratio, in parallel with increased anti-
inflammatory IL-4 and IL-10 [56].

Besides in  situ LIRI, conditioning exerts protection in 
cases of remote organ reperfusion. In the setting of aor-
tic occlusion and reperfusion, RIC was associated with 
reduced alveolar oedema, congestion, and neutrophil 
infiltration [18, 57]. Similar benefits have been derived 
from hepatosplanchnic conditioning, which abrogated 
the P-selectin upregulation caused by IRI, with an atten-
dant reduction in alveolar and perivascular neutrophil 
infiltration, reduced MDA levels, and preserved vascular 
permeability [58]. Likewise, hepatic or mesenteric condi-
tioning reduced inflammatory cell infiltration in animals 
undergoing hepatosplanchnic reperfusion [59]. In con-
cordance with these findings, Meng et  al. showed that 
mesenteric conditioning decreased plasma and lung tis-
sue TNF-a and IL-6 levels, in contrast with an increase 
in IL-10 levels, SOD and glutathione peroxidase activity. 
Moreover, endothelial and alveolar epithelial architecture 
were preserved, as was the integrity of type II alveolar cell 
mitochondria, with concurrently diminished wet-to-dry 
lung weight ratio and pulmonary microvascular dysfunc-
tion [60]. However, dos Santos et  al. did not reveal any 
histologic preservation by IC; interestingly, mesenteric 
IRI caused only minimal lung injury, thereby narrowing 
the margins for demonstrating a protective effect [61].

Harkin et  al. investigated the effects of IC on limb 
reperfusion-induced LIRI, by way of external iliac artery 
occlusion/reperfusion. IC attenuated the increase in 
plasma IL-6 and phagocytic priming, without affect-
ing the TNF-a levels; lung tissue MPO increase was also 
diminished, as was the elevation of weight-to-dry weight 
ratio [62]. A similar study focused on unilateral lower 
limb ischaemia, utilising a left lower limb tourniquet. 
RIC resulted in decreased plasma TBARS, as well as 
reduced PMN infiltration and MPO activity in the lung, 
while protecting from alveolar and interstitial oedema, 
and alveolar haemorrhage [63].

Haemorrhagic shock resuscitation is hampered by mul-
tiorgan failure (MOF), which is the commonest cause 
of death after severe trauma [64]. The role of systemic 
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inflammation and oxidative stress is pivotal [65], while 
respiratory failure is recognised among the common-
est and deadliest complications thereof [64]. Jan et  al. 
studied the effects of lower limb tourniquet occlusion/
reperfusion on a rat model of haemorrhagic shock. IC 
significantly reduced plasma IL-6 levels, in parallel with 
diminished lung IL-6, PGE2, MDA, and BAL fluid protein 
concentration. The levels of macrophage inflammatory 
protein-2 (MIP-2), MPO activity, PMN-to-alveoli and 
wet-to-dry weight ratios were also decreased, in associa-
tion with mitigated alveolar wall oedema, haemorrhagic 
changes, vascular congestion, and PMN infiltration [66]. 
In a comparable study, RIC inhibited the rise in plasma 
TNF-a levels, as well as the lung TNF-a mRNA and pro-
tein expression following shock resuscitation. Lung MPO 
activity and protein leakage into BAL fluid were similarly 
reduced [67].

The suspension of ventilation, in concert with the 
resultant HPV, result in a hypoxic and hypoperfused lung 
environment that instigates LIRI [3, 5]. Preliminary evi-
dence in this context have been contradictory. Bergmann 
et al. exploited RIC in a swine model of one lung ventila-
tion (OLV). On the one hand, lung TNF-a and BAL fluid 
leucocyte levels were reduced; on the other hand, serum 
IL-1β and IL-8 were not affected, while microhaemor-
rhage and alveolar oedema of the ventilated lung were 
enhanced [68].

The marked heterogenicity of experimental IC pro-
tocols obviates reaching a safe conclusion with regards 
to their differential efficacy. Up to six cycles of ischae-
mia/reperfusion, with individual cycle ischaemic dura-
tions ranging from 10 s to 15 min have been successfully 
utilised. Thus, it may be inferred that a cumulative 
ischaemic stimulus of 1 and up to 30 min may confer bio-
chemical protection from LIRI, although the most com-
monly applied protocols comprised three or four 5- or 
10-min ischaemia–reperfusion cycles (Tables 1, 3; Fig. 2).

Clinical evidence
The majority of clinical data pertaining to the investiga-
tion of IC effects on LIRI has been obtained in the con-
text of CPB-induced IRI. Forty patients undergoing valve 
replacement were randomised to an IC or control group. 
Analysis of pulmonary vein blood showed that IC by way 
of aortic occlusion/reperfusion mitigated the increase 
in MDA, PMN, and  TBX2 levels, while increasing SOD. 
Similarly, calcitonin gene-related peptide (CGRP) levels 
in coronary sinus blood were enhanced, denoting the acti-
vation of the associated anti-oxidant pathway, in parallel 
with reduced pulmonary oedema, haemorrhage, and PMN 
infiltration [10]. RIC has similar properties, as exemplified 
by Jin et al. who utilised upper limb and thigh cuff infla-
tion/deflation in a randomised control trial (RCT) of 241 

patients undergoing valvular replacement: conditioning 
reduced the levels of serum soluble intercellular adhesion 
molecule-1 (sICAM-1), endothelin-1 (ET-1), and MDA, 
while increasing NO concentration [69]. In an RCT of 60 
infants undergoing ventricular septal defect (VSD) repair, 
Zhou et  al. applied upper limb cuff inflation/deflation in 
the intervention group. Postoperatively, serum IL-6, -8, 
-10, and TNF-a levels were reduced, while coronary sinus 
MDA was reduced and SOD increased in preconditioned 
infants [12]. Nonetheless, these findings are not unequiv-
ocal. Lower limb cuff inflation/deflation was applied to 
children undergoing surgical repair of congenital heart 
defects, but the realised lung protection could not be 
associated with systemic inflammation, as IL-6, -8, -10, 
and TNF-a levels were not affected by RIC [70]. Similarly, 
Hu et  al. conducted an RCT that included 201 patients 
undergoing valve replacement, whereby RIC did not affect 
hypersensitive C-reactive protein (hsCRP) levels [11].

IC has been utilised in patients undergoing thoracic 
surgical operations. Chen et  al. have been among the 
first to implement preconditioning in patients undergo-
ing pneumonectomy: in a small study of 20 patients, a 
single pulmonary artery occlusion/reperfusion manoeu-
vre resulted in increased CGRP and SOD levels [71]. Li 
et  al. randomised 216 patients undergoing elective lung 
resection to either a RIC, or a standard thoracic surgi-
cal treatment arm. Upper limb cuff inflation/deflation 
significantly reduced IL-6, TNF-a, and MDA levels post-
operatively [7]. An analogous RCT was performed in 55 
patients undergoing lobectomy for lung cancer, whose 
blood and exhaled breath condensate (EBC) were exam-
ined to determine the levels of oxidative stress. RIC 
mitigated oxidative stress, as denoted by reduced 8-iso-
prostane, cumulative nitrate and nitrite, hyperoxide, and 
acidity in the EBC samples of preconditioned patients; 
blood 8-isoprostane as well as cumulative nitrate and 
nitrite were also reduced in the RIC arm [8]. These find-
ings were not reproduced in the pilot RCT by Lin et al. 
who randomised 60 patients undergoing bilateral sequen-
tial lung transplantation to a RIC or a standard treatment 
arm: IL-2, -6, -8, -10, TNF-a, interferon-gamma (IFN-γ), 
interferon gamma-induced protein 10, monocyte chem-
oattractant protein-1 (MCP-1), and chemokine ligand 5 
(CCL5) did not differ between the two study groups [72].

Aortic cross-clamping during open abdominal aortic 
aneurysm repair (AAA) is known to trigger a systemic 
inflammatory response with an attendant accentuation 
of oxidative stress [33]; these cascades may progress to 
MOF, which underlies up to 25% of peri-operative deaths 
in this setting [73]. Against this background, the effects 
of RIC in the form of upper limb cuff inflation/deflation 
were evaluated in an RCT of 62 patients undergoing open 
AAA repair. RIC attenuated the post-operative increase 
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in IL-6, TNF-a, and MDA levels, while increasing the 
activity of SOD [13]. Limb reperfusion may also induce 
MOF through comparable mechanisms [74]. Lin et  al. 
studied 30 patients undergoing lower extremity surgery, 
necessitating sustained thigh tourniquet application. 
When this was preceded by IC, the rise in plasma IL-6, 
-8, and MDA after limb reperfusion was mitigated [14].

Similar to experimental investigations, clinical IC pro-
tocols have not been standardised. However, three 5-min 
ischaemia–reperfusion cycles have been most commonly 
utilised and may confer a biochemically determined pro-
tection from LIRI in a variety of clinical settings, although 
some studies have shown a neutral effect (Tables 2, 3; Fig. 2).

The protective effects of ischemic conditioning 
on lung ischaemia reperfusion injury—effects 
on respiratory function and pulmonary 
haemodynamics
Experimental evidence
The oxidative stress and inflammatory response alle-
viation conferred by IC may be functionally translated 

into improved respiratory function and pulmonary 
haemodynamics. In the canine transplantation model 
studied by Li et  al. donor lung IC was associated with 
increased mixed venous oxygen tension (PvO2) and 
reduced mean pulmonary artery pressure (mPAP) fol-
lowing reperfusion [48]. Du et  al. also provided evi-
dence of improved gas exchange, as denoted by higher 
arterial oxygen  (PaO2) and decreased carbon diox-
ide tension  (PaCO2) levels [49]. Similar oxygenation 
improvement has been demonstrated in the form of 
increased veno-arterial oxygen pressure gradients [50], 
while Soncul et  al. concluded that IC ameliorated the 
increase in pulmonary artery pressure (PAP) caused 
by LIRI [51]. IC also preserved pulmonary arterial 
endothelial function in the study of Kandilci et  al., 
reflected on decreased pulmonary perfusion pressures 
in response to histamine [52]. Further expanding the 
evidence above, Li et al. showed that PO2 is increased 
and mPAP decreased by IC [53]. Data of improved Cd 
have also been provided, in parallel with higher PaO2 
and PvO2 levels; however, in the same study pulmonary 

Fig. 2 The protective effects of ischaemic conditioning from lung ischaemia reperfusion injury. Ischaemic conditioning mitigates leukocyte 
migration, oxidative stress and systemic inflammatory cascades, while circulating inflammatory cytokine and pulmonary vasoconstrictor levels are 
also reduced. These mechanisms culminate in the amelioration of alveolar and endothelial injury, resulting in protection from non‑cardiogenic 
pulmonary oedema, improved gas exchange, improved lung mechanics and superior pulmonary haemodynamics
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vascular resistance (PVR) was not significantly affected 
[54]. Featherstone et  al. reported analogous improve-
ment in lung compliance; nonetheless, oxygenation and 
PVR did not differ between the preconditioned and the 
control groups [75].

RIC exerts comparable protective effects: gas exchange 
was significantly improved in the context of an in  situ 
LIRI model, with increased PaO2 and decreased PaCO2, 
in the studies of Luo et al. [19] and Song et al. [17]. Wal-
dow et al. showed that RIC improved PaO2 and PvO2, in 
parallel with a reduction in PAP and PVR [20]. In a set-
ting of CPB-induced LIRI, evidence of superior total lung 
capacity (TLC) and Cd, as well as reduced airway resist-
ance (Raw) was provided [56]. Comparably, Raw was 
lower upon exposure to CPB with a resultant decrease 
in ventilation pressures and a trend for lung compliance 
improvement in the study of Kharbanda et  al. [76]. In 
an interesting study of coronary occlusion/reperfusion, 
simulating an off-pump coronary artery bypass stimulus, 
RIC increased PaO2 and P/F ratio, while decreasing PVR 
and PAP [77].

Investigating LIRI within the realms of remote rep-
erfusion injury, Harkin et  al. showed an improvement 
in PaO2 and (A-a) DO2 with an attendant reduction in 
mPAP following limb reperfusion in preconditioned 
animals [62]. Jan et  al. demonstrated similar protective 
properties after resuscitation from haemorrhagic shock, 
with increased PaO2 and decreased (A-a) DO2, with an 
attendant amelioration of acidosis, as pH and base excess 
were increased by IC [66]. Interestingly, Bergmann et al. 
highlighted the improved respiratory function con-
ferred by IC during OLV: oxygenation index [fraction 
of inspired oxygen (FIO2) * mean airway pressure (Paw 
mean)/PaO2)] was lower after RIC, with an attendant 
increase in venous oxygen saturation (SvO2) [68].

In summary, most experimental studies have reported 
improvements in gas exchange, respiratory mechanics, 
and pulmonary haemodynamics by IC. Interestingly, 
local conditioning appears to exert similar effects to RIC, 
both in settings of in  situ as well as remote reperfusion 
injury. Thus, the systemic nature of the underlying pro-
cesses has been consistently demonstrated (Tables  1, 3; 
Fig. 2).

Clinical evidence
There is accumulating clinical evidence delineating the 
effects of IC against LIRI in several pathophysiologi-
cal contexts. Li et  al. investigated the application if IC 
in patients exposed to CPB and revealed that precon-
ditioning reduced PVRI and mPAP, while increasing 
PaO2; importantly, there was an attendant reduction in 
pulmonary complications (lobar collapse, pneumonitis, 
pneumothorax) and mechanical ventilation time [10]. 

In a similar cohort of patients, RIC conferred a decrease 
in (A-a) DO2, respiratory index [(A-a) DO2/PaO2], as 
well as the incidence of ALI [69]. Zhou et  al. also con-
cluded that RIC improved RI and decreased static (Cs) 
and dynamic lung compliance (Cd) [12], while the inci-
dence of ALI was reduced in patients undergoing RIC 
during their valve replacement, despite the fact that (A-a) 
DO2 was not affected [11]. Moreover, RIC applied both 
before and after CBP in patients undergoing valvular 
replacement improved P/F ratio and reduced the inci-
dence of mechanical ventilation beyond 48 h; Cs and Cd 
remained unchanged [78]. However, Cheung et  al. did 
not reproduce any improvements in either oxygenation 
or compliance; nonetheless, Raw was reduced in precon-
ditioned patients [70]. Hong et al. also showed a neutral 
effect of RIC on oxygenation and mechanical ventilation 
duration; however, the included patients underwent off-
pump CABG, which obviates the exposure to CPB [79]. 
Additional studies have shown a lack of improvement in 
respiratory indices or outcomes, but no inflicted harm 
[80–82].

The results of the studies focusing on patients undergo-
ing lung resections uniformly support the notion that IC 
confers significant protection from LIRI. RIC abrogated 
the deleterious effects of OLV on respiratory function, as 
denoted by improvements in P/F ratio, (A-a) DO2, and 
arterial-alveolar oxygen tension ratio (a/A ratio), with 
an attendant decreased ALI incidence; Cs and Cd were 
also significantly increased [7]. Concordant evidence was 
provided by García-de-la-Asunción et  al., who showed 
an improvement in PaO2, (A-a) DO2, P/F and a/A ratio, 
and RI [8]. Chen et al. also demonstrated increased pul-
monary venous oxygen tension in patients undergo-
ing pneumonectomy [71]. In an important pilot RCT of 
RIC within the context of lung transplantation by Lin 
et  al., preconditioning was associated with a trend for 
decreased PGD and biopsy-proven rejection risk, while 
P/F ratio was significantly increased in the subgroup of 
patients with restrictive lung disease [72]. RIC protects 
from the lung dysfunction triggered by splanchnic IRI, as 
shown by the RCT of Lin et al., whereby preconditioned 
patients undergoing AAA repair benefited from higher 
a/A ratio, lower (A-a) DO2 and RI, as well as improved 
Cs and Cd [13]. Comparable effects have been demon-
strated following lower limb reperfusion: RIC resulted in 
improved PaO2, a/A ratio, (A-a) DO2, and RI [14].

Thus, despite the contradictory evidence provided by 
studies of cardiac surgery patients, the majority of data 
obtained in clinical settings that entail in situ lung, as well 
as hepatosplanchnic and limb reperfusion underlines the 
beneficial effects obtained from IC: respiratory function 
and ventilation mechanics may improve, while respira-
tory complications may be averted (Tables 2, 3; Fig. 2).
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Conclusions
LIRI has a detrimental effect on respiratory function and 
pulmonary haemodynamics, with dismal consequences 
for patient prognosis in a variety of clinical settings. The 
abundance of experimental evidence revealing the ben-
eficial effects of IC, both on the underlying inflammatory 
and oxidative cascades, as well as the resultant func-
tional derangements is being gradually complemented by 
encouraging clinical data. Given its promising prelimi-
nary results, safety, and ease of application, IC appears 
to be an intervention worth of further investigation and 
a useful addition to our deficient armamentarium against 
LIRI.
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of oxygen to the inspired fraction of oxygen; Raw: Airway resistance; RCT 
: Randomised control trial; RIC: Remote ischemic conditioning; ROS: Reactive 
oxygen species; sICAM‑1: Serum soluble intercellular adhesion molecule‑1; 
SOD: Superoxide dismutase; SvO2: Venous oxygen saturation; TBARS: Thio‑
barbituric acid reactive substances; TLC: Total lung capacity; TNF‑a: Tumour 
necrosis factor‑alpha; TXB2: Thromboxane B2; VCAM‑1: Vascular cell adhesion 
molecule‑1; VSD: Ventricular septal defect; V/Q mismatch: Ventilation‑perfu‑
sion mismatch.
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Inflammatory genes downregulation Jun et al. [55]
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