
Cao et al. Respiratory Research          (2022) 23:306  
https://doi.org/10.1186/s12931-022-02226-z

RESEARCH

Pan-cancer analysis of UBE2T with a focus 
on prognostic and immunological roles in lung 
adenocarcinoma
Kui Cao1,2†, Xiaodong Ling3†, Xiangyu Jiang3, Jianqun Ma3* and Jinhong Zhu1* 

Abstract 

Background: Ubiquitin-conjugating enzyme E2 T (UBE2T) is a potential oncogene. However, Pan-cancer analyses of 
the functional, prognostic and predictive implications of this gene are lacking.

Methods: We first analyzed UBE2T across 33 tumor types in The Cancer Genome Atlas (TCGA) project. We investi-
gated the expression level of UBE2T and its effect on prognosis using the TCGA database. The correlation between 
UBE2T and cell cycle in pan-cancer was investigated using the single-cell sequencing data in Cancer Single-cell State 
Atlas (CancerSEA) database. The Weighted Gene Co-expression Network analysis (WGCNA), Univariate Cox and Least 
absolute shrinkage and selection operator (LASSO) Cox regression models, and receiver operating characteristic (ROC) 
were applied to assess the prognostic impact of UBE2T-related cell cycle genes (UrCCGs). Furthermore, the consensus 
clustering (CC) method was adopted to divide TCGA-lung adenocarcinoma (LUAD) patients into subgroups based on 
UrCCGs. Prognosis, molecular characteristics, and the immune panorama of subgroups were analyzed using Single-
sample Gene Set Enrichment Analysis (ssGSEA). Results derived from TCGA-LUAD patients were validated in Interna-
tional Cancer Genome Consortium (ICGC)-LUAD data.

Results: UBE2T is highly expressed and is a prognostic risk factor in most tumors. CancerSEA database analysis 
revealed that UBE2T was positively associated with the cell cycle in various cancers(r > 0.60, p < 0.001). The risk sig-
nature of UrCCGs can reliably predict the prognosis of LUAD (AUC 1 year = 0.720, AUC 3 year = 0.700, AUC 5 year = 0.630). 
The CC method classified the TCGA-LUAD cohort into 4 UrCCG subtypes (G1–G4). Kaplan–Meier survival analysis 
demonstrated that G2 and G4 subtypes had worse survival than G3 (Log-rank test  PTCGA training set < 0.001,  PICGC validation 

set < 0.001). A comprehensive analysis of immune infiltrates, immune checkpoints, and immunogenic cell death mod-
ulators unveiled different immune landscapes for the four subtypes. High immunophenoscore in G3 and G4 tumors 
suggested that these two subtypes were immunologically “hot,” tending to respond to immunotherapy compared to 
G2 subtypes (p < 0.001).
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Background
To date, targeted therapy has become the first-line 
therapy for cancer patients harboring corresponding 
oncogenic driver mutations. However, drug resistance 
frequently occurs, resulting from de novo drug-resistant 
mutations, compensatory activation of collateral signal-
ing pathways, or growth dominance of cells with preexist-
ent drug-resistant genetic alterations [1]. In the past few 
decades, numerous studies have shown that multi-target 
therapy is superior to single agents in treating a broad 
spectrum of cancer. Therefore, it is essential to identify 
more druggable molecular targets to optimize combina-
tion therapy strategies and improve cancer management.

Ubiquitin-conjugating enzyme E2 T (UBE2T), also 
known as HSPC150 or Fanconi anemia group T protein 
(FANCT), belongs to the ubiquitin–proteasome degra-
dation system. UBE2T gene is located in chromosome 
1q32.1, encoding a protein product composed of 197 
amino acids [2]. UBE2T was initially identified to partici-
pate in repairing DNA damage by ubiquitinating FANCL, 
FANCD2, and FANCI in Fanconi anemia. In recent years, 
accumulating studies suggest that UBE2T is also involved 
in the initiation and development of various tumors 
[3–6]. UBE2T generally catalyzes ubiquitination modi-
fication of target molecules to promote tumorigenesis. 
Many UBE2T substrates have been reported, including 
p53 [7] and Mule [8] in hepatocellular carcinoma (HCC), 
BRCA1 in breast cancer [9], FOXO1 in lung cancer [10], 
and the receptor for activated protein kinase C (RACK1) 
in gastric cancer (GC) [11]. M435-1279, a novel UBE2T 
inhibitor, was reported to suppress the Wnt/β-catenin 
signaling pathway and GC progression [11]. The onco-
genic effect of UBE2T also was reported in osteosar-
coma, nasopharyngeal carcinoma, prostate cancer, and 
esophageal cancer [6, 12–15]. However, the implications 
of UBE2T in many other types of cancers are lacking. In 
the past decade, the advent of next-generation sequenc-
ing (NGS) technologies and the release of The Cancer 
Genome Atlas (TCGA) datasets made genomic and tran-
scriptomic data on common cancers accessible publicly. 
Thus, this is ideal for analyzing and unveiling potential 
biomarkers’ prognostic and predictive values with Pan-
cancer analysis in the precision medicine area.

Our study explored UBE2T expression and its clinic 
relevance across 33 cancer types in the TCGA database. 
Moreover, by screening malignancy-related cell behaviors 

through the CancerSEA database, we found that UBE2T 
was closely associated with the cell cycle. We applied the 
weighted gene correlation network analysis (WGCNA) 
and Least absolute shrinkage and selection operator 
(LASSO) regression algorithm to identify a prognostic 
signature based on the UBE2T-related cell cycle gene 
(UrCCGs) in the lung adenocarcinoma (LUAD). Then 
we performed consensus clustering  (CC) analysis with 
UrCCGs to divide lung adenocarcinoma into four sub-
types, followed by validation analysis in the International 
Cancer Genome Consortium (ICGC) cohort. Each sub-
type exhibited different clinical, molecular, and cellular 
characteristics. Finally, we also determined the status of 
immune infiltration and immunotherapy sensitivity for 
different subgroups.

Materials and methods
Gene expression analysis
We downloaded the RNA-Seq expression data (FPKM 
format) of 33 different tumors from the TCGA database 
(https:// portal. gdc. cancer. gov/). The gene expression 
matrix consisting of 10,530 samples and 60,499 genes was 
obtained (Additional file  7). The genes were annotated 
using the Gencode (GENCODE.v32) (ftp:// ftp. ebi. ac. 
uk/ pub/ datab ases/ genco de/ Genco de_ human/) GTF file 
and normalized. We determined the expression levels of 
UBE2T in 33 types of tumors. For some types of tumors 
without normal or with few normal tissues [e.g., TCGA-
ACC and TCGA-DLBC], we used a web-based analysis 
tool, the Gene Expression Profiling Interactive Analysis 
(GEPIA) (http:// gepia. cancer- pku. cn/) [16], to compare 
the UBE2T expression between tumor tissues and normal 
tissues. This website incorporates gene expression data of 
tumors from TCGA and various normal tissues from the 
Genotype-Tissue Expression (GTEx) database (https:// 
www. genome. gov/ Funded- Progr ams- Proje cts/ Genot 
ype- Tissue- Expre ssion- Proje ct). The GEPIA included the 
re-computed TCGA and GTEx data that were processed 
from corresponding raw RNA-Seq datasets by the UCSC 
Xena project based on a uniform pipeline [17]. Batch 
effects resulting from different data resources were elimi-
nated in GEPIA. UBE2T expression in some normal tis-
sues can be found in Additional file  7. Additionally, the 
UBE2T expression levels in different stages of all TCGA 
tumors were visualized by the GEPIA. Then, we explored 
the protein expression level of UBE2T between primary 

Conclusions: UBE2T is a critical oncogene in many cancers. Moreover, UrCCG classified the LUAD cohort into four 
subgroups with significantly different survival, molecular features, immune infiltrates, and immunotherapy responses. 
UBE2T may be a therapeutic target and predictor of prognosis and immunotherapy sensitivity.
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tumors and normal tissues through the UALCAN por-
tal (http:// ualcan. path. uab. edu/ analy sis- prot. html) [18, 
19] (Additional file  7). This website provided protein 
expression profiles for 13 tumors, including breast can-
cer, ovarian cancer, colon cancer, clear cell renal cell 
carcinoma, uterine corpus endometrial carcinoma, lung 
adenocarcinoma, head and neck squamous carcinoma, 
pancreatic adenocarcinoma, glioblastoma multiforme, 
hepatocellular carcinoma, prostate adenocarcinoma, gas-
tric cancer, pediatric Brain Cancer. UALCAN collected 
data from Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC), comprising expression information for 
around 10,000 proteins. Briefly, protein expression data 
obtained from the CPTAC were log2 normalized sam-
ple-wise. In each type of tumor, every protein’s Z-value 
for single samples was expressed as standard deviations 
(SD) from the median of all tumor samples. UALCAN 
is a comprehensive, user-friendly, and interactive web 
resource for analyzing cancer OMICS data. It is devel-
oped on PERL-CGI with high-quality graphics with the 
application of javascript and CSS. UALCAN is built to 
provide graphs and plots illustrating expression profiles 
and patient survival information for protein-coding [18, 
19]. The Human Protein Atlas (HPA, https:// www. prote 
inatl as. org/) was used to explore the subcellular distribu-
tion of UBE2T in tumors [20].

Survival analysis
Clinical data were fetched from the TCGA, including 
overall survival (OS), disease-specific survival (DSS), 
progression-free interval (PFI), and disease-free inter-
val (DFI) survival data. Samples without survival infor-
mation were excluded. (Additional file  7). The UBE2T 
mRNA expression median was used to divide the 
patients into high- and low-expression groups. We plot-
ted the Kaplan–Meier survival curves and forest plots of 
univariate Cox analysis of UBE2T in 33 tumors by using 
the following R packages: “survival”, “survminer”, and 
“forestplot”. Univariate Cox regression analysis was also 
performed to evaluate the association of UBE2T with 
prognosis. The two methods are different and compensa-
tory. When they produced discrepant results, the results 
from univariate Cox regression analysis (semi-parametric 
test) are recommended since its power is generally higher 
than that of Kaplan–Meier survival (non-parametric 
test).

Single‑cell data and correlation analysis
We used the Cancer Single-cell State  Atlas7 (Cancer-
SEA) (http:// biocc. hrbmu. edu. cn/ Cance rSEA/) database 
to examine the association of UBE2T with 14 primary 
tumor-related cellular activities, such as cell cycle, pro-
liferation, and angiogenesis [21] (Additional file 7). This 

database contained only RNA sequencing data of tumor 
cells. Briefly, gene signatures of the14 function states 
were compiled by hand from public databases (e.g., 
HCMDB, Cyclebase, StemMapper) and relevant publi-
cations. The scores of functional states for single cancer 
cells were evaluated from their corresponding pheno-
typic gene sets by Gene Set Variation Analysis (GSVA), 
followed by Spearman’s Rank Correlations to deter-
mine the correlations between the functional states and 
UBE2T (FDR < 0.05 and correlation > 0.3). The correla-
tions between UBE2T and scores of functional states 
were visualized using the “ggplot2” package. Our previ-
ous publication demonstrated that UBE2T promoted 
autophagy in LUAD; therefore, we further investigated 
the functional relevance of UBE2T in LUAD at the single-
cell level. We chose EXP0066 (GSE69405) and EXP0067 
(GSE85534) (Additional file  7) because only these two 
single-cell datasets concern LUAD in the CancerSEA 
database, which contain single-cell RNA sequencing data 
of lung adenocarcinoma patient-derived cells. We ana-
lyzed the correlation between UBE2T and the cellular 
events in LUAD cells and drew the heat map with “pheat-
map” and “ggstatsplot” packages [22, 23]. We determined 
genes related to UBE2T expression in LUAD by Pearson 
correlation analysis (p < 0.05, |r > 0.1|), and retrieved a 
list of 24,250 UBE2T-related genes (Additional file  7). 
Subsequently, 1,056 genes related to the cell cycle were 
downloaded from the CancerSEA database (Additional 
file 7). A Venn diagram using the “VennDiagram” pack-
age was used to identify genes shared by the two gene 
sets (n = 889), which were considered UBE2T-related cell 
cycle genes (UrCCGs).

Construction of risk signature with UrCCGs
The WGCNA algorithm is a standard method to evalu-
ate the potential correlation between gene modules and 
clinical traits [24]. Information on the clinical stage and 
survival state was used as traits to search for worth-
while co-expression modules associated with stage and 
prognosis. The gene network and distinguished mod-
ules were built using the one-step network construc-
tion function of the “WGCNA” R package. Module-trait 
relationships were evaluated based on the correlation 
between modules and traits by Pearson’s correlation 
test, and modules were considered significantly corre-
lated when p ≤ 0.05. Univariate Cox regression analy-
sis was applied to select prognostic genes from 162 
overlapping genes (p < 0.001). LASSO Cox analysis 
was conducted to construct an optimal risk signature 
( Theriskscore = ANLN ∗ 0.141850720503601+ ERLIN1∗

0.0298200395675116+ LDHA ∗ 0.21493576811564+

ORMDL3 ∗ | − 0.136485417603082| + SERBP1∗

0.0850088433535292+ VDAC1 ∗ 0.119576428619984

http://ualcan.path.uab.edu/analysis-prot.html
https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://biocc.hrbmu.edu.cn/CancerSEA/
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+XRCC5 ∗ 0.110427437278267+ ZNF555 ∗ |

−0.979403992850046| ), 
with a 10-round cross-validation restricting overfit-
ting. The correlations between the expression of genes 
in risk signature and immune cell infiltration, including 
CD8 + T cells, CD4 + T cells, and dendritic cells, were 
analyzed by the “Gene” portal of the tumor immune esti-
mation resource (TIMER2.0) online tool (http:// timer. 
comp- genom ics. org/). The correlation between gene 
expression and immune infiltration was estimated by the 
Pearson correlation test (Additional file 7).

Discovery and validation of the subtypes 
by the UBE2T‑related cell cycle genes
ConsensusClusterPlus is a stratification tool, which uses 
the consensus clustering (CC) method to identify unsu-
pervised intrinsic groups with similar biological char-
acteristics [25]. This method was used to interrogate 
whether the expression profile of 889 UBE2T-related 
cell cycle genes is sufficient to cluster the TCGA-LUAD 
patients into independent groups with different gene 
expression patterns. We conducted 500 bootstraps, and 
each subsample contained 80% of patients in the cohort. 
Cluster sets ranged from 2 to 9, and the optimal separa-
tion was determined by evaluating the consensus matrix 
and the consensus cumulative distribution function. The 
subtypes by UrCCGs were validated in an independ-
ent International Cancer Genome Consortium (ICGC)-
LUAD cohort (https:// dcc. icgc. org/) with the same 
settings (Additional file 7).

Analysis of tumor behavior states, immune infiltrates, 
and immune biomarkers
The stromal score, immune score, and tumor purity 
were compared among different UrCCG subtypes by the 
ESTIMATE (Estimation of Stromal and Immune cells in 
Malignant Tumor tissues using Expression data) method 
(https:// bioin forma tics. mdand erson. org/ estim ate/ disea 
se. html) [26]. Moreover, all gene sets were acquired from 
HALLMARK, KEGG pathway, and Gene Ontology data-
bases (Additional file  7). We applied the single-sample 

(See figure on next page.)
Fig. 1 The expression level of the UBE2T gene in different tumors and pathological stages. A The expression of the UBE2T gene in 33 different types 
of tumors and normal tissues in the TCGA database (https:// portal. gdc. cancer. gov/). B For certain tumors without normal or with few normal tissues 
(n < 3), the Gene Expression Profiling Interactive Analysis (GEPIA) web tool (http:// gepia. cancer- pku. cn/) was used to compare the UBE2T expression 
between these tumor tissues and the corresponding normal tissues from the Genotype-Tissue Expression (GTEx) database. (https:// www. genome. 
gov/ Funded- Progr ams- Proje cts/ Genot ype- Tissue- Expre ssion- Proje ct). C Based on the UALCAN database (http:// ualcan. path. uab. edu/ analy sis- prot. 
html), we compared UBE2T protein expression levels between tumor and respective normal tissues for LUAD, OV, RCC, and UCEC. D Using the 
TCGA data, the expression levels of the UBE2T gene were determined in stages I, II, III, and IV). Log2 (TPM + 1) was applied for the log scale. E The 
subcellular localization of UBE2T in tumor cells was visualized (HPA database) (https:// www. prote inatl as. org/). Red and green fluorescence represent 
microtubules and UBE2T, respectively). *p < 0.05; **p < 0.01; ***p < 0.001

Gene Set Enrichment Analysis (ssGSEA) algorithm of the 
R package “GSVA” to analyze the level of critical func-
tional states of cells and signaling pathways in LUAD by 
utilizing corresponding gene signatures.

Cellular compositions of immune infiltrates were com-
puted using the metagene approach. We adopted ssGSEA 
to assess immune cell types from a set of Pan-cancer 
metagenes for 28 immune cell subpopulations established 
previously (Additional file 7) [27]. We also retrieved the 
immunophenoscore (IPS) for LUAD patients from The 
Cancer Immunome Atlas (TCIA, https:// tcia. at/ home). 
The IPS is calculated based on four significant categories 
of tumor immunogenicity determinants, including effec-
tor cells, immunosuppressive cells, major histocompat-
ibility complex (MHC) molecules (antigen processing), 
and checkpoints/immunomodulators. The IPS, ranging 
from 0 to 10, was calculated based on the z-score for the 
expression of related genes (Additional file 7).

Statistical analysis
All statistical analyses were performed by using R ver-
sion 4.0.3 (R packages: pheatmap, ggplot2, rms, glmnet, 
forest, limma, GSVA, survminer, survival ROC). For all 
analyses. A two-tailed p < 0.05 was regarded as statistical 
significance if not noted.

Result
UBE2T expression analysis in Pan‑cancer
The flowchart of this study is shown in Additional file 1: 
Fig. S1. We first compared UBE2T expression between 
cancerous and normal tissues across 33 tumors from 
the TCGA database (https:// portal. gdc. cancer. gov/) 
(Fig.  1A). For indicated tumor types lacking adequate 
normal tissues (Fig.  1B), we compared the UBE2T 
expression between tumor tissues and normal tissues 
using a web-based analysis tool, GEPIA (http:// gepia. 
cancer- pku. cn/), comprising gene expression in normal 
tissues from GETX (https:// www. genome. gov/ Funded- 
Progr ams- Proje cts/ Genot ype- Tissue- Expre ssion- Proje 
ct). Overall, UBE2T expression was significantly upregu-
lated in various cancers. Additionally, GEPIA-based anal-
ysis showed that UBE2T was differentially expressed in 

http://timer.comp-genomics.org/
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https://www.genome.gov/Funded-Programs-Projects/Genotype-Tissue-Expression-Project
http://ualcan.path.uab.edu/analysis-prot.html
http://ualcan.path.uab.edu/analysis-prot.html
https://www.proteinatlas.org/
https://tcia.at/home
https://portal.gdc.cancer.gov/
http://gepia.cancer-pku.cn/
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https://www.genome.gov/Funded-Programs-Projects/Genotype-Tissue-Expression-Project
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Fig. 1 (See legend on previous page.)
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different stages in adrenocortical carcinoma (ACC), inva-
sive breast carcinoma (BRCA), head and neck squamous 
cell carcinoma (HNSC), kidney chromophobe (KICH), 
ovarian serous cystadenocarcinoma (OV), kidney renal 
papillary cell carcinoma (KIRP), liver hepatocellular 
carcinoma (LIHC), LUAD, kidney renal clear cell carci-
noma (KIRC), and thyroid carcinoma (THCA) (Fig. 1C, 
only significant results shown). The “Protein” module of 
UALCAN online tool (http:// ualcan. path. uab. edu/ analy 
sis- prot. html) confirmed that UBE2T protein levels were 
significantly upregulated in LUAD, uterine corpus endo-
metrial carcinoma (UCEC), renal cell carcinoma (RCC), 
OV, and BRCA (Fig. 1D, only significant results shown). 
The HPA database (https:// www. prote inatl as. org/) 
revealed both cytoplasmic and nuclear distribution of 
UBE2T (Fig. 1E).

Prognostic implications of UBE2T in Pan‑cancer
We investigated the clinical relevance of UBE2T in the 
different tumor types using Kaplan–Meier survival anal-
ysis (Fig. 2A; Additional file 2: Fig. S2, Additional file 3: 
Fig. S3, Additional file 4: Fig. S4, Additional file 5: Fig. S5) 
regarding OS, DSS, DFI, and PFI. Univariate Cox regres-
sion analyses were further conducted to assess the asso-
ciations of UBE2T with prognosis (Fig. 2B–E). The role of 
UBE2T is tumor-specific. For instance, the high UBE2T 
levels were associated with poor OS in ACC, BRCA, 
KIRC, KIRP, brain lower-grade glioma (LGG), LIHC, 
LUAD, mesothelioma (MESO), but associated with 
favorable OS in OV (Fig. 2A; Additional file 2: Fig. S2). It 
is noteworthy that UBE2T was most associated with the 
survival of LUAD (Fig.  2A). Univariate Cox regression 
analysis showed that UBE2T expression was a prognos-
tic risk factor of OS in KICH, KIRC, KIRP, LAML, LGG, 
LUAD, MESO, OV, pancreatic adenocarcinoma (PAAD), 
pheochromocytoma and paraganglioma (PCPG), and 
uveal melanoma (UVM), and a protective factor of OS in 
THYM (Fig. 2B). Results for DSS, DFI, and PFI are shown 
in Fig. 2C–E. These results suggested that UBE2T expres-
sion had a strong prognostic power in different tumors, 
and high UBE2T expression frequently predicted a poor 
prognostic.

Cancer‑associated cellular processes regulated by UBE2T
We next investigated whether UBE2T regulates some 
fundamental cancer-associated cellular processes by 
mining the CancerSEA database (http:// biocc. hrbmu. 
edu. cn/ Cance rSEA/) [21]. UBE2T was associated with 
the cell cycle, DNA repair, proliferation, DNA damage, 
invasion, EMT, hypoxia, metastasis, differentiation, qui-
escence, angiogenesis, and inflammation in various can-
cer types, especially cell cycle and proliferation, among 

which cell cycle was prominently associated with many 
cancers (Fig. 3A). We focused on LUAD for the rest study 
due to its strong association with UBE2T. The expres-
sion of UBE2T was strongly associated with the cell cycle 
(r = 0.73, r = 0.59, p < 0.0001) in two single-cell RNA-Seq 
datasets on LUAD (Fig.  3B). Therefore, we decided to 
explore the clinical significance of UBE2T in LUAD by 
considering its regulatory roles in the cell cycle. By inter-
secting 1,056 cell cycle genes and 24,250 UBE2T-related 
genes in the TCGA-LUAD cohort (Fig. 3C), we obtained 
889 UBE2T-related cell cycle genes (UrCCGs) (Fig. 3D).

Identification and evaluation of subgroups of LUAD 
with WGCNA and LASSO Cox regression analyses
Cluster analysis on the samples was first performed to 
filter out possible outliers by presetting a height cut-off 
value of 40. After removing 11 samples, 503 samples were 
included to construct the WGCNA co-expression mod-
ule of 889 UrCCGs (Fig.  4A). We correlated modules 
with clinical characteristics and found that the turquoise 
module was most significantly correlated with clinical 
stage and survival status (Fig. 4B–D). We then acquired 
162 genes related to both stage and prognosis from the 
two modules and constructed an eight-gene signature 
through univariate prognostic analysis and LASSO Cox 
analysis. A risk score for each patient sample was calcu-
lated. The ROC showed that the risk score of the 8-gene 
signature had a fine predictive accuracy (Fig. 4E). Forest 
plots exhibited univariate analysis for genes included in 
the signature. (Fig.  4F). The Timer2.0 web tool (http:// 
timer. comp- genom ics. org/) revealed the association 
of the eight genes with critical immune cell infiltra-
tion (Fig.  4G). These findings demonstrate  the impor-
tant clinical significance of the UrCCGs.

Identification and evaluation of subgroups of LUAD 
with consensus clustering
We analyzed the expression profiles of 889 UBE2T-
related cell cycle genes from the TCGA database to 
construct consensus clustering using 514 LUAD sam-
ples. Based on the cumulative distribution function 
(Fig.  5A) and function delta area (Fig.  5B), we chose 
k = 4, where UBE2T-related cell cycle genes appeared 
to be stably clustered, and obtained four subtypes 
designated as G1-G4 (Fig.  5C). Kaplan–Meier curves 
showed that the G3 group was associated with the 
best prognosis, whereas G2 and G4 groups had the 
inferior survival probability (Fig.  5D). The princi-
ple component analysis (PCA) diagram showed that 
the four subtypes were independent of each other 
(Fig.  5E). Moreover, the expression of UBE2T was 
downregulated in the G3 subtype with a good prog-
nosis when compared with G2 and G4 subtypes with 

http://ualcan.path.uab.edu/analysis-prot.html
http://ualcan.path.uab.edu/analysis-prot.html
https://www.proteinatlas.org/
http://biocc.hrbmu.edu.cn/CancerSEA/
http://biocc.hrbmu.edu.cn/CancerSEA/
http://timer.comp-genomics.org/
http://timer.comp-genomics.org/
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Fig. 2 Correlation between UBE2T gene expression and  survival of 33 different types of tumors in TCGA database. A We used the “survival” and 
“ggplot2” packages of R software to perform  survival analyses regarding UBE2T across 33 different types of tumors, regarding overall survival (OS), 
Disease-specific Survival (DSS), disease-free Interval (DFI), progression Free Interval (PFI). B–E The forest plots of univariate Cox regression analysis for 
OS (B), DSS (C), DFI (D), and PFI (E)
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poor prognosis (Fig.  5F). We also obtained consistent 
prediction results in the ICGC cohort, demonstrating 
the feasibility of our prognostic model (Fig. 5G, H). We 
further checked the distribution of subtypes in differ-
ent stages and metastatic states. Consistently, The G3 
subtype with favorable prognosis dominated clinical 
stage I (Fig. 5I) and M0 (Fig. 5J). Interestingly, we also 

found that G3 subgroups had lower levels of cancer 
biomarkers than G2 and G4 subgroups (Fig.  5K). The 
prognostic signature-derived risk score was lower in 
the G3 group than that in G2 and G4 groups (Fig. 5L). 
These results suggested that UrCCG subtypes could be 
used to evaluate the degree of malignancy, metastasis, 
and prognosis of LUAD patients.

Fig. 3 Determination of the association between UBE2T and functional states using single-cell sequencing datasets. A The association between 
the UBE2T gene and 14 functional states across 33 types of cancer, using single-cell sequencing datasets in the Cancer Single-cell State Atlas 
(CancerSEA) (http:// biocc. hrbmu. edu. cn/ Cance rSEA/) database (The color of “Red” means positive correlation, while the color of “Blue” means 
negative correlation; The size of the circle represents the absolute value of the correlation coefficient). B The heatmap shows that the UBE2T gene 
is significantly associated with the functional states in two LUAD single-cell sequencing datasets. C The heatmap of the top 100 UBE2T-associated 
genes in LUAD. D The Venn diagram indicates the common elements between UBE2T-related genes and cell cycle genes

http://biocc.hrbmu.edu.cn/CancerSEA/
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Fig. 4 Development of a prognostic signature with the UBE2T-related cell cycle genes. A Weighted Gene Correlation Network Analysis 
(WGCNA) clustering of Samples. B The optimal soft-threshold (power) is estimated with the scale-free fit index. C The Mean connectivity for 
various soft thresholding powers. D Heatmap of the correlation between the module eigengenes and clinical traits of LUAD. We selected the 
MEturquoise-grade block for subsequent analysis. E The receiving operator characteristic (ROC) curves of 1, 3, and 5 years of the optimized 8-gene 
signature derived from LASSO regression analysis. F Forest plot shows the univariate Cox regression analysis of OS for the essential genes included 
in the prognostic signature. G Correlation between the expression levels of eight key genes and infiltration of CD + 4 T cells, dendritic cells, and 
CD + 8 T cells in LUAD tumors (TIMER2.0) (http:// timer. comp- genom ics. org/)

http://timer.comp-genomics.org/
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Different tumor‑associated states among the four UrCCG 
subtypes
We further interrogated the molecular and cellular char-
acteristics underlying different subtypes using GSVA 
(http:// www. gsea- msigdb. org/ gsea/ index. jsp). Compared 
with the G3 group, G2 and G4 groups had higher enrich-
ment scores on tumor-related signaling pathways, includ-
ing cell cycle, autophagy, mismatch repair, and MTORC1 
signaling, but lower scores on the B cell receptor and p53 
signaling pathway (Fig. 6A–K). Moreover, using the pre-
viously published EMT signature for NSCLC, we found 
that the EMT score was significantly higher in G2 and 
G4 subtypes with poor prognosis than  in G3 subtypes 
with favorable prognosis (Fig.  6L). Interestingly, immu-
noenrichment results showed that G3 and G4 subtypes 
had higher levels of T helper 1 type immune response, 
natural killer cell differentiation, alpha–beta T (αβT)-cell 
activation, and activation-induced cell death of T cells 
(Fig. 6M–P).

Association of UrCCG subtypes with tumor immune 
microenvironment
Solid tumor tissue includes malignant cells, normal epi-
thelial, stromal cells, immune cells, and vascular cells. 
The ssGSEA was performed on LUAD samples to ana-
lyze the differences in immune cell infiltration and tumor 
purity among different UrCCG subtypes by ESTIMATE 
(https:// bioin forma tics. mdand erson. org/ estim ate/ disea 
se. html) [26]. G3 and G4 showed higher immune infil-
tration (Fig.  7A, B) but lower tumor purity than G2 
(Fig.  7C). The same analyses were also performed with 
the ICGC database (Additional file  2: Fig. S6A-C). We 
further explored the immune cell components in the four 
subtypes by scoring 28 previously reported signature 
genes in TCGA cohorts using ssGSEA. The enrichment 
of immune cell infiltrates significantly differed among the 
subtypes. Patients with G3 and G4 subtypes had more 
immune cell infiltration than those with G2 subtype 
(Fig. 7D, E). The ability of the UrCCG types to discrimi-
nate the levels of immune cell infiltration was also vali-
dated in the ICGC database (Additional file 2: Fig. S6D, 
E). These results suggest an association between UrCCG 
subtypes and immunity.

The association between UrCCG subtype 
and immunotherapy sensitivity
Given the importance of immune checkpoints (ICPs) 
[28] and immunogenic cell death (ICD) [29] modula-
tors in tumor immunity, we examined the expression of 
ICPs and ICDs in different subtypes. Forty-seven ICPs-
related genes were detected in TCGA-LUAD cohorts, of 
which 39 (83%) genes in the TCGA cohort were differ-
entially expressed among the UrCCG subtypes (Fig. 8A). 
BTLA, CD160, CD200 CD200R1, CD244, CD27, CD28, 
CD28.1 CD40, CD44, CD48, CD80, CD86, HAVCR2, 
LAIR1, LGALS9, TNFRSF14, TNFRSF4, TNFSF18, and 
VTCN1 were significantly upregulated in G3, G4 sub-
types compared to G2 in LUAD. Moreover, 26 (92.9%) 
ICD genes were differentially expressed among the sub-
types (Fig.  8B). For instance, ANXA1, CXCL10, FPR1, 
and HMGB1 were significantly elevated in G4 subtypes 
compared to other subtypes.

Finally, we used immunophenoscore (IPS) for LUAD 
patients from The Cancer Immunome Atlas (TCIA, 
https:// tcia. at/ home) to determine the sensitivity to 
immune checkpoint inhibitors for the four subgroups, 
the most comprehensive immune determinant to date 
[27]. The G3 and G4 subgroups possessed significantly 
higher IPS than the G2 subgroups (Fig.  8C). Based on 
IPS, G3 and G4 subgroups tended to respond to either 
anti-PD1/PDL1/PDL2 or anti-CTLA4 antibodies or the 
combination of both agents (Fig.  8D–F). Besides, the 
expression levels of MSH2, MSH6, and PMS2 were signif-
icantly enhanced in patients with G2 subtypes compared 
to patients with G3 and G4 subtypes (Fig. 8G–J). Collec-
tively, these results suggest that patients with G3 or G4 
but not G2 subtypes may benefit from immunotherapy.

Discussion
To the best of our knowledge, this was the first Pan-can-
cer study of UBE2T. By analyzing multi-omic databases, 
we found that the mRNA expression of UBE2T was 
upregulated in most tumors. High protein expression lev-
els of UBE2T were validated in LUAD, UCEC, RCC, and 
OV. Survival analysis showed that UBE2T was associ-
ated with poor prognosis in most studied tumors. UBE2T 
has been implicated in the different tumor types. For 

(See figure on next page.)
Fig. 5 Identification and validation of potential UBE2T-related cell cycle gene (UrCCG) subtypes in LUAd using consensus clustering. A, B 
Cumulative distribution function curves (A) and delta area (B) of UrCCGs in TCGA-LUAD cohort. C Heatmap of sample clustering in TCGA-LUAD 
cohort. D Kaplan–Meier curves showing OS of UrCCG subtypes in TCGA-LUAD cohort. E The principal component analysis (PCA) map elucidates 
that UrCCG subtypes are independent. F Expression of UBE2T in four UrCCG subtypes. G Sample clustering heatmap of ICGC-LUAD cohort.
(https:// dcc. icgc. org/) H Kaplan–Meier curves showing OS of UrCCG subtypes in ICGC-LUAD cohort. I, J Distribution of G1-IG4 across stages (I) and 
metastasis (J) in TCGA-LUAD cohort. K, L Differential levels of tumor biomarkers (K) and risk score of the 8-gene signature (L) among the 4 subtypes 
in TCGA-LUAD cohorts

http://www.gsea-msigdb.org/gsea/index.jsp
https://bioinformatics.mdanderson.org/estimate/disease.html
https://bioinformatics.mdanderson.org/estimate/disease.html
https://tcia.at/home
https://dcc.icgc.org/
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Fig. 5 (See legend on previous page.)
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Fig. 6 Gene Set Variation Analysis (GSVA) compares cellular, molecular, and immune characteristics of the four UrCCG subtypes based on KEGG, 
HALLMARK, or GO signatures. A–P Enrichment scores of the cell cycle (A), regulation of autophagy (B), mismatch repair (C), MTORC1 signaling (D), 
MYC-targets V2 (E), reactive oxygen species pathway (F), unfolded protein response (G), nucleotide expression repair (H), PI3K/AKT/mTOR (I), B cell 
receptor pathway (J), p53 pathway (K), EMT (L), alpha–beta T (αβT)-cell activation (M), natural killer cell differentiation (N), T helper 1 type immune 
response (O), and activation-induced cell death of T cells (P). *p < 0.05, **p < 0.01, and ***p < 0.001
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Fig. 7 Investigation of differences in tumor immune cell infiltration among the four UrCCG subtypes. A–C ESTIMATE (Estimation of Stromal and 
Immune cells in Malignant Tumor tissues using Expression data) (https:// bioin forma tics. mdand erson. org/ estim ate/ disea se. html) method was used 
to calculate the stromal score (A), immune score (B), and tumor purity (C) of single samples in the TCGA-LUAD cohort, which were compared 
among G1–G4 subtypes (Kruskal–Wallis test). D Heatmap of enrichment scores of 28 immune cell signatures in TCGA-LUAD cohort sorted by UrCCG 
subtypes. E. Comparison of the cellular composition of 28 immune infiltrates among G1-G4 subtypes. *p < 0.05, **p < 0.01, and ***p < 0.001

https://bioinformatics.mdanderson.org/estimate/disease.html)method
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Fig. 8 Association of UrCCG subtypes and immune checkpoints (ICPs), immunogenic cell death modulators (ICDs), immunophenoscore (IPS), 
and mismatch repair (MMR) genes in TCGA-LUAD cohort. A, B Differential expression of ICPs (A) and ICDs (B) among the G1-G4 subtypes. C-F. 
Determination of IPS (C), possibility of responding to anti-PD1/PDL1/PDL2 (D), anti-CTLA4 (E), and the combination (F) for G1-G4 subtypes. G-J. 
Expression levels of MMR genes for G1-G4 subtypes, including MSH2 (G), PMS2 (H), MSH6 (I), MLH1 (J). *p < 0.05, **p < 0.01, and ***p < 0.001
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instance, the expression level of UBE2T was positively 
correlated with the overall survival in HCC [7]. Survival 
association with UBE2T was also demonstrated in breast, 
osteosarcoma, nasopharyngeal carcinoma, prostate can-
cer, and esophageal cancer [6, 9, 12–15].

By analyzing single-cell RNA sequencing data of Pan-
cancer, we found that UBE2T was associated with the 
most fundamental tumor-associated cellular events, 
including cell cycle, DNA repair, EMT, proliferation, 
and stemness. Before the advent of single-cell sequenc-
ing technology, the gene expression profiling of tumor 
samples could only be generated by the bulk sequenc-
ing method. Since malignant solid tumor tissues include 
tumor cells and normal stromal cells [30], some critical 
information about tumor cells may be overwhelmed by 
the stromal cells and immune cells. In the current study, 
we excluded the interference of other nontumor cells 
by utilizing the gene expression data from single-cell 
sequencing. Our findings are in lines with the previous 
study. For example, UBE2T was shown to upregulate 
EMT in renal cell carcinoma [31] and NSCLC cancer 
[10]. Guo et  al. found that UBE2T regulated the prolif-
eration and apoptosis of HCC through Wnt/β-Catenin 
and PI3K/Akt mTOR pathways [32]. Moreover, UBE2T 
could activate the Wnt signaling pathway to enhance 
the stemness of HCC cancer stem cells [8]. Mechanis-
tic investigations further validate the oncogenic role of 
UBE2T. In HCC, UBE2T could promote the growth of 
tumor cells by facilitating the disintegration of p53 pro-
tein [7]. UBE2T mediated Mule ubiquitination and deg-
radation, thereby accelerating tumor invasion in HCC 
[8]. In breast cancer, UBE2T promoted tumorigenesis 
via the ubiquitin-mediated degradation of BRCA1 [9]. A 
recent study revealed that UBE2T facilitated ubiquitin-
dependent degradation of RACK1, a key scaffold protein 
stabilizing the β-catenin destruction complex in gastric 
cancer, leading to accumulation of β-Catenin and activa-
tion of the Wnt/pathway [11].

Single-cell data analysis indicated that the cell cycle is 
consistently and robustly associated with UBE2T across 
the different cancer types. Despite the complexity and 
uniqueness of each cancer, there were a limited number 
of shared “mission-critical” events promoting the uncon-
trolled expansion and invasion of tumor cells and their 
offspring. Among them, the cell cycle is the basis of all 
other phenotypes of tumor cells playing an indispensa-
ble role [33, 34]. Cell cycle dysregulation, implicated in 
malignant transformation and tumor progression, occurs 
in more than 90% of lung cancers, partially due to the 
aberrant activity of Cyclin-dependent kinases (CDK)–
cyclin–RB pathways CDK4 and CDK6 can form com-
plex with D-type cyclins, sequentially phosphorylate the 
Rb tumor suppressor protein, release E2F1, and thereby 

facilitate cell cycle progression Inhibiting CDK4/6 
impairs cell cycle progression, suppresses tumor cell pro-
liferation, and induces senescence. Several highly specific 
CDK4/6 inhibitors (Palbociclib, Ribociclib, and Abe-
maciclib), approved by the FDA for advanced metastatic 
breast cancer, showed great antitumor effects in preclini-
cal lung cancer models [35] and have also been applied in 
clinical trials of lung cancer [36].

Given the critical association of UBE2T with cell 
cycle, combining UBE2T and its regulation on cell cycle 
may better predict cancer prognosis than single genes. 
We identified a risk signature of 8 UrCCGs with high 
accuracy in predicting the prognosis of LUAD. Several 
attempts to build prognostic signatures with cell cycle 
progression (CCP) genes have been reported [37–40]. 
Prognostic signatures derived from predetermined CCP 
genes, named CCP score, were developed and validated 
in prostate cancer [39, 40]. The predictive power of the 
CCP gene-derived signatures was also confirmed in early-
stage lung adenocarcinoma [37, 38]. Furthermore, Chen 
and colleagues recently developed a risk-predicting sig-
nature with eight immunity-related cell cycle genes [41]. 
These findings indicate the reliability of predicting prog-
nosis with CCP signatures in cancer. Consistently, our 
study identified and validated the prognostic discrimina-
tion of oncogene-associated CCP genes. Our composite 
clinical and UrCCG signature showed decent prognostic 
accuracy, which is comparable to other existing prognos-
tic signatures [41–43]. Interestingly, these UrCCGs in the 
risk signature had a strong correlation with CD4 + Th2 
cell, CD8 + T cell, DC, and CD4 + T memory resting 
cell. The association between the eight genes and tumo-
rigenesis has been reported in previous publications [15, 
44–51]. For example, Liu et al. proved that ANLN regu-
lated the proliferation of colorectal cancer cells through 
PI3K/Akt and MAPK pathways, suggesting that ANLN 
might be a new target for the treatment of colorectal can-
cer [15]. These results suggest that these UrCCGs are also 
potential targets in cancer management.

Furthermore, based on the differential expression pat-
terns of UrCCGs, CC analysis divided the TCGA-LUAD 
cohorts into G1 to G4 subtypes, with significantly dif-
ferent survival. G3 subtype patients had better survival 
than other subtypes. The four subtypes exhibited differ-
ent molecular, cellular, and clinical characteristics. Con-
sistently, the G3 subtype with better survival had lower 
expression levels of UBE2T than the G2 and G4 sub-
types. G3 subtype patients predominated in clinical stage 
I and M0 subgroups, while the fraction of G2 and G2 
subtypes increased with advanced stage and metastatic 
status. The subtypes were also associated with tumor 
biomarkers such as NSE, KRT19, and CA125. Overall, 
the survival status predicted by UrCCGs agrees with 
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the traditional TNM stage, tumor metastasis status, and 
tumor biomarkers.

Regarding the molecular and cellular characteristics, 
compared with the G3 group, G2 and G4 groups had 
higher enrichment scores on tumor-related signaling 
pathways, including cell cycle, regulation of autophagy, 
mismatch repair, MTORC1 signaling, MYC-targets V2, 
unfolded protein response, nucleotide expression repair, 
PI3K/AKT/mTOR, reactive oxygen species pathway, but 
lower scores on B cell receptor pathway and p53 pathway. 
EMT played an essential role in tumor metastasis [52]. 
With a new EMT signature in NSCLC and weighting 
coefficients [42], we demonstrated that the EMT score in 
G2 and G4 subtypes with poor prognosis was higher than 
that in the G3 subtype. These results indicated substan-
tial differences in tumor-associated phenotypes among 
the four subtypes. Enrichment of malignant character-
istics might help explain the poor prognosis in patients 
with G2 and G4 subtypes.

We analyzed the relationship between different sub-
types and immunity. Intriguingly, tumors with G3 and 
G4 subtypes had higher levels of immune cell infiltration 
than tumors with G2 subtype. First, ESTIMATE analy-
sis indicated that patients with G3 and G4 subtypes had 
higher stromal-score and immune-score but lower tumor 
purity than G2 type. The ssGSEA was adopted to cal-
culate stromal score and immune score for each tumor 
sample with “stromal gene signature” and “immune 
gene signature,” respectively [26]. Second, Augmented T 
helper 1 type immune response, natural killer cell differ-
entiation, activation of αβT cells, and activation induced 
cell death of T cells also manifested an immunogenic 
tumor environment in G2 and G4 subtypes. Generally, 
the activation of αβT cells relies on antigen presented 
by the major histocompatibility complex (MHC) pro-
teins. Upon antigen recognition, αβT cells transit into 
cytotoxic effector cells or secret cytokines [53]. AICD is 
programmed cell death in activated T cells depending on 
the Fas receptors (Fas, CD95)/Fas ligands (FasL, CD95 
ligand) pathway. The immune system’s hyperactivation or 
constitutive activation can induce T-cell exhaustion and 
AICD in T- and B-cells. Therefore, the increased T cell 
AICD may reflect the overactivation of antitumor immu-
nity in the G3 and G4 subgroups [54].

Moreover, with a published algorithm [27], we com-
prehensively compare the 28 different types of infiltrated 
immune cells among the four subtypes comprising mem-
ory cells, cytotoxic cells, and immunosuppressive cells. 
Overall, higher levels of immune cell infiltration were 
observed in G3 and G4 compared with G2 subtypes. 
More importantly, the fraction of activated CD8 T cells, 
central memory CD8 T cells, and effector memory CD8 
T cells were significantly enhanced in the former. These 

results suggest that G3 and G4 subtypes belonged to the 
“hot” immune tumor and the G2 subtype belonged to the 
“cold” immune tumor. In 2009, Camus et  al. originally 
delineated three major immune coordination patterns 
(hot, altered, and cold) in the primary CRC [55]. Nowa-
days, the “hot” and “cold” immune patterns are used to 
indicate T cell-infiltrated, inflamed but non-infiltrated, 
non-inflamed tumors [25]. In general, the “hot” immune 
pattern of tumors is more likely to benefit from immu-
notherapy. Furthermore, we found that most of the 
ICP and ICD genes were differentially expressed in the 
four subgroups. Fortunately, immunophenoscore was 
developed to comprehensively quantify tumor immu-
nogenicity by integrating antigen processing (MHC), 
checkpoints, immunomodulators, effector cells (acti-
vated CD8, activated CD4, Tem CD4, Tem CD8, and sup-
pressor cells (Treg and MDSC). Immunophenoscore has 
been reported to robustly predict response to anti-CTLA 
and anti-PD1 antibodies [27]. With the utilization of IPS, 
we detected significantly higher IPS in G3 and G4 sub-
groups than in the G2 group, and the former showed the 
increased possibility of responding to PD1/PDL1/PDL2 
inhibitor, CTLA4 inhibitor, and the combination of ICIs. 
Consistently, G3 and G4 subtypes exhibited lower levels 
of MMR genes (MSH2, PMS2, and MSH6) than G3 types. 
MMR is known to be a powerful adjunct marker for pre-
dicting immunotherapy. Deficiency in MMR genes is also 
considered an indicator of response to ICIs [56]. Collec-
tively, the UBE2T-related cell cycle subtypes may inform 
clinicians for decision-making. Despite the merits of the 
current study, limitations are unavoidable. The results 
presented in this study were mainly based on bioinfor-
matic analyses. Validating the UBET2 using in-house 
clinical samples could great strengthen our findings.

Conclusion
In conclusion, UBE2T is a critical oncogene. Moreover, 
UBE2T-related cell cycle genes could separate the LUAD 
cohort into four subgroups with significant differences in 
survival, immune cell infiltration, and immunotherapy 
sensitivity. Our findings demonstrated that UBE2T could 
be a therapeutic target, as well as a predictor of survival 
and immunotherapy in cancer treatment.
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