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Deficiency of leukocyte‑specific protein 
1 (LSP1) alleviates asthmatic inflammation 
in a mouse model
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Abstract 

Background:  Asthma is a major cause of morbidity and mortality in humans. The mechanisms of asthma are still not 
fully understood. Leukocyte-specific protein-1 (LSP-1) regulates neutrophil migration during acute lung inflammation. 
However, its role in asthma remains unknown.

Methods:  An OVA-induced mouse asthma model in LSP1-deficient (Lsp1−/−) and wild-type (WT) 129/SvJ mice 
were used to test the hypothesis that the absence of LSP1 would inhibit airway hyperresponsiveness and lung 
inflammation.

Results:  Light and electron microscopic immunocytochemistry and Western blotting showed that, compared with 
normal healthy lungs, the levels of LSP1 were increased in lungs of OVA-asthmatic mice. Compared to Lsp1−/− OVA 
mice, WT OVA mice had higher levels of leukocytes in broncho-alveolar lavage fluid and in the lung tissues (P < 0.05). 
The levels of OVA-specific IgE but not IgA and IgG1 in the serum of WT OVA mice was higher than that of Lsp1−/− OVA 
mice (P < 0.05). Deficiency of LSP1 significantly reduced the levels of IL-4, IL-5, IL-6, IL-13, and CXCL1 (P < 0.05) but not 
total proteins in broncho-alveolar lavage fluid in asthmatic mice. The airway hyper-responsiveness to methacholine in 
Lsp1−/− OVA mice was improved compared to WT OVA mice (P < 0.05). Histology revealed more inflammation (inflam-
matory cells, and airway and blood vessel wall thickening) in the lungs of WT OVA mice than in those of Lsp1−/− OVA 
mice. Finally, immunohistology showed localization of LSP1 protein in normal and asthmatic human lungs especially 
associated with the vascular endothelium and neutrophils.

Conclusion:  These data show that LSP1 deficiency reduces airway hyper-responsiveness and lung inflammation, 
including leukocyte recruitment and cytokine expression, in a mouse model of asthma.
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Background
As one of the most prevalent chronic respiratory dis-
eases, asthma is responsible for huge economic losses 
and high mortality [1]. The pathogenesis of this disease 

is complicated because of the combination of genetic 
and environmental factors [2, 3]. Consensus statements 
regarding the various phenotypes and endotypes of 
asthma have been developed by ATS/ERS [4]. Asthmatic 
patients have symptoms such as chest tightness, short-
ness of breath, wheezing, and coughing, especially early 
in the morning or during the night. The clinical signs 
during an asthma attack are an outcome of increased 
amounts of mucous in the airways, narrowing of the 
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airway lumen, contraction of hypertrophied smooth 
muscles and inflammation. The most commonly used 
mouse model of ovalbumin (OVA)-induced asthma mim-
ics acute asthma [5].

Several changes are observed in the airways of asth-
matic lungs. Firstly, there is exuberant migration of 
inflammatory cells including T lymphocytes, eosino-
phils, macrophages, and neutrophils into the lung. Sec-
ondly, airway albumin levels are significantly increased 
across the spectrum of asthma severity and are correlated 
with tryptase levels [6–9]. Thirdly, the airway epithe-
lium suffers pathologic changes characterized by shed-
ding of ciliated columnar cells and goblet and squamous 
cell metaplasia. The sub-epithelial basement membrane 
thickens due to fibroblast activation and deposition of 
extracellular matrix (e.g., collagen) [10]. Fourthly, mucus 
plugging is a common feature in the case of acute asthma 
[11]. The main reason for high mortality in asthmatic 
patients is airway obstruction due to airway hyperre-
sponsiveness (AHR) and mucus hypersecretion by goblet 
cells, causing asphyxia [12, 13].

There is a clinical and pathologic correlation between 
the eosinophilic and neutrophilic inflammation and 
the severity of asthma [11]. The tracheal mucus aspi-
rated from acute severe asthmatic humans has more 
aggregated neutrophils than eosinophils, consistent 
with increased levels of the neutrophil chemoattractant 
CXCL8/IL-8 [14]. In vitro data suggests that human neu-
trophil elastase enhances eosinophil degranulation and 
eosinophil cationic protein production [15]. In chronic 
asthma, sputum eosinophil percentages are strongly 
associated with reduced forced expiratory volume (FEV1) 
values. Similarly, sputum neutrophil percentages are pos-
itively correlated with older age and lower levels of the 
pre-bronchodilator FEV1 [16, 17]. Thus, neutrophilic air-
way inflammation is thought to play a major role in the 
progression of persistent airflow limitation in asthma 
[16]. It is interesting that most asthma treatments nei-
ther control neutrophil migration in severe cases [17] nor 
hasten clearance of neutrophils [18]. The lack of effective 
treatment for the 5–10% of cases that comprise severe 
asthma account for bulk of the asthma-related healthcare 
costs [19]. Inflammatory mediators such as IL-4, IL-13 
and CXCL1 have important regulatory roles in asth-
matic cell recruitment and activation [20, 21]. It appears 
that excessive migration of neutrophils and eosinophils 
may underlie the inflammation-associated structural and 
physiologic changes in the asthmatic lung. Therefore, 
a better understanding of molecular regulation of their 
migration may provide better ways of managing asthma.

Leukocyte-specific protein 1 (LSP1), discovered in 
1988 in lymphocytes [22, 23] and initially named lym-
phocyte-specific protein 1, is now found in monocytes, 

macrophages, neutrophils, and endothelium [22–27]. 
The varied functions of LSP1, in various organs and in 
distinct contexts, are still complicated and poorly under-
stood. This protein plays an important role in leukocyte 
chemotaxis in inflamed organs [28]. We reported that 
the absence of LSP1 moderated endotoxin-induced acute 
lung inflammation in a mouse model and reduced migra-
tion of neutrophils into the lungs [29]. Although there 
were no differences in MAPK phosphorylation between 
endotoxin challenged Lsp1-/- and WT mice, our data 
pointed towards a direct role of phosphorylated LSP-1 
in modulating neutrophil cytoskeleton [29]. Increased 
expression of LSP1 has been implicated in Neutrophil 
Actin Dysfunction disorder, which is a rare immuno-
logic condition [30], but LSP1 has also been implicated 
in T-cell migration in rheumatoid arthritis [31]. Because 
we still don’t fully understand the mechanisms that regu-
late migration of neutrophils and eosinophils in asthma, 
we tested a hypothesis that, in a mouse model of OVA-
induced asthma, deficiency of LSP1 will suppress airway 
inflammation by inhibiting inflammatory cell recruit-
ment into the lungs. We found that Lsp1−/− asthmatic 
mice showed significantly decreased inflammatory cell 
emigration into the lungs and lower levels of related 
cytokines in broncho-alveolar lavage (BAL) fluids, as well 
as serum IgE, airway hyperresponsiveness (AHR), and 
histopathology.

Methods
Murine asthma model and airway hyperresponsiveness 
(AHR) measurement
LSP1-deficient (Lsp1−/−) mice were generated by Dr. 
Jenny Jongstra-Bilen and colleagues on the background 
of 129/SvJ mice at the University of Toronto [32, 33]. 
Both WT and the LSP knockout strains were trans-
ferred to and bred in the Laboratory Animal Services 
Unit at the University of Saskatchewan. The mice used 
in this study were produced just after the backcrossing 
and genotyping of Lsp1−/−. Sixteen-week-old male wild-
type (WT) 129/SvJ and Lsp1−/− mice were used (n = 6 
mice per treatment group). All the animal experiments 
were approved by the University of Saskatchewan’s Ani-
mal Research Ethics Board and adhered to the Cana-
dian Council on Animal Care guidelines. All mice were 
housed in a 12-h dark/light cycle, were fed a standard 
laboratory diet in the Laboratory Animal Services Unit 
at the University of Saskatchewan and allowed to accli-
matize for one week before treatment. The OVA-induced 
asthma mouse model was designed as described previ-
ously [34, 35]. In general, mice were injected intraperito-
neally (i.p.) with 2 µg OVA/2 mg alum twice, two weeks 
apart; two weeks they were given three aerosol chal-
lenges with 1% OVA in saline for 20 min per day, 2 days 
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apart. Two weeks after the final aerosol challenge, AHR 
to methacholine (MCh) was determined using a head-
out plethysmograph and a small animal ventilator (Kent 
Scientific, Litchfield, CT) and changes in the airflow were 
monitored with a flow sensor (TRS3300; Kent Scientific) 
linked via a preamplifier and A/D board (Kent Scientific) 
to a computer-driven real-time data acquisition/analysis 
system (DasyLab 5.5; DasyTec USA, Amherst, NH). [35, 
36]. AHR data reflects 50% point in the expiratory cycle 
(Flow@50%TVe1) responding to the aerosols of saline 
0.9%, then doubling doses of MCh (1.5–25 mg/mL) which 
enhance airway contraction [37, 38]. The next day all 
mice were challenged with 1% OVA in saline aerosols at 
a delivery rate of 0.5 L/min in an enclosed flow-through 
chamber for 20 min using an ultrasonic nebulizer (Ultra-
Neb 99 by Devilbiss, Somerset, PA). After 24 h, the mice 
were euthanized with 200 mg/kg ketamine hydrochloride 
(Vetalar® injection U.S.P, Bioniche, Belleville, ON, Can-
ada) and 10 mg/kg xylazine (Rompun®, Bayer, Toronto, 
ON, Canada) followed by collection of blood, BAL fluids 
and lung tissues.

Blood and broncho‑alveolar lavage cell counts
BAL fluid was collected as described previously [29]. 
Briefly, the trachea was exposed and the airways were 
lavaged with 1.5 mL of cold sterile 0.1 M PBS supple-
mented with 0.01% bovine serum albumin. The BAL 
fluid was centrifuged at 1500g for 10 min at 4 °C and the 
supernatants collected and stored at − 80 °C for protein, 
chemokine, and cytokine detection. The BAL fluid total 
leukocytes were counted and the cells resuspended at 
106 cells/ml in 0.1 M PBS. One hundred µL of each sam-
ple was cytospun onto a microscope slide, and the cells 
were stained with Hemacolor stain kit (EMD Chemicals, 
Gibbstown, NJ, USA) for differential leukocyte counts (4 
random fields at 400 × magnification).

Peripheral blood was collected into heparinized tubes 
by cardiac puncture. The total number of leukocytes/ml 
of blood was assessed after erythrocyte hemolysis with 
2% acetic acid [39]. Simultaneously, a blood smear was 
stained with Hemacolor stain kit for differential leuko-
cyte count in 10 fields at 400 × magnification.

Cytokine and chemokine analyses in BAL fluid
BAL fluid levels of interleukin 4 (IL-4), IL-5, IL-6, IL-13, 
IL-17, interferon-γ (IFN-γ), CCL11 (eotaxin-1) and 
CXCL1 (keratinocyte-derived chemokine) were quanti-
fied using Bio-Plex Pro assays kit (Bio-Rad, Mississauga, 
ON, Canada), following the manufacturer’s instructions. 
Briefly, 96-well plates were washed with Bio-Plex assay 
buffer before multiplex bead working solution was added. 
Then beads were washed, after which diluted stand-
ards and samples were added to the wells. Detection 

antibodies were next added, followed by 1 × streptavidin-
PE. Washing unbound proteins with Bio-Plex wash buffer 
was done in between each step. The plate was read on the 
Bio-Plex system (Bioplex 200 Luminex machine with Bio-
plex manager 6.1 software).

Enzyme‑linked immunosorbent assay (ELISA) measuring 
OVA‑specific IgA, IgG1, IgE
ELISA was used to detect OVA-specific antibody IgA, 
IgG1 [35] and IgE in heparin anticoagulated plasma. 
Briefly, ELISA plates were coated with 100 μL of OVA 
(10 μg/mL) in coating buffer overnight at 4 °C. Nonspe-
cific binding was blocked by incubating plates with 200 
μL of 10% fetal calf serum in 0.1 M PBS for two hours at 
room temperature. Then 100 μL of mouse serum sam-
ples diluted in blocking buffer were added and incubated 
overnight at 4 °C. Following that 100 μL of biotinylated 
anti-IgA/IgG1/IgE detecting antibody (0.5 − 2.5 μg/mL 
in PBST) was added to the plate and incubated at room 
temperature for 90 min. Wells were then incubated with 
streptavidin-HRP conjugated following ABTS substrate 
to develop color. Plates were washed five times with 
PBST in between each step. A stop solution was added to 
reduce variability when reading the plate at OD 405 nm.

Histopathological and pulmonary vascular permeability 
analysis
Mouse lungs were processed as described [29]. The right 
bronchus was ligated with a thread before the intratra-
cheal instillation of 1 mL of cold 4% paraformaldehyde 
into left lung in situ. After the left lung was inflated, the 
right lung was cut and stored at − 80 °C for further analy-
sis. The left lung was immersion fixed in 4% paraform-
aldehyde, processed, and embedded in paraffin in three 
pieces. The sections taken from all three pieces (5 µm 
thickness) were placed on poly-l-lysine coated glass slides 
and stained with hematoxylin and eosin for histopatho-
logical examination. Histopathology scoring was adopted 
from the previous description [40]. Briefly, the thickness 
of the bronchiolar and blood vessel walls, which we used 
to represent the thickness of the smooth muscle layer, 
was determined as the average distance between the 
inner edge to the outer edge of the wall at four different 
places on each sample. The inflammatory cells infiltrat-
ing out of the blood vessels and goblet cells along the 
bronchiolar epithelium were quantified. All lung sections 
were evaluated at 1000 × magnification and scored using 
a 4-point scale, as follows: 0, normal lung architecture; 1, 
minimal, a diffuse reaction in alveolar walls, congestion, 
1 − 10 immune-cells/field in peribronchiolar vascular 
space; 2, mild, 11 − 20 immune-cells/field, congestion, 
slightly thickened bronchiolar and blood vessel walls, 
some goblet cells along the bronchiolar epithelium with 
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their mucus product; 3, moderate, 21 − 30 immune-cells 
/field, congestion, thickened bronchiolar and blood vessel 
walls, light epithelial damage, moderate goblet cell hyper-
plasia; and 4, severe, ≥ 31 immune-cells /field, conges-
tion, very thickened bronchiolar and blood vessel walls, 
severe goblet cell hyperplasia with a lot of their mucus 
product, more than 10% of lung consolidated, epithelial 
damage.

To evaluate vascular permeability, we performed pro-
tein analysis on BAL fluids by Bradford protein assay [41] 
using a protein assay kit (Bio-Rad, Hercule, CA.) follow-
ing the manufacturer’s instructions.

Immuno‑gold electron microscopy for LSP1
After in situ intra-tracheal fixation, a piece of left mouse 
lung (1 × 2 mm2) was cut and fixed in 2% paraformalde-
hyde with 0.1% glutaraldehyde in 0.1 M sodium caco-
dylate buffer overnight at 4 °C. Next, the samples were 
rinsed in three changes of 0.1 M sodium cacodylate buffer 
at 4 °C. After being dehydrated in ethanol, the tissues 
were infiltrated in fresh white resin three times before 
being placed next to a Sylvania Blacklight Blue A448-
5151T8/BLB in a cryostat at − 4 °C for polymerization. 
The tissues were then sectioned 100 nm thickness on 
nickel grids. Immuno-gold staining procedure with LSP1 
antibody followed a protocol from our previous paper 
[29]. The tissues were imaged using a transmission elec-
tron microscope (Hitachi HT7700—XFlash 6T160, Ger-
many) operated at 80 kV.

Lung Myeloperoxidase (MPO) and Eosinophil Peroxidase 
Assay (EPO) quantification
MPO and EPO assay protocols were adapted from a pre-
vious protocol [29, 42]. Briefly, mouse lung samples were 
homogenized in 500 µl of 50 mM HEPES (Invitrogen, 
Burlington, ON, Canada) and then re-homogenized in 
500 µl of 0.5% cetyltrimethyl ammonium chloride solu-
tion. Diluted MPO standards from human leukocytes 
(Sigma-Aldrich, St. Louis, MO, USA) and mouse lung 
samples were added to 96-well plate. The MPO sub-
strate (3, 3’, 5, 5’-tetramethylbenzidine) was then added, 
followed by use of 1 M H2SO4 to terminate the reac-
tion. The plate was read at 450 nm OD using NOVOstar 
software (Bio-Rad). Total protein concentrations in each 
sample was quantified using a protein assay kit (Bio-Rad). 
The data are expressed as units of MPO per mg of lung 
protein.

To assess EPO levels, samples and EPO standards 
were added to 96-well plates. Stop solution was added 
after two-minute incubation with eosinophil peroxidase 
assay substrate solution (3 mM O-phenylenediamine). 
EPO levels were read at 490 nm OD using NOVOstar 
software (Bio-Rad). Total protein concentration in each 

sample was quantified using a protein assay kit (Bio-Rad). 
Data were expressed as the units of EPO per mg of lung 
protein.

LSP1, Gr1 and MPO immunohistochemical 
and immunofluorescent staining
The immunohistochemical staining protocol for LSP1 
and the immunofluorescent protocols for staining LSP1 
and Gr1, or LSP1 and MPO were modified from our pre-
vious report [29]. Briefly, sections were de-paraffinized, 
and treated to quench endogenous peroxidase activity 
and then for antigen retrieval. The non-specific binding 
in the lung sections was blocked with 1% BSA, followed 
by incubation with primary and appropriate secondary 
antibodies. Tissues were stained with 20 µg/ml rabbit 
anti-mouse LSP1 polyclonal antibody (Novus Biologi-
cal, Oakville, ON, Canada) followed by secondary poly-
clonal goat anti-rabbit immunoglobulins/horse radish 
peroxidase (HRP). In immunofluorescent staining for 
LSP1 and MPO, tissues were stained with 20 µg/ml rabbit 
anti-mouse LSP1 polyclonal antibody (Novus Biological, 
Oakville, ON, Canada) and 20 µg/ml purified polyclonal 
goat anti-human/mouse myeloperoxidase antibody (R&D 
Systems, Minneapolis, MN, USA.) followed by 1:100 
polyclonal goat anti-rabbit immunoglobulins IgG /con-
jugated Cy5 (Abcam, Toronto, ON, Canada) and 1:200 
polyclonal donkey anti-goat immunoglobulins/conju-
gated AF488 (Life technology, Waltham, MA., USA.), 
respectively. In LSP1 and Gr1 immunofluorescent stain-
ing, tissues were stained with 20 µg/ml rabbit anti-mouse 
LSP1 polyclonal antibody, reactive in mouse and human 
(Novus Biological, Oakville, ON, Canada), and purified 
rat anti-mouse Gr1 antibody (Ly-6G and Ly-6C) (BD 
Biosciences Pharminogen™, Mississauga, ON, Canada), 
followed by goat anti-rabbit IgG secondary antibody con-
jugated Alexa fluor 488 (Life technology, Waltham, MA., 
USA.), and chicken anti-rat IgG secondary antibody con-
jugated Alexa fluor 647 (Life technology, Waltham, MA., 
USA.), respectively.

We have used LSP-1 antibody in our previous stud-
ies and have even performed pre-absorption controls 
[29]. The negative controls included staining with iso-
type antibody matching control rabbit IgG (Novus Bio-
logical, Oakville, ON, Canada), rat IgG2bκ and goat 
IgG isotype control antibodies (Santa Cruz Biotechnol-
ogy, Mississauga, ON, Canada) instead of primary anti-
body for LSP1, Gr1 and MPO, respectively. Another 
negative control was the omission of primary antibody. 
Also, Lsp1−/− murine lungs, stained with LSP1 anti-
body, acted as an important negative control for the 
non-specific staining by the antibody (Additional file  1: 
Fig. S1). Tissues were incubated for 5 min in 0.33 µg/ml 
DAPI in immunofluorescent staining or methyl green in 
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immunohistochemical staining for staining the DNA of 
nuclei. For immunohistochemical staining, the color was 
developed by Vector® VIP peroxidase substrate kit for 
peroxidase (Vector Laboratories, Burlingame, CA, USA). 
For immunofluorescent staining, samples were imaged 
using a confocal scanning laser microscope (Leica TCS 
SP5 LSCM, Ontario, Canada) with a 63 × oil immersion 
objective lens.

LSP1, Gr1 and MPO immunohistochemical 
and immunofluorescent staining on human lungs
Normal and asthmatic human lungs in paraffin were 
obtained from the Department of Pathology in the Col-
lege of Medicine at the University of Saskatchewan (n = 3 
each group). Human lung sections were stained with 
rabbit anti-mouse LSP1 antibody (Novus Biological, 
Oakville, ON, Canada) followed by polyclonal goat anti-
rabbit immunoglobulins IgG conjugated Cy5 secondary 
antibody (1:100, Abcam, Toronto, ON, Canada). Human 
lung sections stained with bovine serum albumin or IgG 
rabbit isotype control instead of LSP1 primary antibody 
served as negative controls. Samples were imaged using 
Olympus IX83 inverted microscope with a total internal 
reflection fluorescence (TIRF) system under a 10 × , and 
60 × oil immersion objective lens. The controls are shown 
in Additional file 1: Fig. S2.

Western blot analyses for LSP1
Frozen mouse lungs were homogenized in T-PER Tissue 
Protein Extraction Reagent (Thermo Scientific, Rock-
ford, IL., USA) with protease and phosphatase inhibitor 
cocktails as described [43]. Total protein concentration in 
each sample was quantified using a protein assay kit (Bio-
Rad). The Western blot procedure has been reported 
previously [29, 44]. Densitometry quantification was 
performed using ImageJ software (from the National 
Institutes of Health and the Laboratory for Optical and 
Computational Instrumentation, University of Wiscon-
sin) to evaluate relative density of total LSP1 expression 
levels adjusted to beta-actin. Full blots are included in 
Additional file 1: Fig. S2.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
software version 5.04 (San Diego, CA, USA). Quantita-
tive results were expressed as mean ± SEM. The normal 
distribution of residuals was tested by histogram and 
Shapiro–Wilk test. Data were analyzed by ANOVA, fol-
lowed by Bonferroni multiple comparison test. Student 
t-test or Wilcoxon Signed Rank Test was used to compare 
two groups. The critical value of α was set to 0.05 as a sig-
nificant difference (two-tailed).

Results
LSP1 expression was increased in OVA‑induced murine 
asthma
Immunohistochemistry confirmed the expression of 
LSP1 in the macrophages, bronchiolar epithelium, airway 
epithelium, and vascular endothelium in normal healthy 
mouse lungs of WT mice (Fig.  1A). The LSP1 stain-
ing was more intense in these cells in the lungs of OVA 
challenged mice (Fig. 1B). The controls for the immuno-
histochemistry are included in Additional file 1: Fig. S1. 
Dual immunostaining for LSP-1 and MPO, as a marker 
for neutrophils [45] (although it may also be expressed in 
some monocytes) showed strong LSP1 expression in the 
plasma membrane and cytoplasm with weaker staining 
in the nuclei of neutrophils (Fig. 1C). Western blot data 
demonstrated higher levels of total LSP1 in the lungs of 
OVA-challenged WT mice compared to control mice 
(P < 0.05, Fig. 1D, E Additional file 1: Fig. S2).

Dual immune-fluorescence revealed LSP1 expression in 
all Gr1-positive granulocytes, which would include neu-
trophils and eosinophils (Fig.  2). Interestingly, the LSP1 
fluorescence intensity was stronger in Gr1 cells adhering 
to endothelium or alveoli than those cells in blood vessels 
(Fig. 2C, D). We also observed LPS1 staining in the mac-
rophages and lymphocytes in OVA-challenged mouse 
lungs (Fig.  2E). The negative immunohistochemical 
controls showed no staining (Additional file  1: Fig. S3). 
Immuno-gold staining with LSP1 antibody further con-
firmed the expression of LSP1 on the plasma membrane, 
cytoplasm, and nucleus of pulmonary intravascular mac-
rophages (Fig. 3A) and alveolar macrophages (Fig. 3B).

LSP1 deficiency reduced the histopathologic signs of lung 
inflammation and AHR in mouse
The data showed that control WT and Lsp1−/− mice 
responded similarly when exposed to increasing doses 
of methacholine. However, when compared to WT OVA 
mice, Lsp1−/− OVA mice showed significantly more 
decline in AHR when exposed to 25 mg/mL methacho-
line aerosols. The statistical linear regression further 
showed significant differences in the slopes of WT OVA 
mice (Y = -1.958*X—19.48) and Lsp1−/− OVA mice 
(Y = − 1.206*X—22.79) (Fig. 4).

The normal lung sections from WT (Fig.  5A) and 
Lsp1−/− mice (Fig.  5B) showed no inflammation and 
normal histology with thin alveolar septa, clear alveo-
lar spaces, and occasional alveolar macrophages. Lungs 
from OVA-challenged WT mice (Fig. 5C) showed more 
lung inflammation compared to Lsp1−/− OVA mouse 
lungs (Fig.  5D). The histological scoring as described in 
the methods revealed significantly more lung pathology 
in WT OVA mice compared to all other groups (Fig. 5E). 
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The BAL fluid of both genotypes of mice challenged with 
OVA had a significantly higher level of protein concentra-
tion compared to respective normal controls. There was 
no difference between OVA-treated WT and Lsp1−/− 
mice in protein concentration in BALF (Fig. 5F).

LSP1 deficiency dramatically down‑regulated 
inflammatory cells recruitment into inflamed lungs
Compared to OVA-challenged Lsp1−/− mice, WT 
OVA mice had significantly more leukocytes, including 

eosinophils, neutrophils, macrophages, and lymphocytes 
in BAL fluid (P < 0.05, n = 6 each group) (Fig.  6A − 6E; 
Additional file 1: Fig. S3). There were however no differ-
ences in peripheral blood leukocyte numbers between 
control and OVA-challenged as well as between WT 
and Lsp1−/− mice (Fig.  6F). The data also showed that 
OVA-challenged WT mice had higher levels of MPO 
and EPO compared to Lsp1−/− OVA mice (P < 0.05, 
n = 6 each group) (Fig.  7A, B). The Gr1 antibody stain-
ing showed significantly higher numbers of neutrophils 

Fig. 1  The increased expression of LSP1 in asthma mouse lungs. LSP-1 staining is observed in lung sections from control mouse A and 
OVA-challenged mouse lungs (B). The staining is observed in bronchiolar epithelium, and endothelium (arrows). High magnification insets in A and 
B show staining in alveolar macrophages (Magnification: 400 × and 1000 ×). C The representative confocal images of OVA mouse lung sections 
show staining for LSP-1 (green) and myeloperoxidase (MPO; red). The merged image show LSP-1 to be predominantly in neutrophils. Western blots 
D and the densitometry E for LSP1 (at about 52 kD) and β-actin (47 kD) showed that OVA mouse lungs have higher LSP1 levels than control mouse 
lungs. Data were expressed as mean ± SEM. Asterisk (*) indicates significant difference from wildtype control (P < 0.05, n = 3 each group). As alveolar 
space, Bv blood vessel, Br bronchiole, N Neutrophil, WT wildtype
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Fig. 2  Immunofluorescent staining LSP1 and granulocytes in mouse lungs. Mouse lung sections display a lack of LSP-1 staining (green) and 
granulocytes (red) in LSP-1−/− control (KO) and OVA-challenged mice (KO) compared to the wild-type control (WC) and wild-type OVA (WO) mice. 
As alveolar space, Bv blood vessel, Br bronchiole, E endothelium, G granulocytes, L lymphocytes, M macrophages, N neutrophils. n = 3 each group
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Fig. 3  The immuno-gold electron micrographs for the expression of LSP1 in the mouse lung. The transmission electron micrograph of an 
OVA-induced asthmatic WT mouse lung showed LSP1 staining in the plasma membrane, nucleus (N) and cytoplasm of an intravascular 
macrophage A and alveolar macrophage (red arrows, B), an endothelial cell (E, yellow arrows, A), and type I pneumocytes (p1, blue arrows, A). 
Original magnification 20,000 × 
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and eosinophils in the lungs of WT OVA mice compared 
to Lsp1−/− OVA mouse lungs (P < 0.05, n = 3 each group) 
(Fig. 2, and Fig. 7D). Also, Lsp1−/− OVA mice had a fewer 
MPO-labeled cells, likely neutrophils, recruited to the 
perivascular space than WT OVA mice (P < 0.05, n = 3 
each group) (Fig. 7C).

The absence of LSP1 gene significantly attenuated 
the levels of IL‑4, IL‑5, IL‑6, IL‑13, and CXCL1 in the BAL 
fluid as well as ovalbumin‑specific IgE in the serum 
of OVA‑challenged mice
Bioplex assays to measure the concentrations of IL-4, 
IL-5, IL-6, IL-13, CXCL1, IL-17, CCL11, and IFN-γ in 
BAL showed no difference in IL-17, CCL11, and IFN-γ 
between WT or Lsp1−/− mice treated with OVA. How-
ever, the concentrations of IL-4, IL-5, IL-6, IL-13, and 
CXCL1 were increased in the BAL of WT OVA mice 
compared to WT control mice as well as Lsp1−/− OVA 
mice (P < 0.05, n = 6 each group, Fig. 8).

ELISA data showed higher concentrations of oval-
bumin-specific IgE and IgG1 in serum of both WT and 
Lsp1−/− OVA-challenged mice compared to control 
mice (P < 0.05, n = 6 each group) (Fig.  9). The ovalbu-
min-specific IgE but not IgA concentration in serum 
of OVA-challenged WT mice was higher than that of 
Lsp1−/− OVA mice (P < 0.05, n = 6 each group; Fig. 9).

Finally, normal human lungs were reactive for LSP1 
in the endothelium, macrophages and the alveolar septa 
( Fig.  10A, B). Asthmatic lung tissues showed large 

numbers of inflammatory cells in alveolar and perivas-
cular spaces. These inflammatory cells including mac-
rophages and neutrophils were intensely positive for 
LSP1 in their cytoplasm and the plasma membrane 
(Fig. 10C–E).

Discussion
We provide new data on the role of LSP-1 in regulation 
of AHR and lung inflammation in a mouse model of 
asthma. The data show deficiency of LSP-1 reduces AHR 
and lung inflammation. In addition, we also reported 
increases in the expression of LSP1 in various resident 
and recruited cells in asthmatic lungs from the mice and 
humans. These data build on our previous report [29] 
and further establishes the role of LPS1 as an important 
regulator of inflammation in the lungs.

The OVA-induced murine model of asthma is an 
important tool in elucidating the mechanisms of acute 
asthma in humans such as recruitment of inflammatory 
cells and AHR [46–48]. The recruitment of inflamma-
tory cells such as eosinophils, neutrophils and lympho-
cytes into the lungs is an important feature of asthma 
[49] and we observed the same in our model based on 
BAL analyses, immunohistology and MPO assays. The 
deficiency of LSP1 led to significant reduction in the 
recruitment of neutrophils, eosinophils, lymphocytes 
and macrophages into the airways of OVA-treated mice 
compared to their WT counterparts. These data align 
with our previous findings of LSP1 deficiency being asso-
ciated with decreased inflammatory cell recruitment 
in an endotoxin-induced lung inflammation study [29]. 
LSP1 has been shown to regulate T-lymphocyte migra-
tion in rheumatoid arthritis [31]. Our finding of signifi-
cant reduction in lymphocyte numbers in lungs of LSP1 
deficient OVA-challenged mice may be of significance 
considering there are earlier studies linking the alveolar 
migration of T-lymphocytes in asthma [50, 51]. It has 
been previously reported that the increasing numbers 
of eosinophils, mast cells and neutrophils along with 
their enzymic products cause damage to lung tissues in 
and determine severity of asthma [52–54]. The recur-
ring episodes of eosinophilia and pulmonary migration 
of eosinophils in asthmatics lead to thickening of the 
sub-epithelial basement membrane, bronchial hyperre-
sponsiveness, and epithelial damage [53, 54]. Neutrophil 
production of mediators such as elastase, or neutrophil 
interactions with goblet cells leading to mucus accumu-
lation can narrow the airway. Degranulation of goblet 
cells depends on interactions with migrated neutrophils, 
and specifically their elastase activity and the expression 
of the adhesive molecules such as intercellular adhesion 
molecule-1 (ICAM-1), CD18, and CD11b in  vivo [55]. 
Therefore, reduced recruitment of inflammatory cells 

Fig. 4  Knocking-out LSP1 ameliorated AHR in the OVA-induced 
asthma mouse model. Statistical linear regression shows that the 
slopes of the AHR curves for the WT OVA mice (Y = − 1.958*X–19.48) 
and Lsp1−/− OVA mice (Y = − 1.206*X–22.79) are significant different 
(P < 0.05, n = 6 each group). It suggested that the AHR of Lsp1−/− 
OVA mice was improved compared with that of WT OVA mice. Data 
expressed as mean ± SEM at each methacholine dose
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observed in Lsp1−/− may lead to better physiological out-
comes in asthma. Previous data has indicated that lack 
of LSP1 may not affect MAPK cell signaling, but phos-
phorylation of LPS1 itself may lead to modulation of the 

actin cytoskeleton of neutrophils, facilitating their migra-
tion [29, 56, 57].

The inflammatory mediators in asthma have been 
extensively studied for their roles in cell recruitment and 

Fig. 5  The histopathological examination of mouse lungs with hematoxylin and eosin staining. Control wildtype A and Lsp1−/− mice B display 
normal appearing alveolar septa and alveoli. In comparison to Lsp1−/− OVA lungs (D), WT OVA mouse lungs C showed more inflammatory cell 
infiltration in alveolar septa, alveoli, and peri-bronchial and peri-vascular spaces. E Semi-quantitative scoring showed more severe pathology in WT 
OVA and Lsp1−/− OVA mice than in their respective control controls, and more in WT OVA mice, than in Lsp1−/− OVA mice. F The analysis of protein 
concentration in BAL fluid showed that both types of mice challenged with OVA had significantly higher protein concentration than control but 
there was no significant difference between WT and Lsp1−/− mice. As Alveolar space, Bv Blood vessel, Br Bronchiole, PVS Peribronchiolar vascular 
space, WT wildtype. Magnification: 400 × . Asterisk (*) indicates a significant difference (P < 0.05, n = 6 each group)
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cell activation [20, 21, 58]. We also quantified a number 
of cytokines in the BAL from the mice and found that 
WT OVA mice had significantly higher concentrations 
of IL-4, IL-5, IL-6, IL-13, and CXCL1 compared to the 
Lsp1−/− mice. There could be multiple reasons for this 
observation. The reduced migration of inflammatory 
cells, which are major sources of cytokines, in OVA-
challenged Lsp1−/− mice would have contributed to the 
lower levels of selected cytokines. The absence of LSP1 
expression, which can act as a substrate for MAPK, [56] 
in lymphocytes may attenuate cytokine production by T 
lymphocytes (IL-4, IL-5, IL-13), leading to reduced eosin-
ophil recruitment and IgE production by B plasma cell. It 
is well-known that IL-4, IL-5, and IL-13 cytokines pro-
duced by CD4+ natural killer T cells and CD4+ T MHCII-
restricted cells enhance eosinophilia and increase the 
severity of asthma [59, 60]. IL-13 stimulates the epithe-
lium in the airways [61]. The airway epithelium also pro-
duces IL-5, IL-2, TGF-β, IL-6 and IL-10, which promote 
B cell differentiation into plasma cells to produce IgA [62, 
63]. These cytokines also cause the metaplasia of goblet 
cells and alterations in epithelial-mesenchymal signal-
ing resulting in sub-epithelial fibrosis or smooth muscle 
hyperplasia [64]. Eosinophils, which were reduced in 
numbers in Lsp1−/− asthmatic mice, produce IL-16 to 

attract CD4+ T cell in asthma [65]. Previous studies have 
shown that binding of IgA, IgG, and IgE to their recep-
tors on eosinophils activates and degranulates them [62, 
63]. We found higher levels of OVA-specific IgG but not 
IgA in the serum of WT asthmatic mice compared to 
Lsp1−/− OVA mice. Taken together, we believe that LSP1 
deficiency disrupts recruitment of inflammatory cells and 
production of cytokines and thereby alleviates physiolog-
ical and inflammatory outcomes in our murine model of 
asthma.

The AHR to methacholine is a reliable method to eval-
uate airway function and has been shown to correlate 
well with the invasive methods that are considered gold 
standard for measuring lung mechanics [66] [67]. Along 
with diminished recruitment of inflammatory cells and 
expression of certain cytokines, there was reduction in 
AHR, one of our major physiological measurements, in 
Lsp1−/− asthmatic mice. Our experiments don’t directly 
address the underlying mechanisms through which LSP-1 
influences AHR, but the association between AHR and 
inflammation has also not yet been fully resolved [68]. 
There however are data to show that the asthma-related 
AHR is an outcome of excessive broncho-constriction 
due to hypertrophy or hyperplasia of bronchiolar smooth 
muscles with repeated episodes of eosinophil-related 

Fig. 6  Total and differential leukocyte counts in bronchoalveolar lavage (BAL) fluid and peripheral blood. LSP1-knockout attenuates 
immunoinflammatory cell recruitment into the alveolar space in the OVA-induced asthma mouse model (A–E). There were not any statistically 
significant differences between any groups in terms of peripheral blood leukocyte numbers (F). Data were expressed as mean ± SEM. Asterisk (*) 
indicates a significant difference (P < 0.05, n = 6 each group)
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airway inflammation [68, 69] [70] [71]. We believe that 
reduced lung inflammation in Lsp1−/− mice may have 
led to improvement in airflow into the lungs by reducing 
AHR.

Lastly, to set the stage for the next set of experiments 
focused on human cells and tissues, we evaluated expres-
sion of LSP-1 in normal and asthmatic human lungs. 
The increase in LSP1 expression on various resident and 
recruited cells in the asthmatic lungs alludes to a poten-
tial for this protein in the pathogenesis of asthma. These 
data are similar to the increase in LSP1 staining in lung 
samples from sepsis patients [29]. The next set of studies 

will focus on the role of LSP1 in regulating the function 
of human immune cells.

Conclusions
The study provides new data that deficiency of LSP-1 
reduces lung inflammation as well as AHR in a murine 
model of OVA-induced asthma. LSP-1 deficiency likely 
disrupts the fundamental inflammatory process of 
recruitment of neutrophils and eosinophils and the asso-
ciated network of cytokines to reduce inflammation and 
the physiological outcome of increased AHR. These data 
are in line with the role of LSP-1 in inflammatory cell 
recruitment in endotoxin-induced lung inflammation.

Fig. 7  The quantification of neutrophils and eosinophils left in mouse lungs after bronchoalveolar lavage. LSP1 deficiency reduced 
asthma-associated neutrophil and eosinophil migration into the lungs. A, B Mouse lung lysates were analyzed using MPO and EPO assays as 
surrogate measures for the numbers of neutrophils and eosinophils, respectively, remaining in the lung after bronchoalveolar lavage (n = 6 each 
group). C, D We counted the number of neutrophils and granulocytes in MPO and Gr1 immunofluorescent-stained mouse lungs, respectively (n = 3 
each group). Data were expressed as mean ± SEM. Asterisk (*) indicates a significant difference (P < 0.05)
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Fig. 8  The quantification of cytokines and chemokines in BAL fluid using Bioplex assay. LSP1−/− OVA mice had significantly lower BAL 
concentrations of IL-4, IL-5, IL-6, IL-13, and CXCL1, but not of IL-17, CCL11, or IFN-γ compared to wildtype OVA mice. Data were expressed as 
mean ± SEM. Asterisk (*) indicates a significant difference (P < 0.05, n = 6 each group). IL interleukin, CXCL1 keratinocyte-derived chemokine, IFN-γ 
interferon γ

Fig. 9  The impact of LSP1 expression on OVA-specific IgE, IgG1, and IgA levels in serum of asthmatic mice. Wildtype OVA mice had statistically 
significant increases inOVA-specific IgE, IgG1, IgA levels compared with WT control mice. The levels of OVA-specific IgE found in WT OVA mice was 
significantly higher than that in Lsp1−/− OVA mice. Data were expressed as mean ± SEM. Asterisk (*) indicates significant difference (P < 0.05, n = 6 
each group)
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