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Protein interaction networks provide 
insight into fetal origins of chronic obstructive 
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Abstract 

Background:  Chronic obstructive pulmonary disease (COPD) is a leading cause of death in adults that may have 
origins in early lung development. It is a complex disease, influenced by multiple factors including genetic variants 
and environmental factors. Maternal smoking during pregnancy may influence the risk for diseases during adulthood, 
potentially through epigenetic modifications including methylation.

Methods:  In this work, we explore the fetal origins of COPD by utilizing lung DNA methylation marks associated 
with in utero smoke (IUS) exposure, and evaluate the network relationships between methylomic and transcriptomic 
signatures associated with adult lung tissue from former smokers with and without COPD. To identify potential patho-
biological mechanisms that may link fetal lung, smoke exposure and adult lung disease, we study the interactions 
(physical and functional) of identified genes using protein–protein interaction networks.

Results:  We build IUS-exposure and COPD modules, which identify connected subnetworks linking fetal lung smoke 
exposure to adult COPD. Studying the relationships and connectivity among the different modules for fetal smoke 
exposure and adult COPD, we identify enriched pathways, including the AGE-RAGE and focal adhesion pathways.

Conclusions:  The modules identified in our analysis add new and potentially important insights to understanding 
the early life molecular perturbations related to the pathogenesis of COPD. We identify AGE-RAGE and focal adhesion 
as two biologically plausible pathways that may reveal lung developmental contributions to COPD. We were not only 
able to identify meaningful modules but were also able to study interconnections between smoke exposure and lung 
disease, augmenting our knowledge about the fetal origins of COPD.
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Background
Chronic obstructive pulmonary disease (COPD) is a 
leading cause of death worldwide [1–3] and may be diag-
nosed in adults reporting a history of childhood asthma 

and maternal smoke exposure [4–8]. It is a complex dis-
ease, influenced by multiple factors including genetic 
variants, and environmental factors, including exposure 
to maternal smoking in early fetal life and personal smok-
ing in later life. Maternal smoking during pregnancy may 
influence the risk for diseases during adulthood, poten-
tially through epigenetic modifications including meth-
ylation [9–13]. Primary prevention of adult lung diseases 
includes identifying predisposing molecular factors [14, 
15].
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Recent observations support that genes associated with 
complex traits have protein products that tend to interact 
with each other more frequently than expected by chance 
[16–22]. Therefore, a single gene does not function as a 
single activator for a disease, but the interplay of multi-
ple genes will eventually lead to a pathogenesis [22–24, 
40]. Network-based approaches can be used to identify 
these groups of genes. Genes associated with an exposure 
or disease may form connected subnetworks (exposure 
or disease modules containing usually 10 to 100 genes) 
within the larger protein–protein interaction network 
(PPI). Furthermore, genes in close proximity in the PPI 
annotate to similar functional pathways. Network-based 
approaches for studying complex diseases have identi-
fied COPD disease modules [25–33]. Most approaches 
use methods which are based on seed genes, sets of 5–30 
genes associated with a disease such as COPD that are 
used as a starting set, with additional genes added to the 
module iteratively based on the topology of the network 
[25, 27, 30, 34]. Other methods use similarity measures 
between transcriptomic data [26, 28, 29, 33] and most 
studies highlight a single module only. However, some 
identify additional modules associated with respiratory 
diseases [25, 27, 29] and analyze the interactions and 
linking molecular mechanisms between the different 
modules. Typically, only one omic data type has been 
used, usually transcriptomic data.

In this current work, to identify network modules 
related to IUS-exposure and adult lung disease, we com-
pute significantly connected components using DNA 
methylation and gene expression association information 
from lung tissue and a functional PPI [35]. For fetal and 
adult lung methylation and adult lung expression data, 
genes were selected based on at least nominal statistical 
thresholds for association with IUS-exposure and COPD, 
respectively.

We identified network modules and studied the con-
nectivity between the fetal lung DNA methylation and 
COPD DNA methylation and expression modules. Lev-
eraging these modules, we highlight biological mecha-
nisms and common pathways, including the AGE-RAGE 
pathway, which may provide molecular links between 
lung development and COPD.

Materials and methods
Data
We used published results from a fetal lung DNA meth-
ylation data set and COPD DNA methylation and expres-
sion data sets [36–38].

Fetal lung
The fetal lung DNA samples included 78 samples that 
passed the quality control measures [36]. Methylation in 

smoke-exposed was compared to unexposed fetal lung 
samples and were considered nominally significant at a 
p-value cut off of 0.05. The fetal lung DNA samples were 
isolated from discarded tissue from 8–18  weeks of ges-
tation. The samples were anonymized at study entry at 
the Laboratory of Developmental Biology, University of 
Washington, Seattle, WA, USA.

Genome-wide methylation assay was performed using 
750  ng of bisulfite-treated DNA per sample using the 
Infinium HumanMethylation450 BeadChip array (Illu-
mina, San Diego, CA, USA), according to manufac-
turer’s recommended protocol. Data were available for 
gestational age, fetal sex, and cotinine levels. Sex was 
verified using X chromosome methylation. IUS expo-
sure was inferred by measuring placental cotinine con-
centrations. Exposure was treated as a continuous and 
dichotomous variable, with levels of cotinine ≤ 7.5  ng/g 
considered as unexposed (control group) and levels of 
cotinine > 7.5  ng/g as exposed. Published results were 
used from site based differential methylation analysis 
from limma (version 3.37.7) [39] adjusting for age, sex, 
sample plate, and sentrix position. DM CpG sites were 
nominally significant at a p-value cut off of 0.05 and 
mapped to genes using Human Genome build: GRCh37/
hg19 annotation.

COPD
Genome-wide methylation assay was performed using 
750  ng of bisulfite-treated DNA per sample using the 
Infinium HumanMethylation450 BeadChip array (Illu-
mina, San Diego, CA, USA) and gene expression was 
assayed using the Illumina HumanHT-12 Bead Chips 
[37, 38]. CpG sites were mapped to genes using Human 
Genome build: GRCh37/hg19 annotation.

The study included lung tissue samples from 114 COPD 
cases (avg. age 63.4, 60% males, all former smokers, quit 
smoking 84.7  months before on avg., FEV 1% predicted 
26.3 avg.) and 46 control smokers with normal lung func-
tion (avg. age 65.3, 29% males, all former smokers, quit 
smoking 181  months before on avg., FEV 1% predicted 
98.1 avg.).

Published results were used fromsite based differen-
tial methylation and gene-based expression analyses 
performed using limma (version 3.37.7) [39]. Previously 
published results [37, 38] were included at a p-value cut 
off of 0.05. CpG sites were mapped to genes using Human 
Genome build: GRCh37/hg19 annotation.

Protein–protein interaction network
In order to find meaningful connected components, a 
PPI of decent size and non-sparsity is required. The pre-
dictive power of the connectivity significance increases 
as the PPI becomes more complete [41]. We used the 
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HumanNet-FN [35] PPI (downloaded April 2019 https://​
www.​inetb​io.​org/​human​net) which includes co-func-
tional links (given by co-essentiality, co-expression, path-
way database, protein domain profile associations, gene 
neighborhood, and phylogenetic profile association) and 
protein–protein interactions (given by high-throughput 
assays and literature curated interactions). The network 
consists of 17,247 genes, which are connected by 371,502 
undirected edges (where 118,012 are physical, 213,003 
functional, and 39,587 are physical and functional inter-
actions). The largest connected component (LCC) of the 
PPI consists of 17,191 genes which are linked to each 
other by 371,464 edges.

An overview of the data sets and their LCCs in the PPI 
can be found in Table 1.

Computation of the modules
The method used here is an extension of the work of 
Wang et  al [42] which selects all nominally-significant 
genes (p-value < 0.05) and then uses fold change values 
for ranking genes. The framework identifies exposure or 
disease modules by agglomerating genes based on their 
statistical significance within their respective study.

Our approach here is similar, except that it considers 
all genes of the data set (not only nominally-significant 
genes), ranking them according to their p-value (rather 
than fold change), from the most significant to the least 
significant. The remaining steps are the same as in [42]. 
First, different thresholds for the p-values are given. 
Next, for each threshold the LCC is identified which is 
given by all genes which have a p-value lower than the 
threshold. With increasing p-value thresholds the sizes of 
the LCCs increase. The sizes of the LCCs are then com-
pared against random expectation and a z-score is com-
puted to indicate their significance. Thus, we obtain a 
p-value threshold vs. z-score plot which is used to deter-
mine the module. The module is the LCC with a z-score 
above 1.6 and of a size which is in general considered 
to be a reasonable size for a module (30–100) contain-
ing genes which have relatively small p-values. If several 
LCCs match these criteria we choose the one with the 
highest z-score. Thus, the method ensures that the genes 
which can be most strongly associated with a phenotype 
of interest are preferentially added to the module while 
maintaining significant module connectivity. We provide 
a detailed method description in Additional file  1 (sec-
tion “Computation of the modules”).

We identified one module for each methylation set 
(fetal lung and adult COPD) and one for the COPD gene 
expression set. Additionally, we computed two modules 
for the 502 genes found in the fetal lung and COPD sets. 
Here, a module was computed using the p-values given 
by the fetal lung methylation data set and another one 

was computed using the p-values given by the COPD 
methylation data set (Additional file  1 section “Compu-
tation of the modules using genes which are significantly 
enriched in both methylation data sets” and “Modules 
computed using genes which are significantly enriched in 
both methylation data sets”).

Robustness
To study the topological robustness of the modules, we 
evaluated whether highlighted module genes form sig-
nificantly connected components in five different PPIs 
(BioGRID [43], STRING [44], Hint [45], PPI2016 [46], 
and BioPlex [47]). To do so, we first identify the LCC 
given by the modules’ genes in the other PPIs and next 
compared this size against random expectation. All mod-
ules form significantly connected component in all five 
PPIs except for the COPD methylation module in the 
STRING PPI. These results show that the modules (and 
the method) are robust irrespective of the choice of PPI 
(Additional file  1 section “Robustness” and Additional 
file 2: Table S1).

Genes associated to COPD
In order to identify genes previously associated with 
COPD we used the database DisGeNet [48]. We entered 
each gene individually and filtered the “Summary of 
Gene Disease Association’s” results for “Disease Classes” 
containing “Respiratory Tract Diseases”.

Enrichment analyses
We performed enrichment analyses on different sets of 
genes given by the computed modules and their con-
nections to the other modules. For all analyses we used 
g:Profiler [49] (accessed May 2020) using the 17,190 
genes in the LCC in the HumanNet-FN (Additional 
file  3: Table  S2) as background and the default parame-
ters otherwise. We considered a pathway as significantly 
enriched with a p-value < 0.05. We performed an enrich-
ment analysis for each set of genes in each module and 
for each set of interactors.

Results
We used published results and compared 5175 genes 
which were annotated to nominally differentially methyl-
ated CpG sites in the fetal lung data set [36] to the 1217 
genes that were differentially methylated CpG sites and 
204 genes differentially expressed in the adult COPD data 
set [37, 38] (Table 1 and Fig. 1a). Two genes are differen-
tially expressed and differentially methylated in all three 
data sets: ODF3L1 and DTX1.

We used the HumanNet-FN PPI [35] (downloaded 
April 2019) which includes co-functional links and pro-
tein–protein interactions. The LCC given by the genes in 

https://www.inetbio.org/humannet
https://www.inetbio.org/humannet
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the fetal lung data set consists of more than 4,000 genes 
and the LCC given by the genes in the COPD methylation 
data set consists of more than 700 genes (Table 1). Most 
published disease modules consist of 10 to 100 genes [34, 
41, 50, 51] and we therefore computed connected com-
ponents of smaller size for further analyses.

We will first introduce results from the fetal and adult 
lung methylation and expression modules (see section 
“Modules”), and the interactors between these modules 
(see section “Interactors linking IUS-exposure and dis-
ease modules”).

Modules
The set of 5175 genes in the fetal lung methylation data 
set produced an IUS-exposure module of 50 genes 
(Table 2). We found that 7 of the 50 genes (14%) (hyper-
geometric p-value = 0.04) have been related to COPD 
(Fig. 1b, Additional file 1 section “Fetal lung methylation 
module” and Table 3).

All results, including the Gene Disease Association 
score can be found in the Table 3 and Additional file 4: 
Table  S3. Additionally, we looked for associations of 
genes to COPD according to GWAS study using the 
study of Sakornsakolpat et al. [52].

The COPD disease module given by the 1217 genes in 
the COPD methylation data set (adj. P-value < 0.05) [37] 
consists of 37 genes (Table  2), and 4 (11%) have prior 
associations to COPD (hypergeometric p-value = 0.15) 
(Fig. 1c, Additional file 1 section “COPD methylation dis-
ease module” and Table 3).

There are 204 genes significantly differentially 
expressed in the adult COPD gene expression data set 
(adj. p-value < 0.05) [37] and the resulting disease mod-
ule consists of 64 genes (Fig. 1d, Table 2). Twelve genes 
of the module (19%) have prior associations with COPD 
(hypergeometric p-value = 0.001) (Additional file  1 sec-
tion “COPD expression module” and Table 3).

Interactors linking exposure and disease modules
The three modules support genomic links between 
IUS-exposure and COPD in adults. The methyla-
tion modules for fetal and adult lung do not overlap 

and the fetal lung methylation module and the COPD 
expression module have only one gene in common 
(BCL11A). Therefore, we focused using our method to 
explore genes connecting the fetal lung IUS exposure 
and adult COPD PPI modules. Both COPD disease 
modules contain genes which are directly connected 
to genes of the fetal lung methylation module in the 
HumanNet-FN (Fig. 1e). The number of edges connect-
ing these modules is higher than expected by chance 
(p-value < 1e−05) (Additional file  1 section “Con-
nectivity between the modules”); most edges (196 out 
of 286, 69%) connecting the modules with each other 
are functional. In total there are 66 genes which con-
nect one module with another and we call these genes 
interactors. Twenty-seven interactors are members of 
the fetal lung methylation module, of which 13 connect 
to the COPD methylation disease module and 23 to the 
COPD expression disease module (9 genes are con-
nected to both modules) (Table 2). Fifteen genes of the 
COPD methylation disease module and 24 genes of the 
COPD expression disease module connect to the fetal 
lung methylation module (Figs. 1e and 3a, Tables 3 and 
Additional file  3: S2). Genes with prior known asso-
ciations to COPD in the literature are well connected 
(z-score = 8.1, p-value = 1.4e−5) (Additional file 1 sec-
tion “Connectivity of the genes which can be associ-
ated to asthma and/or COPD”), especially between 
the three modules, with predominant functional edges 
(hypergeometric p-value = 1.4e−05) (Fig.  2). There are 
in total 21 genes in the modules which can be associ-
ated with COPD. Not all of them are connected to each 
other, but the largest connected component contains 
13 genes (Table  3). Half of the 24 interactors of the 
COPD expression module which are connected to the 
fetal lung methylation module are up-regulated while 
the other half is down-regulated. Sixteen out of the 23 
interactors in the COPD expression module connected 
to the COPD methylation module are down-regulated 
(Additional file 5: Table S4).

The interactors, as linking genes, are of potential inter-
est since we hypothesize that these may capture genomic 
trajectories between perturbations in lung tissue during 

Fig. 1  a Venn diagram of the three data sets: The Venn diagram shows the numbers of the genes which are mapped to nominally differentially 
methylated CpG sites or significantly differentially expressed in the data set and their overlap. For b–e The sizes of the genes relate to their degree 
within this module. Genes that are associated with COPD are represented as a square. Genes that have a heavier border connect to other modules. 
The blue edges represent physical interactions, the red edges functional interactions, and green edges represent both. b Fetal lung methylation 
module: The module consists of 50 significant genes from the fetal lung methylation data set. c COPD expression disease module: The module 
consists of 64 significant genes from the COPD gene expression data set. d COPD methylation disease module: The module consists of 37 
significant genes from the COPD methylation data set. e The three modules form a connected component in the HumanNet-FN: The fetal lung 
methylation module (pink), the COPD expression disease module (turquoise), and the COPD methylation disease module (yellow) form one large 
connected component. The sizes of the nodes correspond to their degree within the shown component

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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fetal development and COPD in adulthood. Therefore, 
the 66 interactor genes were subjected to pathway 
enrichment analysis to identify perturbed pathways that 
may mark susceptibility to COPD.

Enrichment analysis of the interactors
We performed enrichment analyses on seven gene 
sets given by the modules and their connections 
(Figs.  1e, 3a), using KEGG [53], and the LCC of the 

Table 1  For each data set we show the number of genes which could be mapped to nominally differentially methylated CpG sites, or 
which are differentially expressed

“Data set”: Which data set is considered.”# Genes, which could be mapped to nominally differentially methylated CpG sites”: How many genes could be mapped to 
nominally differentially methylated CpG sites or are significantly differentially expressed.”# Genes, which could be mapped to nominally differentially methylated CpG 
sites, found in the PPI”: How many of the significant genes of the set can be found in the protein protein interaction network HumanNet-FN.”Size of the LCC given 
by genes, which could be mapped to nominally differentially methylated CpG sites”: Size of the largest connected component in the HumanNet-FN given by the 
significant genes

Data set # Genes, which could be mapped to 
nominally differentially methylated 
CpG sites

# Genes, which could be mapped to 
nominally differentially methylated 
CpG sites, found in the PPI

Size of the LCC given by genes, 
which could be mapped to nominally 
differentially methylated CpG sites

Fetal lung methylation 5175 4599 4297

COPD methylation 1217 1037 721

COPD expression 204 181 64

Table 2  List of genes for each module

The second column gives the name of the module the genes are member of, whereas the third column gives the name of the module the genes connect to. If the 
third column is “No module” then those genes are not interactors

Genes Name of module the 
interactors are member of

Name of module the 
interactors connect to

AGTR1, AKAP5, ARNT2, JAK2, KIF11, MAPK8, MKNK1, MTA1, NRG2, PRKAR1B, PTPRK, SPI1, 
SPRY2, TRIP6

Fetal lung methylation module COPD methylation module

MAPK8, MKNK1, NRG2, AGTR1, CRADD, BRCA1, VAV1, JAK2, MTA1, PRKAR1B, UBE2I, 
NUP214, GRM1, DLGAP2, EEF1A2, AFAP1, MVP, TRIP6, PTPRK, EPS15, KIAA1949, BCL11A, 
KIFC1

Fetal lung methylation module COPD expression module

POLR3K, VPS52, CBR1, BCL11B, OBSCN, RDH10, AP2A2, GAK, ZFPM1, ZNRD1, NUP155, 
IL1RN, GLE1, DNMT3B, POR, CYP2S1, TRIP13, CNRIP1, CCR5, MDK

Fetal lung methylation module No module

ATF7, CAMK2A, CEBPA, CHRM1, DAPK1, DAPK2, EBF1, EGFR, ERBB2, ETS1, MAP3K6, PRKCH, 
PXN, RUNX1T1, ULK2

COPD methylation module Fetal lung methylation module

CEBPA, CHRM1, DAPK1, EBF1, EGFR, ERBB2, ETS1, MAP3K6, PRKCH, PXN, ULK2, EPHB2, 
ITGA9, KALRN, MCF2L, PARVA, PLXNB1, RAB27A, RAB34, RAB8B, RASL12, RHOB, SORBS1

COPD methylation module COPD expression module

TRIM71, EBF3, DICER1, MYRIP, TLX1, ARHGEF17, MATN1, LAMB2, ITGB4, RNASE1 COPD methylation module No module

BLK, RASD2, CDC42, RAP1B, EDNRB, HNRNPA1, TPM3, EEF1B2, EDN1, VEGFA, BCL2, CIT, 
HMGB1, SPCS2, RAC1, ABL1, HSP90AA1, OAZ1, PGGT1B, CD24, ACTA1, LIMS1, PDPK1

COPD expression module COPD methylation module

CDC42, NQO1, RAP1B, CD79A, ABL1, EDN1, HSP90AA1, PPP3CB, BCL2, VEGFA, ACTA1, 
SUMO2, PPIA, PDPK1, RAC1, HSPA5, DLG2, EEF1B2, NNT, FCRL2, UBQLN1, BLK, POU2AF1, 
BCL11A

COPD expression module Fetal lung methylation module

TMEM176B, S100A10, BCLAF1, SEPT6, SYNE1, PGK1, HSPA13, CCT6P1, RBM33, MS4A1, PPIB, 
SKP2, ELMO1, SLC25A12, GAS2, PPIL3, LOC440563, FCGR2B, FNTA, TAGLN2, PTCD1, PLA2G7, 
VDAC1, BPGM, GAD1, DNAJB14, SERPINE2, PI4K2B, RPSA

COPD expression module No module

Table 3  Each list contains the genes within the corresponding module if they can be associated to COPD according to the database 
DisGeNet or GWAS study

Module List of genes which can be associated to COPD

Fetal lung methylation module AKAP5, CCR5, EEF1A2, HDAC3, IL1RN, MAPK8, MDK

COPD methylation module EGFR, SORBS1, DAPK1, EPHB2, PARVA

COPD expression module BCL2, DLG2, EDN1, EDNRB, GAD1, HMGB1, NQO1, 
PPIA, SERPINE2, VDAC1, VEGFA
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HumanNet-FN as background.The results of the enrich-
ment analyses can be found in Fig.  3 and 4, as well as 
in Additional file 6: Table S5. First, we performed three 
enrichment analyses using the whole set of genes of 
each module, including the fetal lung methylation 
module (50 genes), the COPD methylation module (37 
genes), and the COPD expression module (64 genes) 
(Table 2).

Next, we performed an enrichment analysis for each 
set of interactors: the set of genes from the fetal lung 
methylation module which are connected to the COPD 
methylation module (14 genes) and the set of genes 
from the fetal lung methylation module which are con-
nected to the COPD expression module (23 genes), the 
set of genes from the COPD methylation module which 
are connected to the fetal lung methylation module (15 
genes), and the genes from the COPD expression mod-
ule which are connected to the fetal lung methylation 
module (24 genes).

All significantly enriched pathways (adj. p-value < 0.05) 
for at least three sets of the genes defined above are listed in 
the table in Fig. 3b (see Additional file 6: Table S5 for more 
details). The pathway which was significantly enriched for 
most gene sets (four out of seven gene sets) was the AGE-
RAGE pathway, followed by the Focal-Adhesion pathway.

Discussion
COPD is a complex multi-factorial disease with no 
known cure. Understanding early life susceptibility fac-
tors, including epigenetic factors, may lead to preven-
tative interventions [54–56]. Many studies of COPD 
susceptibility have focused on genetic factors, but envi-
ronmental perturbations starting in utero may contrib-
ute to fetal programming and set epigenetic trajectories 
of lung disease [57]. In utero exposures such as cigarette 
smoking and perturbed lung growth and development 
are associated with COPD, but there are limited insights 
into the molecular links between early exposures, lung 
growth and adult disease. It is likely that in utero expo-
sures do not impact single genes but networks of genes. 
Using protein–protein interaction networks to study 
links between smoking-related perturbations during 
lung development and COPD is of clinical significance as 
identified genes and networks may provide insights into 
biomarkers and targets for primary prevention of adult 
lung disease [58]. Prior observations linking in utero 
tobacco smoke with COPD support fetal programming, 
but mechanisms are not fully understood [59]. Here, we 
focus on fetal lung methylation marks associated with 
IUS exposure which may link to molecular signatures to 
adult COPD.

Simple intersections of DNA methylation associations 
may not reveal links between early life exposures and 

lung disease [36]. Here, we applied a protein–protein 
interaction network-based approach using published 
results to generate modules for fetal and adult lung tissue 
to link IUS-exposure and COPD susceptibility. However, 
the module characteristics are highly dependent on the 
completeness of the PPI and the data sets used. We used 
available PPIs to verify our results, but future work must 
include functional validation of network findings.

COPD heterogeneity and cellular heterogeneity in lung 
tissues may impact the modules characterized using bulk 
genomic results. The COPD lung tissue cohort has lim-
ited information regarding COPD subtypes (emphysema 
vs chronic bronchitis) [38]. For this manuscript, we lever-
age published results for COPD based on a spirometric 
diagnosis. Future work needs to consider subtype specific 
molecular associations and network models. Longitudi-
nal birth cohorts are limited for addressing links between 
fetal exposures impacting lung tissue and adult lung dis-
ease, as molecular markers are generally studied using 
cord blood not fetal lung tissue. Leveraging life-course 
genomic data is also an important direction for future 
investigation.

Fig. 2  The subnetwork of the connected component in Fig. 1e 
given by all genes which can be associated with COPD. Using the 
subnetwork given by the three modules (Fig. 1e) we only kept the 
genes, and their interactions, which can be associated to COPD by 
DisGeNet or GWAS studies. Pink genes are members of the fetal 
lung methylation module, yellow genes are members of the COPD 
methylation disease module and turquoise genes are members 
of the COPD expression disease module. The blue vs. red, edges 
represent physical vs. functional, interactions, whereas green edges 
represent both
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There are only two genes which are significantly dif-
ferentially expressed or methylated in all three data sets: 
ODF3L1 (Outer Dense Fiber Of Sperm Tails 3 Like 1) 
and DTX1 (Deltex E3 Ubiquitin Ligase 1). ODF3L1 has 
not been studied extensively beyond associations with 
testis but as a class ODF proteins have been implicated 
in cytoskeleton pathways and cilia. DTX1 has been impli-
cated in Notch signaling [60] and is key ubiquitin E3 
ligase implicated in multiple pathways including develop-
ment [61].

The omnigenic model distinguishes between core 
and peripheral genes, where core genes can be strongly 
associated with the studied phenotypes and the periph-
eral genes have a small effect on disease risk. Therefore, 
to understand complex diseases, additional information 
beyond genetic variation needs to be integrated into the 
model. To account for this, we computed COPD modules 
using transcriptomics and epigenetic information. Addi-
tionally, we identified a module associated to leveraged 
data from IUS exposure of fetal lung. Using these three 
modules and their adjacency within the PPI we were able 
to study more than just the most significant genetic asso-
ciations to COPD.

In order to identify “core” genes [23] we first identified 
a module [42] for each data set. Interestingly, the three 
modules do not have any genes in common, except for 
BCL11A. Thus, each module captures the associated 
phenotype individually [23]. To evaluate a potential link 
between IUS perturbed lung development and COPD 
we analyzed the connection of the fetal lung methyla-
tion module to the two COPD disease modules. COPD 
related genes connecting the modules are potentially 
functionally related through diverse aspects such as air-
way remodeling, immune response, and inflammation. 
The number of interactions between the three mod-
ules is higher than expected by chance suggesting that 

the perturbation of the genes in one module potentially 
impacts the functionality of the genes within the other 
modules. Most edges connecting the modules with each 
other are functional not physical interactions between 
proteins. Interestingly, 16 of the 23 interactors in the 
COPD expression module which are connected to the 
COPD methylation module are down-regulated, suggest-
ing in most cases methylation represses transcription.

Pathophysiological mechanisms that may link fetal 
smoke exposure and adult COPD may be highlighted 
by the genes that connect the fetal lung methylation 
exposure module to the COPD modules. For example, 
MAPK8 (a member of the fetal lung module which has 
connections to both COPD modules) which encodes 
the Mitogen-Activated protein kinase 8 (MAPK8) can 
be stimulated by environmental factors. Once MAPK8 
is activated, it may target transcription factors that are 
involved in immediate early response [62–64]. EGFR, 
found in the COPD methylation module, encodes a 
transmembrane protein implicated in inflammation and 
airway remodeling [65, 66]. When activated, it mediates 
a signal transduction through the MAPK and JNK path-
ways. BCL2, a member of the COPD expression module, 
localizes to mitochondria [67] and regulates apoptosis 
through the release of cytochrome C and reactive oxygen 
species [68]. The BCL2 pathway can be regulated through 
the JNK pathway by phosphorylation and may impact 
immune responses [69–72]. BCL2 protein is increased 
in lung lymphocytes from smokers, which may influ-
ence chronic inflammation in COPD [73], and has been 
identified in COPD GWAS [74]. The gene BCL2 has been 
identified as a key functional interactor with other COPD 
GWAS genes [37] through regulation of apoptosis and 
mitochondrial pathways [73, 75, 76]. While MAPK8 and 
EGFR are located in the methylation modules, BCL2 is 

Fig. 3  a The subnetwork given by all interactors. Using the subnetwork given by the three modules (Fig. 1e) we only kept the genes of the modules 
which are connected to another module. Pink genes are members of the fetal lung methylation module, yellow genes are members of the COPD 
methylation disease module and turquoise genes are members of the COPD expression disease module. The blue vs. red edges represent physical 
vs. functional interactions, whereas green edges represent both. b We show here all pathways which were significantly enriched for at least four of 
the sets of genes listed in the first column. The pathways are in the first row. The adj. p-value is given if the pathways were significantly enriched (adj. 
p-value < 0.05) using the set of genes and the KEGG data base. Module A to Module B: The set of intermediate genes from module A connecting 
to module B were used for the enrichment. c AGE-RAGE Pathway: The AGE-RAGE pathway was enriched for interacting genes between the COPD 
expression disease module and the fetal lung methylation module, as well as for both sets of interactors within the fetal lung methylation module 
and the interactors between the COPD expression and COPD methylation module. The pink squared genes are the interactors which locate in the 
fetal lung methylation module and the turquoise genes locate in the COPD expression disease module. Note that VEGFA is downstream in the 
AGE-RAGE pathway and upstream for the Focal Adhesion (red arrow) and is identified in the COPD expression disease module. Focal Adhesion 
Pathway: The Focal Adhesion Pathway is enriched for interacting genes between both of the COPD disease modules and the fetal lung methylation 
module as well as for the interactors between the COPD expression and COPD methylation module. The yellow squared genes are from the COPD 
methylation disease module, the turquoise genes are in the COPD expression disease module, and the pink squared genes are the interactors 
which locate in the fetal lung methylation module. Note that VEGFA links the AGE-RAGE pathway and the Focal Adhesion and is located in the 
COPD expression disease module

(See figure on next page.)
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Fig. 3  (See legend on previous page.)

(See figure on next page.)
Fig. 4  The figure is an overview of the methods and analyses performed in this study. We start with three different Data sets each providing a set of 
genes. Using these genes and the ENCORE Method we compute for each data set a connected component in the HumanNet PPI, a Module. Next, 
we analyze the connectivity of these three modules in the PPI. Doing so, we can identify Interactors, genes which link different modules with each 
other. Performing an Enrichment analysis on these interactors reveals different Pathways, including the AGE-RAGE pathway and Focal Adhesion. This 
methodological workflow can be applied to any lung disease with published results
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Fig. 4  (See legend on previous page.)
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located in the expression module but these genes are all 
connected to each other.

Interactor genes reveal the most robust enrichments 
and pathways between fetal IUS and COPD. Using the 
whole set of genes of a module (not only the interactors) 
the same or fewer pathways were enriched with limited 
statistical significance; thus, the results of the enrichment 
analysis did not improve. Also, no pathways were signifi-
cantly enriched for the whole set of genes of the fetal lung 
methylation module, while three pathways were signifi-
cantly enriched using only the interactors of this mod-
ule. Seven pathways were significantly enriched using the 
whole set of genes of the COPD expression module, while 
using only the interactors gave rise to 13 significantly 
enriched pathways, including Focal Adhesion, AGE-
RAGE, VEGF signaling pathway, and Pathways in cancer 
(Figs. 3, 4, Additional file 6: Table S5). Most of the genes 
in the pathways which were significantly enriched using 
the whole set of genes from the modules are interactors, 
further supporting the robust nature of the findings.

The identified pathways may link between perturbed 
lung development associated with exposure to cigarette 
smoke and COPD. The pathway which was significantly 
enriched for most gene sets (four out of seven gene sets) 
was the AGE-RAGE pathway, followed by the Focal-
Adhesion pathway.

The AGE-RAGE pathway may be involved with COPD 
through inflammation [77, 78]. From a biomarker points 
of view, soluble receptor for advances glycosylation end 
products (RAGE) is the most compelling biomarker of 
adult COPD [79]. Given the role of the AGER-RAGE 
pathway in lung development and rodent models dem-
onstrating links between maternal nicotine exposure 
and offspring perturbation of lung RAGE signaling [80, 
81], we contend our method has identified biologically 
plausible pathways linking fetal lung perturbations and 
COPD. RAGE (encoded by AGER) has been implicated as 
a driver of cigarette smoke related emphysema [82], and 
circulating sRAGE has been implicated as a biomarker 
for emphysema [83]. AGER is not part of any of the three 
modules but is directly connected to the COPD expres-
sion disease module.

The Focal Adhesion pathway members facilitate physi-
cal links between the cytoskeleton of the cell to the 
extracellular matrix playing an important role in tissue 
organization and airway remodeling [84]. The AGE-
RAGE and Focal Adhesion pathways are connected 
through VEGFA. The genes in the fetal lung methylation 
module are found up-stream in the AGE-RAGE path-
way, whereas down-stream genes are from the COPD 
expression disease module. The up-stream part of Focal 
Adhesion pathway includes genes from the COPD meth-
ylation module and the COPD expression module genes 

are represented downstream. These pathways regulate 
closely related processes including airway inflamma-
tion and remodeling [77, 78, 84]. These findings require 
functional validation; however, we can speculate that 
this observation may represent a temporally directed 
relationship between the perturbed genes identified in 
the fetal lung and the genes related to COPD. Given the 
growing interest in targeting the AGE-RAGE pathway 
for lung disease our findings may suggest a future role 
for targeting the AGE-RAGE pathway for the primordial 
prevention of obstructive lung diseases.

Different approaches exist to identify network modules 
[85] and the focus in this current work is on PPI mod-
ules related to diseases. One main difference between 
the various approaches is that we are able to use pub-
lished findings integrated in a network framework. Some 
approaches exploit only the topology of the PPI and 
employ knowledge from omic data sets afterwards to 
study the enrichment of the modules [17, 86–90]. Other 
methods use seed genes (5–30), genes that can be associ-
ated to a disease, and add new genes iteratively based on 
the topology of the network [34, 41, 91]. Another way to 
compute modules is to integrate omic data sets by using 
scores (e.g. p-values, fold change values, etc.) which are 
assigned to genes indicating their differential status in 
patients and control groups. Modules identified using 
omic data sets are called active modules [92] and there 
exist a variety of methods for computing these active dis-
ease modules, where most of them still rely on a set of 
seed genes as starting points [93]. Methods that are not 
using seed genes as a starting point are rare [94]; Sig-
Mod is most similar to our current method [95]. SigMod 
is based on optimization and computation of module 
scores, using p-values given by GWAS studies. The strat-
egy favors high degree genes which are often genes which 
can be associated to diseases. However, even though 
some of the genes in our modules have a high degree in 
the underlying PPI, we do not explicitly favor these genes 
when using the ENCORe framework [42], since it com-
putes modules which consist of genes which have small 
p-values and are highly connected to each other. Limita-
tions of this approach include that the genes which are 
potentially crucial may be excluded from the module 
(like AGER) due to the p-value cutoff calculated by the 
method. However, we believe that using ENCORe pro-
vides us with a good balance between integrating scores 
on the genes based on disease affection status and the 
structure of the chosen PPI (Additional file  1 section 
“Disease modules integrating omic data sets”) (Addi-
tional file  7: Table  S6, Additional file  8: Table  S7, Addi-
tional file 9: Table S8).

Network-based approaches hold potential for study-
ing fetal origins of complex lung diseases such as COPD 
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[25–33]. Similar to the method we present, Halu et  al. 
[25] computed a COPD disease module using a network-
based approach and analyzed its vicinity to a pulmonary 
fibrosis disease module. Their modules for COPD and 
IPF are, like ours, significantly close to each other in the 
PPI and the biological pathways identified by Halu et al. 
give new potential insights into shared molecular inter-
actions and shed light on biological processes lying at 
the intersection of these two incurable lung diseases. 
Maiorino et al. [27] introduce a method which calculates 
a ranking of genes linking two disease modules in a given 
PPI. They study genes linking a COPD disease mod-
ule to an asthma disease module using the DIAMOnD 
approach [41]. They identified the asthma gene GSDMB 
and showed that by studying interconnecting genes it is 
possible to identify potential mediators of the interac-
tions between different phenotypes. Both approaches [25, 
27] use module detection methods based on seed genes 
and remaining module members are added solely based 
on the topology of the underlying PPI. Thus their meth-
ods differ profoundly from the method used in our work, 
and consequently the COPD modules have very different 
structures compared to the modules presented here.

Conclusions
In utero exposures such as cigarette smoking and per-
turbed lung growth and development are associated 
with COPD, but there exists limited molecular links 
between early exposures, lung growth and adult disease. 
It is likely that in utero exposures do not impact single 
genes but networks of genes. Analyzing network con-
nections between smoking-related perturbations during 
lung development and COPD is of clinical significance as 
identified genes and links may provide insights into bio-
markers and targets for primary prevention of adult lung 
disease [58].

The modules identified in our analysis add new and 
potentially important insights and aspects to understand-
ing the developmental pathogenesis of COPD. Strengths 
of our findings using ENCORe for the identification of 
biologically plausible pathways, including AGE-RAGE 
and focal adhesion, may reveal developmental contribu-
tions to COPD. Using ENCORe, we were not only able to 
identify meaningful modules but were also able to study 
possible relationships between early life exposure and 
adult lung phenotypes, thus augmenting our knowledge 
about the fetal origins of COPD.

Abbreviations
COPD: Chronic obstructive pulmonary disease; IUS: In utero smoke; PPI: Pro-
tein–protein interaction network; LCC: Largest connected component; GWAS: 
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IPF: Idiopathic pulmonary fibrosis.
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Additional file 1: Figure S1. The overlap of the significant genes from 
the different data sets. Figure S2. Schema for the approach. Based on a 
set of p-value cutoffs the method computes for each cutoff the largest 
connected component (LCC) given by all genes which have a p-value 
smaller than the cutoff. Next, for each LCC, its size (number of nodes) is 
compared against random expectation and a corresponding z-score is 
computed. The LCC with a z-score higher than 1.6 and containing genes 
with low p-values is considered to be the disease module. Figure S3-S5. 
The p-value cutoffs of the genes are given on the x-axis and the z-scores 
on the y-axis. For each p-value cutoff a LCC is computed using all genes 
of p-value lower than the cutoff. For this LCC a z-score is computed, using 
randomization. The z-scores are illustrated by the red dots. All details on 
the results can be found in the Table S8. Figure S3. Computation of the 
fetal lung methylation module. The module for the fetal lung methylation 
data set has a z-score of 2.86 at a p-value cutoff for the genes of 0.003. 
265 genes in the data set have a p-value lower than this cut-off and they 
give a LCC of size 50, which is the exposure module for the fetal lung 
methylation data set. The size of the LCC given for all genes which have a 
p-value smaller than 0.01 is 289, therefore already too large for a reason-
able disease module and therefore we did not consider higher p-value 
cutoffs. Figure S4. Computation of the COPD methylation module. The 
module for the COPD methylation data set has a z-score of 2.034 and 
the p-value cutoff for the genes is 0.037. 268 genes in the data set have 
a lower p-value than this cutoff and they give a LCC of size 37, which 
is the disease module for the COPD methylation data set. Figure S5. 
Computation of the COPD expression module. The module for the COPD 
expression data set has a z-score of 9.7 and is given by all genes which 
are significantly differentially expressed, thus which have a p-value lower 
than 0.05. They give a LCC of size 64, which is the disease module for the 
COPD expression data set. Figure S6-S7. Computation of the module 
using genes which are mapped to nominally differentially methylated 
CpG sites in both data sets: The p-value cutoffs of the genes are given on 
the x-axis and the z-scores on the y-axis. For each p-value cutoff a LCC is 
computed using all genes of p-value lower than the cut-off. For this LCC a 
z-score is computed, using randomization. The z-scores are illustrated by 
the red dots. All details on the results can be found in the Table S8. Figure 
S6. Using p-values from the fetal lung methylation data set: The module 
using p-values from the fetal lung methylation data set has a z-score of 3.2 
at a p-value cutoff for the genes of 0.01. 202 genes in the data set have a 
p-value lower than this cut-off and they give a LCC of size 35. Figure S7. 
Using p-values from the COPD methylation data set: The module using 
p-values from the adult COPD patients methylation data set has a z-score 
of 2.2 at a p-value cutoff for the genes of 0.04. 248 genes in the data set 
have a p-value lower than this cut-off and they give a LCC of size 50. 
Figure S8-S9. Overlap modules: Using the 502 genes which are mapped 
to nominally differentially methylated CpG sites in the fetal lung methyla-
tion data set as well as in the COPD methylation data set we computed 
two modules using the p-values given by one of the data sets resp. The 
modules have 11 genes in common which are highlighted in red. Figure 
S8. Overlap module using fetal lung p-values: The module consists of 
35 genes, where 11 of them can be found in the module constructed 
using the COPD p-values as well (highlighted in red). Figure S9. Overlap 
module using COPD p-values: The module consists of 50 genes, where 
11 of them can be found in the module constructed using the fetal lung 
p-values as well (highlighted in red).

Additional file 2: Table S1. PropertiesDifferentPPIs: Properties of the 
different networks: We list here the properties of the networks we used for 
our analysis, where the HumanNet-FN was used for the main analysis. The 
networks are ordered by their size of the largest connected component. 
Network: Name of the network. Nodes: Number nodes in the network. 
Edges: Number of edges in the network. LCC Nodes: Number of nodes in 
the largest connected component of the network. LCC Edges: Number of 
edges in the largest connected component of the network. Website: web-
site, where we downloaded the network (clickable). ConnectivityModules-
InPPIs: Connectivity of modules in other PPIs: Using the genes of fetal lung 
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methylation module and the two COPD modules we evaluatedconnectiv-
ity of the modules in the other PPIs. Network: The name ofnetwork. Fetal 
lung (50): The 50 genes of the fetal lung disease module were used for the 
analysis. COPD Meth (37): The 37 genes of the COPD methylation module 
were used for the analysis. COPD DE (64): The 64 genes of the COPD 
expression module were used for the analysis. LCC: The number of genes 
in the largest connected component (LCC) given by the genes ofdisease 
module. z-score: The z-score of the LCC in the network computed using 
the same number of nodes as in the disease modules randomly chosen 
from the network, where the degrees of the nodes were preserved. For 
example in the network BioGrid 32 genes of the fetal lung disease module 
(of sizeform a LCC. Thus 18 genes are not connected to this component. 
Note that HumanNet is the network where we computed the original 
modules.

Additional file 3: Table S2. The Table contains all the genes which are in 
the LCC of the HumanNet-FN.

Additional file 4: Table S3. Each list contains the genes within the 
corresponding module if they can be associated to respiratory diseases 
according to the database DisGeNet or GWAS study. Genes that can be 
associated to asthma and/or COPD according to DisGeNet are highlighted 
in green. Genes that can be associated to COPD according to GWAS 
are highlighted in yellow. Genes associated with asthma and COPD are 
highlighted in blue.

Additional file 5: Table S4. The table contains the genes of each module 
and their p-values as well as fold changes from the data sets when 
available.

Additional file 6: Table S5. The table ontains the results for the enrich-
ment analyses using different sets of genes.

Additional file 7: Table S6. Results from enrichment analysis using 
g:profiler and the genes in the module compute using only genes which 
are mapped to nominally differentially methylated CpG sites in the fetal 
lung methylation data set as well as in the COPD methylation data set, 
using the p-values of the fetal lung methylation data set (sheet 1) and the 
p-values of the COPD methylation data set (sheet 2).

Additional file 8: Table S7. All genes and their degrees which are in one 
of the three modules. Their degrees in the subnetwork consisting of the 
three modules, the number of functional and physical edges connected 
to them and the corresponding p-values.

Additional file 9: Table S8. Details of the results using the method 
applied to the different data sets to compute the modules.
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