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Saliva as a non‑invasive specimen for COPD 
assessment
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Abstract 

Background:  People with COPD have been reported to bear a distinct airway microbiota from healthy individuals 
based on bronchoalveolar lavage (BAL) and sputum samples. Unfortunately, the collection of these samples involves 
relatively invasive procedures and is resource-demanding, limiting its regular use. Non-invasive samples from the 
upper airways could constitute an interesting alternative, but its relationship with COPD is still underexplored. We 
examined the merits of saliva to identify the typical profile of COPD oral bacteria and test its association with the 
disease.

Methods:  Outpatients with COPD and age-sex matched healthy controls were recruited and characterised based on 
clinical parameters and 16S rRNA profiling of oral bacteria. A clustering analysis based on patients’ oral bacteria beta-
diversity and logistic regressions were performed to evaluate the association between oral bacteria composition and 
COPD.

Results:  128 individuals participated (70 patients and 58 controls). Differential abundance analyses showed differ‑
ences in patients comparable to the ones previously observed in samples from the lower respiratory tract, i.e., an 
increase in Proteobacteria (particularly Haemophilus) and loss of microbiota diversity. An unsupervised clustering 
analysis separated patients in two groups based on microbiota composition differing significantly in the frequency of 
patients hospitalized due to severe acute exacerbation of COPD (AECOPD) and in the frequency of GOLD D patients. 
Furthermore, a low frequency of Prevotella was associated with a significantly higher risk of recent severe AECOPD and 
of being GOLD D.

Conclusion:  Salivary bacteria showed an association with COPD, particularly with severe exacerbations, supporting 
the use of this non-invasive specimen for future studies of heterogeneous respiratory diseases like COPD.

Keywords:  Microbiota, Biomarker, COPD, Salivary bacteria, Respiratory diseases, Microbiome

© The Author(s) 2022, corrected publication 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver 
(http://​creat​iveco​mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a 
credit line to the data.

Background
The respiratory physiology of patients with chronic 
obstructive pulmonary disease (COPD) hamper muco-
ciliary clearance in the airways which leads to an 

exceptional opportunity for bacterial proliferation [1] and 
results in the establishment of a resident community [2].

In accordance, patients with COPD have been reported 
to bear a distinct airway microbiota from healthy individ-
uals based on bronchoalveolar lavage (BAL) and sputum 
specimens [3], though a “typical” COPD profile is difficult 
to assign since it continuously modifies with disease pro-
gression [4]. Nevertheless, some consensus exists regard-
ing (i) a positive correlation between disease severity and 
microbiota composition, e.g., more severe patients are 
enriched in Proteobacteria (particularly Haemophilus) 
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[5–8] and (ii) a negative correlation between disease 
severity and microbiota diversity [4, 5, 9].

However, evidence for clinical implications of these 
changes in COPD is still lacking, need short and long-
term validation but is fundamental as these might be a 
promising biomarker of the disease.

Unfortunately, induced sputum or BAL collection are 
relatively invasive and resource-demanding procedures 
to be routinely performed (e.g. weekly), requiring trained 
health-care professionals and specialized equipment. 
Bronchoscopy in patients with COPD carries a signifi-
cantly higher risk of complications such as pneumonia, 
respiratory failure and desaturation compared with those 
with normal lung function [10].Induced sputum collec-
tion, although semi-invasive, generally safe and well tol-
erated, may lead, especially in more debilitated patients, 
to some discomfort in sample collection [11, 12].

An interesting alternative would be the use of non-
invasive specimens from upper airways, e.g. saliva, since 
the microbiota of upper and lower airways is highly cor-
related, and shows topological continuity, implying oral 
bacteria as the major colonizers of the lower airways, 
through microaspiration [13–15]. Consequently, both 
niches present several overlapping bacterial genera, e.g. 
Prevotella, Veillonella and Streptococcus, yet the  micro-
biota from lower airways is less diverse and numerous 
[13–17]. Saliva’s collection is also friendly enough to be 
performed frequently (e.g., weekly) even in more debili-
tated patients.

Here, we have explored, for the first time, the merits of 
saliva, to identify the typical profile oral bacteria in sta-
ble COPD and to test its association with the disease. We 
have started by describing differences between groups of 
healthy and diseased individuals. Next, we queried the 
association between oral bacteria and COPD, by per-
forming an unsupervised clustering analysis that allowed 
the stratification of people with COPD according to oral 
bacteria composition.

Methods
A cross-sectional study was conducted. Ethical approv-
als were obtained from Administração Regional de 
Saúde Centro (64/2016) and from Centro Hospitalar do 
Baixo Vouga (08-03-17). Written informed consent was 
obtained from all participants. All steps of data collec-
tion, processing and analysis were summarized in the 
Additional  file 2.

Subjects and sample collection
Participants with COPD and healthy (controls) were 
identified by physicians at primary health care centres, 
hospitals, or senior universities. Patients were eligi-
ble if (i) diagnosed with COPD according to the Global 

Initiative for Chronic Obstructive Lung Disease (GOLD) 
criteria [18], (ii) presented a stable state, with no acute 
exacerbations in the month prior to enrolment and (iii) 
were able to give informed consent. Exclusion criteria 
were (i) presence of severe cardiac, musculoskeletal, or 
neuromuscular diseases, (ii) cognitive impairment or (iii) 
active neoplasia or immune diseases. Healthy-individ-
uals were age- and sex-matched to patients with COPD 
and had similar inclusion and exclusion criteria except 
for the absence of any respiratory disease. Sociodemo-
graphic, anthropometric and clinical data and saliva 
samples (passive drool) were collected with a structured 
protocol adapted from the team published work [19]. See 
Additional file 2 for further details upon data collection. 
GOLD grades were defined according to FEV1 percent-
age predicted for each individual. GOLD groups were 
defined combining the number of exacerbations and hos-
pital admissions of each patient in the year before enrol-
ment with their CAT scores.

DNA extraction
DNA extraction from saliva samples was performed with 
QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), 
following the manufacturer’s instructions with slight 
modifications. DNA quality and quantity was assessed 
in Denovix DS-11 spectrophotometer. See Additional 
file 2 for further details.

16S rRNA gene amplification and sequencing
V4 hypervariable region of 16S rRNA gene (F515/R806 
primer pair) amplification and sequencing was carried 
out at the Gene Expression Unit from Instituto Gulben-
kian de Ciência, according to the implemented protocol, 
using Illumina Miseq. See   Additional file  2 for further 
details.

Oral bacteria and statistical analyses
Sample characterisation
Descriptive statistics was used to characterize the sam-
ple: comparisons between people with COPD and 
Healthy controls were conducted with unpaired t-test 
with Welch’s correction, Mann–Whitney U-test and Chi-
square test (statistical analyses conducted in GraphPad 
Prism 8 [20] and R software v3.6.0 [21]). See Additional 
file 2 for further details.

Analysis of illumina paired‑end reads
QIIME2 2020.8 [22, 23] was used to perform oral bacteria 
analyses. Quality control procedures were performed via 
q-score base filtering, chimera removing and 16S-denois-
ing with Deblur [24]. Potential bacterial contaminants 
were identified with DECONTAM package [25, 26] 
of R [21] with prevalence method and excluded from 
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subsequent analyses. Taxonomy assignment of amplicon 
sequence variants (ASVs) was performed with q2-fea-
ture-classifier plugin [27, 28], through classify-sklearn 
method with pre-trained Naïve Bayes classifier against 
99% identity eHOMD_v15.1 reference database[29]. All 
subsequent analyses, except the differential abundance, 
were performed with data upon ASVs. Differential abun-
dance analyses were done with data upon OTUs at taxo-
nomic level 6 (genus).

Diversity analyses
Alpha-diversity metrics and Beta-diversity metrics were 
estimated using q2-diversity plugin [30] as implemented 
in QIIME2 [22, 23]. Spatial dissimilarities between bacte-
rial communities of different groups were assessed with 
Principal Coordinate Analysis (PCoA) and/or biplots 
on Weighted Unifrac distance matrix. Mann–Whitney 
U-test and Kruskal–Wallis with Dunn’s correction were 
employed to compare alpha-diversity among groups (sta-
tistical analyses were performed in GraphPad Prism 8 
[20] and R stats package [31] of R [21]). Additionally, the 
effect of disease state (COPD vs healthy), and cluster seg-
regation (cluster 1 vs cluster 2) on alpha diversity indexes 
was adjusted for pack-years using a Linear Regression 
Model (R stats package [31] of R [21]). Permutational 
multivariate analysis of variance (PERMANOVA) [32, 
33] adjusted for pack-years (PY) (vegan package [34] of R 
[21]) was used to quantify the beta-diversity differences 
in oral bacteria composition of groups.

Differential abundance analysis of OTUs
Analysis of composition of microbiomes (ANCOM) [35, 
36] and Linear discriminant effect size (LefSe) analy-
sis [37, 38] were performed to identify differentially 
abundant operational taxonomic units (OTUs) between 
groups of samples and/or clusters. These analyses were 
conducted with the feature table collapsed at genus taxo-
nomic level (L6). LEfSe was performed in the online ver-
sion [38] with a linear discriminant analysis (LDA) score 
of 3 for significance. ANCOM was performed in R with 
ANCOM 2.0 script[36] with taxa-wise multiple correc-
tion and a W cut-off of significance of 0.7. See Additional 
file 2 for further details.

Clustering analysis
A hierarchical clustering analysis [39] of the oral bacte-
ria (neighbour-joining) based on Weighted Unifrac dis-
tance was performed as implemented in QIIME2 [22, 23] 
under a rarefaction of 4000 sequences per sample and 
5000 iterations. See Additional file  2 for further details. 

Mann–Whitney U-test and Chi-square test (R stats pack-
age [31] of R [21]), were used to describe differences in 
clinical features among different clusters.

Binary logistic regression models and ROC analyses
Binary logistic regression models (glm [40] (link = logit) 
function of R stats package [31] R software [21], adjusted 
for PY, were performed to further explore the relation 
between the most relevant ASVs/OTUs and clinical fea-
tures in the context of the clustering analysis. Details 
upon models’ quality assessment were further described 
in supplementary file. Receiver operating characteristic 
curves (ROC) and respective discriminatory thresholds 
were estimated to assess the discriminatory ability of 
each model (pROC package [41] from R software [21]). 
Finally, the respective area under the curve (AUC) was 
also calculated for each model. See Additional file 2  for 
detailed description of the analyses performed.

Results
Cohort characterisation
Seventy people with COPD (60 male, 68 ± 9y, BMI 
25.5 ± 3.5, FEV1pp 48 ± 16, GOLD A-12, B-32, C-5, D-21) 
and fifty-eight sex and age matched healthy individu-
als (42 male, 67 ± 8y, BMI 27.6 ± 3.8, FEV1pp 103 ± 17) 
were included in this study. Detailed characteristics of 
participants are available in Table 1 and Additional file 1: 
Table S1.

Oral bacteria composition and diversity are different 
between people with COPD and healthy controls
Principal coordinate analysis of pairwise distances 
(Weighted Unifrac) between healthy and people with 
COPD showed significant differences in oral bacteria 
composition between groups (PERMANOVA adjusted 
for PY, p = 0.034) and captured 65% of total diversity (top 
three principal coordinates).

Oral bacteria of healthy individuals was composed of 
two major phyla, Firmicutes (40.6%) and Bacteroidetes 
(30.4%) (Fig.  1a). These were followed by Proteobacte-
ria (16.3%), Fusobacteria (6.7%), Actinobacteria (2.5%) 
and six low abundant phyla (< 3.5%). In terms of genera, 
Streptococcus (23%), Prevotella (24%) and Haemophi-
lus (11%) were the most abundant. People with COPD 
showed a similar oral bacteria composition to healthy 
individuals, however differences in the relative frequen-
cies of Bacteroidetes (26.5%) and Proteobacteria (22.3%) 
were observed as well as in genera Prevotella (18%) and 
Haemophilus (15%).

Differential abundant bacterial groups between peo-
ple with COPD and healthy individuals were inferred 
with LEfSe and ANCOM. Both methods showed that 
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healthy individuals were enriched in Treponema (Spiro-
chaetes), Peptococcus (Firmicutes) and Peptostreptococ-
cus (Firmicutes), whereas according to LEfSe, patients 
were enriched in genera from Proteobacteria and Firmi-
cutes. Specifically, people with severe airflow obstruction 
showed an enrichment in Haemophilus, while those with 
moderate airflow obstruction were enriched in Granulli-
catella and Lachnoanaerobaculum (see Additional file 2: 

Fig. S1 for the complete list of genera that differ between 
the groups).

Oral bacteria of people with COPD was significantly 
less diverse (Phylogenetic diversity—Alpha diversity, i.e., 
within individual diversity) than that of healthy individu-
als (Fig. 1c, Mann–Whitney U test, U = 1275, p = 0.0013). 
Similar differences were observed after adjusting for PY 
(ANOVA, F-value = 10.89, p = 0.002).

Table 1  Sociodemographic, anthropometric and clinical characteristics of participants included in the study

Comparisons between people with COPD and Healthy controls were conducted with unpaired t-test with Welch’s correction, Mann–Whitney U-test and Fisher’s 
exact test. n (%): number of individuals in each group plus the corresponding percentage. mean±SD: mean±standard deviation. CCI: Charlson Comorbidity Index; 
BMI: Body Mass Index; GOLD Grade: 3—Severe; 4—Very Severe; GOLD Group: A—Less symptoms and low risk of exacerbations; B—More symptoms and low risk 
of exacerbations; C– Less symptoms and high risk of exacerbations; D—More symptoms and high risk of exacerbations; FEV1pp: forced expiratory volume in 1 
second percentage of predicted; SpO2: peripheral capillary oxygen saturation. Comparisons between patients with COPD and Healthy controls were conducted with 
unpaired t-test with Welch’s correction, Mann-Whitney U-test and Fisher’s exact test

Characteristics COPD (n = 70) HEALTHY (n = 58) p-value

Age (years), mean ± SD 67.9 ± 8.7 67.0 ± 8.2 0.7

Male sex, n (%) 60 (86%) 42 (84%) 0.8

BMI (kg/m2), mean ± SD 25.5 ± 3.5 27.6 ± 3.8 0.001

Pack-years, mean ± SD 42.2 ± 45.3 8 ± 21.0  < 0.0001

CCI, mean ± SD 3.7 ± 1.3 2.0 ± 1.0  < 0.0001

Medication for COPD, n (%) 70 (100%) 0 (0%)

Smoking status, n (%)

 Current smoker 7 (10%) 2 (4%)  < 0.0001

 Former smoker 49 (70%) 10 (20%)

 Never smoker 14 (20%) 38 (76%)

GOLD Grade, n (%)

 1 7 (10%) n.a

 2 25 (36%) n.a

 3 26 (37%) n.a

 4 12 (17%) n.a

GOLD Group, n (%)

 A 12 (17%) n.a

 B 32 (46%) n.a

 C 5 (7%) n.a

 D 21 (30%) n.a

Long-term oxygen dependence, n (%) 11 (16%) 0 (0)

SpO2, mean ± SD (%) 94.4 ± 1.9 96.7 ± 1.7  < 0.0001

FEV1 (L) 1.3 ± 0.4 2.8 ± 0.6  < 0.0001

FEV1pp, mean ± SD 48.0 ± 16.4 103.0 ± 16.7  < 0.0001

FVC (L) 2.7 ± 0.6 3.4 ± 0.7  < 0.0001

Ratio FEV1FVC 48.7 ± 12.1 83.8 ± 8.7  < 0.0001

Number of exacerbations in the year before enrolment, n 
(%)

 0–1 49 (70%) n.a

 ≥ 2 or 1 with hospital admission 21 (30%) n.a

Hospital admissions due to COPD, in the year before enrol‑
ment, n (%)

 0 60 (86%) n.a

 1 10 (14%) n.a
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Oral bacteria composition and diversity are poorly 
associated with clinical features
We next explored the relationship between oral bacteria 
and patients’ clinical features. Specifically, we queried 
whether different levels of airflow obstruction (GOLD 
grades) and severity of previous exacerbations and symp-
toms (GOLD groups) were associated with significant 
differences in oral bacteria diversity and composition.

Considering airflow obstruction, moderate patients 
(GOLD 1 & 2) showed a significantly distinct oral bac-
teria composition when compared with severe patients 
(GOLD 3 & 4) (PERMANOVA adjusted for PY, p = 0.002) 
but no significant differences were observed in alpha-
diversity (Mann–Whitney U-test, U = 435, p = 0.12).

PCoA analysis separated A + B from C + D groups 
based on the severity of previous exacerbations but not 
A + C from B + D groups based on the severity of symp-
toms (PERMANOVA adjusted for PY (A + B vs C + D), 
p = 0.03, PERMANOVA adjusted for PY (A + C vs B + D), 
p = 0.06). Alpha-diversity was not significantly different 
among different levels of severity of previous exacerba-
tions or symptoms (Mann–Whitney U test (A + B vs 
C + D), U = 420, p = 0.21; Mann–Whitney U test (A + C 
vs B + D), U = 392, p = 0.64).

No significant associations were found between alpha-
diversity and pack-years, hospital admissions, long-term 
oxygen therapy, treatment with inhaled corticosteroids 
and SpO2 in people with COPD.

Oral bacteria are associated with disease severity in people 
with COPD
In an effort to understand to what extent oral bacteria is 
able to stratify COPD we performed a clustering analy-
sis using the salivary microbial composition of patients. 
This analysis separated 90% of the individuals in two well 
supported clusters (“Cluster I” bootstrap node support 
(bns) = 74% and “Cluster II”, bsn = 84%; Fig. 2) which sig-
nificantly differed in disease severity.

Cluster I aggregated all subjects with a history of recent 
severe exacerbation leading to hospital admission (Chi-
square test, Z = 5.01, p = 0.025)) and 71% of the GOLD D 
(Chi-square test, Z = 1.98, p = 0.048). Two thirds of those 
under long term oxygen therapy or with heavier smoking 
history were also allocated to Cluster I. No other clinical 
parameters showed significant differences between the 
two clusters (Additional file 2: Table S2).

Oral bacteria composition was significantly differ-
ent between the two clusters (PERMANOVA adjusted 
for PY, P = 0.001. Figure  2b.). Cluster I was enriched in 
patients dominated by Firmicutes or Proteobacteria, 
whereas cluster II was mainly represented by patients 
dominated by Bacteroidetes.

Oral bacteria diversity among patients (alpha diver-
sity) was lower in Cluster I than in Cluster II (Fig.  2c. 
Mann–Whitney U-test, U = 271, p = 0.008). Similar dif-
ferences were observed after adjusting for PY (ANOVA, 
F-value = 5.6, p = 0.006).

Fig. 1  Salivary microbiota composition and diversity is different between people with COPD and healthy controls. A Mean frequency of phyla and 
genera of bacteria present in people with COPD and healthy controls. B Cladogram summarizing differentially abundant genera between people 
with COPD and healthy controls, assessed by LEfSe and ANCOM. Differential genera between groups identified only by LEfSe at a significance 
cut-off of 3 are represented in black, differential genera pointed by ANCOM at 0.7 significance cut-off are represented in underlined red C Alpha 
diversity, estimated with Faith’s phylogenetic diversity index, is lower in people with COPD than in healthy controls (Mann–Whitney U-test, 
U = 1275, p = 0.0013). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001



Page 6 of 10Melo‑Dias et al. Respiratory Research  2022, 23(1):16

Regarding differentially abundant bacteria, both LEfSe 
and ANCOM distinguished Cluster I as particularly 
enriched in Streptococcus (Firmicutes) and detected 
Prevotella and Alloprevotella as responsible for the over-
abundance of Bacteroidetes in Cluster II (see Additional 
file 2: Fig. S2 for the complete list of OTUs detected by 
LEfSe). Both methods further detected a significant 
enrichment of Dialister (Firmicutes) in Cluster II.

Logistic regression analyses were performed to quan-
tify the risk afforded by the prevalence of Firmicutes, 
Proteobacteria and Bacteroidetes in oral bacteria of peo-
ple with COPD belonging to the two clusters. Further-
more, since three ASVs belonging to each of these phyla 
(Prevotella melaninogenica (Bacteroidetes), Haemophilus 

parainfluenzae (Proteobacteria) and Streptococcus sp. 
(Firmicutes)) were the main responsible for cluster seg-
regation (Fig. 2b), the predictive power of their frequency 
was also inspected.

The combined frequency of Prevotella (Bacteroidetes) 
and Proteobacteria was found to be the best predictor of 
being GOLD D, (AUC = 87%), Additional file 2: Table S3 
and Fig. 3a), i.e., patients with lower frequency of Prevo-
tella and higher frequency of Proteobacteria were more 
likely to be severe.

Moreover, the odds ratio (OR) of 0.44 suggests a pro-
tective effect for increasing frequencies of Prevotella, 
while the OR of 2.83 suggests a risk effect for increasing 
frequencies of Proteobacteria.

Fig. 2  Unsupervised clustering analysis of the microbiota of people with COPD. A Dendrogram representing Neighbour joining clustering of 
Weighted Unifrac (samples rarefied by 4000 sequences, with 5000 iteractions). Numbers close to the internal nodes represent bootstrap support. 
Two major clusters containing 90% of people with COPD emerged: Cluster I and Cluster II. The bar chart represents microbiota composition of 
each patient at phylum level (Orange—Firmicutes; Blue—Bacteroidetes; Red—Proteobacteria; Green—Fusobacteria; Pink—Actinobacteria). 
Orange, blue, red and green circles represent the dominant phylum of each sample. The heatmap shows patient status according to “hospital 
admissions” and “Gold group”. Shading from white to black is proportional to severity level, white less severe and black most severe. B PCoA 
analysis using Emperor of Weighted UniFrac distance matrix Clusters I and II have a significantly distinct microbiota composition (PERMANOVA 
adjusted for PY, p = 0.001). Grey arrows represent the 3 most relevant ASVs for cluster segregation. One ASV of Prevotella melaninogenica 
(d0b698c7298bf04110a6d2f220879bfb) is the major contributor for segregation of Cluster II, while one ASV of Haemophilus parainfluenzae 
(e27680d4009f98f30248d823bc17fb8e) and another for Streptococcus sp. (a5189f77a2cfeab3bc1602ff5c8ac3e9) contribute for segregation of Cluster I. 
C The microbiota of Cluster I is less diverse than microbiota of Cluster 2 (Mann–Whitney U-test, U = 271, p = 0.008). *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001
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Prevotella was the best predictor of recent severe exac-
erbation (leading to hospital admission) (AUC = 89%), 
which translated into a significantly higher risk for 
patients with low frequencies of this genus. The OR 
of 0.58, corroborated the protective effect (Additional 
file 2: Table S3 and Fig. 3b). Additionally, the frequency 
of Prevotella melaninogenica alone was also a good pre-
dictor for recent severe exacerbation (AUC = 86%) (Addi-
tional file  2: Table  S3 and Fig.  3b), similarly the OR of 
0.63 suggests a protective effect for higher frequencies of 
this ASV.

No significant associations were found considering 
Bacteroidetes, Haemophilus, Haemophilus parainfluen-
zae, Firmicutes, Streptococcus or Streptococcus sp. rela-
tive frequencies.

Discussion
Overall, our data suggests that the presence of an abun-
dant Bacteroidetes community (dominated by commen-
sal Prevotella species) in patients’ oral bacteria could have 
a protective effect towards severe COPD exacerbations.

Strikingly, we observed the separation of patients with 
recent history of severe exacerbation from all others 
based on oral bacteria, with low frequencies of Prevotella 
being the signature of this event. Possible mechanisms 
underlying this effect include the Prevotella-induced 
reduction of lung epithelial cell permeability (by modu-
lating the expression of tight junction proteins) [42] or 

Prevotella-induced microbiota stabilization and resist-
ance to pathobionts colonization [43].

The same phyla dominating the profile of patients with 
a history of recent severe exacerbation have been previ-
ously reported to be enriched in patients with higher pre-
disposition for exacerbations [44, 45].

The depletion of Prevotella and the increased fre-
quencies of Haemophilus and Streptococcus in patients 
with history of recent severe exacerbations corroborate 
the vicious cycle hypothesis [46]. According to this the-
ory, the prolonged exposure to tobacco smoke (cluster 
I aggregated a greater proportion of heavier smokers) 
induces inflammation in the lung with increased levels of 
oxidative stress, protease imbalance and mucus hyperse-
cretion. Consequently, an exacerbated, but not efficient, 
innate immune response allows for facultative anaerobes, 
e.g. Haemophilus which are better fitted, to persist and 
proliferate in the lung, enhancing further derangements 
in innate immunity mechanisms, and possibly triggering 
COPD exacerbations. Even after smoking cessation, the 
repetitive cycles of microbiota dysbiosis, together with 
impaired immune response cause irreversible structural 
modifications in the small airways and alveoli contribut-
ing for COPD progression.

Conversely, less severe patients displayed an overabun-
dance of Prevotella, characteristic of healthy subjects 
[47].

Prevotella is the most abundant genus in the respira-
tory tract of healthy individuals [48] with some species 
having inflammatory properties [49], but most members 

Fig. 3  ROC analyses of GOLD D status prediction and recent severe exacerbation status prediction based on logistic regression models adjusted 
for Pack-years. A ROC curves of GOLD D status prediction based on relative frequency of Prevotella, Proteobacteria and Prevotella + Proteobacteria. 
The blue curve represents the prediction based on Prevotella relative frequency (AUC = 81%), the red curve represents the prediction based on 
Proteobacteria relative frequency (AUC = 75%) and the green curve represents the prediction based on the two regressors model (AUC = 87%). 
B ROC curves of recent severe exacerbation prediction based on relative frequency of Prevotella genus and Prevotella melaninogenica ASV 
(d0b698c7298bf04110a6d2f220879bfb). Light blue curve represents the prediction made with Prevotella genus relative frequency (AUC = 89%), dark 
blue curve represents the prediction made with Prevotella melaninogenica ASV relative frequency (AUC = 86%)
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likely being commensals. Among these, in our study, P. 
melaninogenica was depleted in the most severe grades 
of the disease and showed a potential protective effect 
against severe exacerbations. Interestingly the same spe-
cies has been previously reported to have a protective 
role in vitro. By co-cultivating P. melaninogenica and H. 
influenza, Larsen et al. [50] demonstrated that P. melani-
nogenica modulated the in  vitro inflammatory response 
of human dendritic cells induced by H. influenzae.

The characterization of oral bacteria of people with 
COPD and healthy individuals broadly corroborated the 
main differences previously observed in the lower res-
piratory tract (e.g. sputum or BAL) [4, 7, 51]: an expan-
sion of Proteobacteria in patients and a Firmicutes and 
Bacteroidetes enrichment in healthy. Moreover, the over-
representation of Granullicatella in moderate patients 
and Haemophilus in severe patients in our study, matches 
the observations in sputum of people with COPD [4, 7, 
51]. Loss of microbial diversity, considered a signature of 
dysbiosis [52] due to its importance for microbiota stabil-
ity [53], was also present in people with COPD. This is 
compatible with less complex airway microbiotas having 
a lower resistance to colonization by pathobionts [54], 
such as Haemophilus, frequently implicated in COPD 
exacerbations.

The microbiota characterization of clinically defined 
groups lies on the assumption of a correspondence 
between clinical categories and microbial profiles. Nev-
ertheless, since COPD is a complex disease, enforcing 
such a correspondence might obscure the relationship 
between microbiota and the disease.

To explore the potential of the microbiota to stratify the 
disease, we performed an unsupervised clustering analy-
sis of the diseased population. Interestingly, this analysis 
separated the individuals in two groups displaying differ-
ent severities but showed only a week correspondence 
with the obstruction level, which is the criterion to diag-
nose the disease.

Some limitations of our study need to be acknowl-
edged. First, although innovative and with great potential 
as a prognostic biomarker for COPD, the salivary bac-
terial community is susceptible to be influenced by oral 
health and smoking habits. For example, periodontitis is 
likely to influence the salivary microbiota [55] and has 
been previously associated with COPD [56]. Neverthe-
less, the bacterial groups found by two recent publica-
tions distinguishing the salivary microbiota of healthy 
individuals from people with periodontitis [55] or from 
people with periodontitis concomitant with COPD [57], 
were not coincident with the ones found by our study. 
Though we cannot discard the influence of this oral dis-
ease in our work it does not seem to be a major factor to 
differentiate patients from healthy.

Second, we were not able to evaluate the prospective 
effects of high frequencies of Prevotella in terms of pre-
venting severe COPD exacerbations due to the cross-sec-
tional study design. Further studies should explore these 
effects prospectively.

Third, we acknowledged that the use of saliva is still 
exploratory and that external validation of our findings in 
a multicentre trial and with larger cohorts is needed to 
assess its robustness, especially in a disease as heteroge-
neous as COPD.

In conclusion, based on the analysis of people with 
COPD and healthy individuals, our data suggests an asso-
ciation between oral bacteria and COPD, particularly in 
terms of severe exacerbations. It further shows that even 
in stability it is possible to identify the dysbiotic microbial 
signatures associated with severe COPD exacerbations.

Additionally, our results suggest that unsupervised 
analyses of oral bacteria may provide a more useful 
insight into its relationship with the disease potentially 
enabling practical applications such as risk assessment 
and patient counselling.
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