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Abstract 

Background:  Lung transplant (LTx) recipients are at increased risk for airway infections, but the cause of infection is 
often difficult to establish with traditional culture-based techniques. The objectives of the study was to compare the 
airway microbiome in LTx patients with and without ongoing airway infection and identify differences in their micro-
biome composition.

Methods:  LTx recipients were prospectively followed with bronchoalveolar lavage (BAL) during the first year after 
transplantation. The likelihood of airway infection at the time of sampling was graded based on clinical criteria and 
BAL cultures, and BAL fluid levels of the inflammatory markers heparin-binding protein (HBP), IL-1β and IL-8 were 
determined with ELISA. The bacterial microbiome of the samples were analysed with 16S rDNA sequencing and char-
acterized based on richness and evenness. The distance in microbiome composition between samples were deter-
mined using Bray–Curtis and weighted and unweighted UniFrac.

Results:  A total of 46 samples from 22 patients were included in the study. Samples collected during infection and 
samples with high levels of inflammation were characterized by loss of bacterial diversity and a significantly different 
species composition. Burkholderia, Corynebacterium and Staphylococcus were enriched during infection and inflam-
mation, whereas anaerobes and normal oropharyngeal flora were less abundant. The most common findings in BAL 
cultures, including Pseudomonas aeruginosa, were not enriched during infection.

Conclusion:  This study gives important insights into the dynamics of the airway microbiome of LTx recipients, and 
suggests that lung infections are associated with a disruption in the homeostasis of the microbiome.
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Background
Lung transplantation (LTx) is an increasing treatment 
option for end-stage lung disease, but despite advances in 
modern medicine the mortality rates are still high with 
a median survival of 6.0  years [1]. LTx recipients are at 
high risk for airway infections due to heavy immunosup-
pressive therapy in combination with constant exposure 

to the external environment, micro-aspiration of the 
oropharyngeal microbiome, and defective mechanical 
defences due to denervation of the allograft, disrupted 
lymphatic drainage and impaired muco-ciliary clearance 
[2]. Previous studies on LTx patients have shown that 
airway infections are common, and that patients expe-
riencing episodes of pneumonia have higher mortality 
rates [3]. It is therefore important to correctly diagnose 
and treat airway infections in this group of patients. Most 
previous studies on the aetiology of airway infections 
in LTx recipients have used results from culture-based 
techniques [3–5]. However, this approach has several 
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drawbacks. For example, cultures are limited to known 
and culturable species, and they are unable to differen-
tiate between microbes causing disease versus microbes 
colonizing asymptomatic carriers [6]. This was illustrated 
in an earlier study, where we demonstrated that bacte-
rial findings in BALF cultures were similar in patients 
with and without clinical signs of infection at the time of 
sampling [7]. The difficulty in interpreting culture find-
ings emphasizes the great need for new tools, including 
microbiome analyses, to identify and understand the 
aetiology of respiratory infections in these patients [6].

In this study, we analysed the microbiome composition 
of bronchoalveolar lavage fluid (BALF) samples collected 
from LTx patients during their first post-operative year. 
The findings were correlated with clinical signs of infec-
tion and inflammatory markers in BALF. The aim was to 
characterize and compare the airway microbiome com-
position during infection and non-infection.

Methods
Study setting and patient population
The samples included in this study are from a patient 
cohort described previously [8]. In short, adult patients 
accepted for LTx during the period October 2012 to 
December 2014 were eligible for inclusion. Patients 
under 18  years of age and patients with follow-up at 
other sites were excluded. Standard protocol for immune 
suppression included induction therapy with anti-thy-
mocyte globulin followed by tacrolimus or cyclosporine, 
mycophenolate mofetil, and steroids. All study par-
ticipants were followed for a maximum of 1  year after 
transplantation. BALF samples were collected at routine 
bronchoscopies at 3 and 6 months after LTx, and at diag-
nostic bronchoscopies in response to symptoms. BALF 
samples collected less than 7 days after the previous sam-
pling were excluded from the study. All samples were 
analysed with routine bacterial cultures at the Depart-
ment of Clinical Microbiology at Skåne University Hos-
pital. The likelihood of pulmonary bacterial infection at 
the time of sampling was graded as no, possible, probable 
or definite infection based on (A) radiology, (B) macro-
scopic appearance at bronchoscopy and inflammatory 
cells in BALF, (C) clinical symptoms of airway infection, 
and (D) bacterial culture results [see Additional file  7: 
Table S1]. Samples classified as no infection had none of 
the infection criteria. Possible infection fulfilled one cri-
terium. Probable infection had two or three criteria (A 
and/or B plus C and/or D). Definite infection fulfilled cri-
teria A-D. The definition of infection was adapted from 
the ISHLT guidelines [9]. In this study, samples classified 
as probable and definite infection were considered hav-
ing an infection, whereas no and possible infection were 
considered representing no infection. The inflammatory 

biomarkers Heparin binding protein (HBP), IL-1β and 
IL-8 were analysed in the BALF samples and cut-off val-
ues determined as previously described [8].

Sample preparation and sequencing
BAL procedure followed a standardised protocol [8]. 
Study samples were obtained after instillation of 20  mL 
phosphate-buffered saline (PBS), where the initial 10 mL 
of recovered BALF were discarded after which a study 
sample of 10 mL was collected. BALF samples were cen-
trifuged and total DNA was subsequently extracted from 
the cell pellet using QIAamp DNA Mini Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s proto-
col. Library preparation, fragment analyses and sequenc-
ing of the 16S amplicon (V3-V4) region were done by 
BaseClear B.V, Leiden, The Netherlands. In short, the 16S 
amplicon libraries were prepared from the DNA samples 
using 341F [CCT​ACG​GGNGGC​WGC​AG] and 805R 
[GGA​CTA​CHVGGG​TWT​CTAAT] primer pair [10] 
with sample indexes. These amplicons were then ana-
lysed in FragmentAnalyser and the expected amplicon 
size (~ 434 bp) were selected and purified using BluePip-
pin (2% gel) (Sage Science, MA USA) and AMPure beads. 
These purified samples were then pooled and sequenced 
with Illumina MiSeq paired-end (2 X 300 bp) sequencing.

Bioinformatics and statistical analyses
The demultiplexed samples from MiSeq were checked 
for quality using FastQC [11] and processed with the 
QIIME2 (v.2018.11) [12]. The amplicon sequence vari-
ants (ASVs) for 16S were predicted using the DADA2 
[13] pipeline within QIIME2. These 16S ASVs were then 
curated separately using LULU [14]. The taxonomy of 
curated ASVs were predicted using the tool VSEARCH 
[15] in combination with the SILVA (v. 132) database 
[16]. The resolution between the genera Burkholderia, 
Caballeronia and Paraburkholderia is not well defined 
in the SILVA-16S database [17]. This group of genera will 
further be referenced as “Burkholderia-group” in this 
manuscript. The alpha- and beta-diversity measures for 
these samples, including the phylogeny based measures 
(UniFrac [18]) were calculated in QIIME2. Further, all 
the statistical analyses on these samples were performed 
using the PHYLOSEQ [19] and ‘vegan’ [20] packages 
in R. For calculating the significant organisms that are 
abundant in different samples, DESeq2 [21] based dif-
ferential abundance analysis was performed. Categorical 
data were compared using Fisher’s exact test.

Results
Patient cohort and samples
In total, 46 BALF samples from 22 patients were 
included in the study, see Table 1 and [Additional file 8: 
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Table S2] for patient characteristics. The study partici-
pants contributed a median of 2 samples per patient 
(range 1–4). Of these, 31 (67%) were collected during 
an airway infection episode, and 16 (35%) during ongo-
ing antibiotic treatment (Table 2). The majority of sam-
ples collected during antibiotic treatment (13 out of 16) 
belonged to the infection group. Figure  1 presents the 
relative abundance of the ten most abundant bacterial 
genera in each patient and sample. In 35 of the samples 
(78%), bacterial species other than normal oral flora 
were identified in the conventional culture. All culture 
findings were identified in the corresponding micro-
biome analyses, and in 20 samples (57% of the culture 
positive samples) the bacterium found in cultures was 
the dominating species in the microbiome. Of these 
20 samples, 17 (85%) were collected during ongoing 

airway infection, compared to 9 of the 15 samples (60%) 
without a dominating culture finding in the microbi-
ome (p = 0.13).

Species diversity and microbiome composition is altered 
during infection and inflammation
Alpha diversity metrics within each sample was assessed 
by calculating phylogenetic diversity (faith), species rich-
ness (number of observed ASVs) and species diversity 
(shannon index). The microbiomes of samples collected 
during ongoing infection had a significantly lower num-
ber of observed ASVs and a lower shannon index, indi-
cating a lower species diversity, compared to samples 
from non-infected patients (Fig.  2a). No difference in 
alpha-diversity was found between samples with or with-
out on-going antibiotic treatment [Additional file 1: Fig-
ure S1]. In a sub-analysis on non-antibiotic samples only, 
the same trend with lower species richness in samples 
collected during infection was seen [Additional file  2: 
Figure S2]. Next, samples with high and low BALF lev-
els of the inflammatory biomarkers HBP, IL-1β and IL-8 
were compared. HBP concentrations above 150 ng/mL in 
BALF were regarded as high, whereas the cut-off levels 
for IL-1β and IL-8 were 10 and 1 ng/mL, respectively [8]. 
As seen in Fig. 2b–d, the number of observed ASVs was 
significantly higher in samples with low levels of the bio-
markers. Samples with low concentrations of IL-1β also 
had a higher Shannon index, suggesting a higher diversity 
within this group of samples.

Differences in the microbiome composition between 
the study samples were compared using Bray–Curtis dis-
tance and weighted or unweighted UniFrac. A significant 
difference in the microbiome composition was detected 
when samples collected during infection was compared 
to non-infection samples using Bray–Curtis (p < 0.05) 
(Fig. 3a) and weighted UniFrac (p < 0.05) (Fig. 3b). When 
samples with high and low levels of the biomarkers were 
compared, a significant difference was found for HBP 
using Bray–Curtis (p < 0.05) (Fig. 3a) and weighted Uni-
Frac analyses (p < 0.05) (Fig.  3b), and for IL-1β in the 
weighted UniFrac analyses (p < 0.05)[ Additional file  3: 
Figure S3]. No differences in the microbiome compo-
sition was found in samples with high versus low IL-8 
concentrations.

Patients with on-going antibiotic treatment at the 
time of sampling had a significantly different microbi-
ome composition compared to patients without antibi-
otics (p < 0.01 in the Bray–Curtis analyses and p < 0.01 
with Weighted UniFrac)[ Additional file  4: Figure S4], 
and patients with cystic fibrosis (CF) had a significantly 

Table 1  Patient characteristics

COPD Chronic Obstructive Pulmonary Disease

PAH Pulmonary Arterial Hypertension

BOS Bronchiolitis Obliterans Syndrome

GVH Graft versus host disease

Total number of patients; n 22

Age; median (range) 57 (24–65)

Male gender; n (%) 13 (59)

Type of lung Tx; n (%)

 Single
 Double

4 (18)
18 (82)

Underlying diagnosis; n (%)

 Cystic fibrosis
 Fibrosis
 Emphysema
 COPD
 PAH
 BOS
 Sarcoidosis
 GVH

6 (27)
5 (23)
3 (14)
3 (14)
2 (9)
1 (5)
1 (5)
1 (5)

Table 2  BALF sample characteristics

*Several bacterial species may be found in one culture, and the total number of 
findings can therefore exceed the number of samples

Number of BALF samples 46

Samples/patient; median (range) 2 (1–4)

Sample collection during; n (%)

 No infection
 Infection
 Antibiotic treatment

15 (33)
31 (67)
16 (35)

Bacterial growth in conventional cultures; n (%)*

 Pseudomonas aeruginosa
 Escherichia coli
 Stenotrophomonas maltophilia
 Burkholderia spp
 Staphylococcus aureus
 Other bacteria
 Negative culture

9 (20)
8 (18)
5 (11)
4 (9)
4 (9)
9 (20)
11 (24)
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different microbiome compared to patients with other 
underlying diseases (p < 0.001, p < 0.05 and p < 0.05 using 

Bray–Curtis, Weighted UniFrac and Unweighted Uni-
Frac, respectively) [Additional file 4: Figure S4].
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Fig. 2  Alpha-diversity of BALF samples. The microbiome composition of each sample was assessed based on phylogenetic diversity (faith; left 
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Enrichment of species during infection, inflammation 
and antibiotic treatment
Enrichment analyses identified several genera that were 
more commonly found during episodes of infection 
(Fig.  4). The most enriched genus was Burkholderia-
group, represented by Burkholderia multivorans on the 
species level. Corynebacterium and Staphylococcus, rep-
resented by S. aureus on the species level, were also found 
among the enriched species during infection. Among the 
less abundant genera during infection, several anaer-
obes believed to be part of the normal flora were iden-
tified, such as Lactobacillus, Prevotella, Porphyromonas 
and Rothia (Fig. 4). Some genera, such as Streptococcus, 
contained both enriched and less abundant species dur-
ing infection. Analyses on the species level for the Strep-
tococcus genus showed that an uncultured species was 
enriched during infection whereas S. equinus was less 
abundant [see Additional file 9: Table S3]. When samples 
with high or low inflammatory biomarkers were com-
pared, Burkholderia-group was again the most enriched 
genus in samples with high levels of HBP, IL-1β or IL-8. 
S. aureus and Corynebacterium were also enriched in all 
three groups, whereas anaerobes and normal oral flora 
were less abundant [see Additional file 10: Table S4].

In samples collected during on-going antibiotic treat-
ment, Enterococcus, Mycoplasma, Staphylococcus and 
Pseudomonas were among the most enriched species 
[Additional file  5: Figure S5]. Anaerobes and oral flora, 
including Lactobacillus, Streptococcus, Prevotella and 
Haemophilus, were again less abundant.

Given that Burkholderia-group was the most enriched 
species during infection and inflammation, and that all 
study samples dominated by Burkholderia-group were 
from the same patient, we repeated all analyses without 
this specific patient. The results of the alpha-diversity 
analyses were similar to the results for the whole group, 
with significantly lower numbers of observed ASVs dur-
ing infection and inflammation. When comparing the 
microbiome composition, the distance between infection 
and non-infection samples was no longer significant in 
the Bray–Curtis analyses (p = 0.06), whereas the differ-
ence in microbiome composition between samples col-
lected during antibiotic treatment or not was still highly 
significant (p < 0.01). As expected, Burkholderia-group 
was no longer enriched during infection or in samples 
with high levels of the inflammatory markers [Additional 
file 6: Figure S6].

Discussion
In this prospective study on LTx patients, the microbi-
ome of patients with airway infection was characterized 
by loss of bacterial diversity. Similar results were obtained 
both when samples were classified based on clinical signs 

of infection in the patient, and on the degree of inflam-
mation in the sample. These results are in agreement 
with previous studies that also reported loss of microbi-
ome diversity in LTx recipients during infection [22, 23]. 
Moreover, the microbiome composition was significantly 
different in samples collected during infection versus 
non-infection, and in samples with high versus low lev-
els of the inflammatory biomarkers HBP and IL-1β. Bur-
kholderia, Corynebacterium and Staphylococcus aureus 
were significantly enriched during infection and inflam-
mation, whereas anaerobes and normal oropharyngeal 
flora were underrepresented. Although we can’t prove 
that the enriched species are causative of infection, both 
Burkholderia and S. aureus are recognized as important 
pathogens in LTx recipients [3, 24–26]. Corynebacterium 
has been reported to be enriched in patients with chronic 
rhinosinusitis [27], but has not been described in LTx 
recipients before.

The lung microbiome of healthy individuals is char-
acterized by a low bacterial load and a high species 
diversity, with the most common genera being Prevo-
tella, Streptococcus, Veillonella, Neisseria, Haemophi-
lus, and Fusobacterium [28, 29]. In this study, Prevotella 
was found among the under-represented species dur-
ing infection and inflammation. In agreement with our 
findings, a Prevotella-dominated microbiome has been 
reported to be underrepresented during inflammation in 
LTx patients [30]. Moreover, Prevotella has been shown 
to be less pro-inflammatory in vivo [30] and to induce a 
weaker cytokine response in murine models of airway 
infections compared to pathogens associated with disease 
in Chronic Obstructive Pulmonary Disease (COPD) [31]. 
On the other hand, Veillonella and Fusobacterium, that 
are part of the normal lung microbiome, were enriched 
during inflammation and infection. However, the micro-
biome of the transplanted lung is most likely different 
from that of the healthy lung due to immunosuppressive 
therapy, altered immune defences and high use of anti-
biotics. For example, it has been shown that LTx recipi-
ents have a higher bacterial burden in the lower airways 
compared to healthy controls [32]. It is possible that less 
virulent bacteria may cause infection in this group of 
patients.

Antibiotic treatment at the time of sampling did not 
affect species richness and abundance of the study sam-
ples, which is in agreement with previous reports [23]. 
However, antibiotic treatment was one of the param-
eters that affected the beta-diversity the most in this 
study. These differences in microbiome composition 
were more significant than when samples were compared 
based on clinical signs of infection or level of inflamma-
tion. Importantly, many of the species that were enriched 
during antibiotic treatment, for example Enterococcus, 
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Mycoplasma and Pseudomonas, are resistant to com-
monly used antibiotics. Therefore, we can’t know whether 
these species are more virulent and cause infection that 
need antibiotic treatment, or if they are enriched dur-
ing antibiotic treatment because of their resistance to 
antimicrobials.

All bacterial species found in BALF cultures in our 
sample cohort were also identified in the corresponding 
bacterial microbiome, although not always the dominat-
ing species. Surprisingly, none of the three most common 
species found in BAL cultures, including P. aeruginosa, 
were enriched during infection or inflammation (Table 2 
and Fig. 3). P. aeruginosa has previously been reported as 
an important pathogen in culture-based studies on LTx 
recipients with pneumonia [3, 5, 33], and it was found 
to be more abundant in the microbiome of LTx patients 
with signs of acute infection in a study by Dickson et al. 
[23]. Many LTx recipients, and in particular patients 
with CF, are chronically colonized with Pseudomonas in 
the lung, and findings of P. aeruginosa in cultures could 
within the same patient represent either chronic colo-
nization or acute infection at different time points. In 
line with this hypothesis, a previous microbiome study 
on longitudinal sputum samples from COPD patients 
suggested that the subjects had individual microbiomes 
that were distinct from each other, and that exacerba-
tions were likely to result from changes in the relative 
abundance of pre-existing bacteria rather than removal 
or appearance of existing species [34]. This could also fit 
well with a proposed conceptual model of airway infec-
tion, where the development of pneumonia results from a 
disruption in the complex homeostasis of the lung micro-
biome [35].

An important limitation of this study is the small num-
ber of patients, and the results must therefore be inter-
preted with caution. In addition, the study participants 
contributed with different numbers of samples to the 
study. For example, all samples with Burkholderia-group 
were from the same patient. To address this possible 
bias, we did analyses both with and without this spe-
cific patient. Most results were still comparable, with the 
exception that the differences in microbiome composi-
tion during infection and non-infection was just above 
the limit for significance in the Bray–Curtis analyses 
(p = 0.06). Even so, the enrichment analyses gave similar 
results, indicating that this patient did not bias the results 
other than for Burkholderia-group. Another difficulty is 
that our cohort included patients with different underly-
ing diseases. This could affect the results, as the micro-
biome may vary depending on the underlying diagnosis. 
For example, we could show that CF-patients had a sig-
nificantly different microbiome composition compared 
to other patients [Additional file  4: Figure S4]. This is 

probably explained by the fact that CF patients are colo-
nized with bacteria in both the upper and lower airways, 
and that the sinuses are an important reservoir for bacte-
ria that can re-infect the graft [36, 37].

In conclusion, the airway microbiome of LTx recipients 
is characterized by loss of bacterial diversity and altered 
microbiome composition during infection. The most 
common species in BALF cultures were not found among 
the enriched species in the microbiome during infection. 
Taken together, the data suggests that airway infections 
are associated with a disturbed balance of the microbi-
ome, and emphasizes the difficulty in interpreting BALF 
culture results from these patients.
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Additional file 1: Figure S1. Alpha-diversity in samples collected during 
antibiotic treatment. The microbiome composition of each sample was 
assessed based on phylogenetic diversity (faith; left panels), species rich-
ness (number of observed ASVs; middle panels) and ASV diversity richness 
combined with abundance (shannon index; right panels). No significance 
was found in any of the three metric comparisons.

Additional file 2: Figure S2. Comparison of alpha-diversity metrics 
between infection and non-infection samples after exclusion of samples 
collected during antibiotic treatment. Phylogenetic diversity (faith; left 
panels), species richness (number of observed ASVs; middle panels) and 
ASV diversity richness combined with abundance (shannon index; right 
panels) were compared between infection and non-infection samples. 
Only samples without antibiotic treatment at the time of sampling were 
included in the analyses (n = 30). No significance was found in any of the 
three metric comparisons.

Additional file 3: Figure S3. Comparison of microbiome beta-diversity in 
relation to IL-1β concentrations. PCoA plot of the distance in the microbi-
ome composition between samples with high (grey) versus low (yellow) 
levels of IL-1β. The distances are calculated with weighted UniFrac and are 
significantly different (p ≤ 0.05).

Additional file 4: Figure S4. Beta-diversity in relation to antibiotic 
treatment and underlying diagnosis. PCoA plots of the distances in the 
microbiome composition between samples collected during ongoing 
antibiotic treatment (blue) or no antibiotic treatment (red), and between 
samples from patients with cystic fibrosis (CF; circles) compared to other 
underlying diagnoses (triangles). a Shows Bray–Curtis distances, where 
significant differences in the microbiome composition were found 
between samples collected during antibiotic treatment compared to 
no antibiotic treatment (p < 0.01), and between samples from patients 
with CF compared to other underlying conditions (p < 0.001). b Shows 
differences calculated with weighted UniFrac. Significant differences were 
found between samples with or without ongoing antibiotic treatment at 
the time of sampling (p < 0.01) and between samples from CF-patients 
versus non-CF patients (p < 0.05).

Additional file 5: Figure S5. Enrichment analyses of species in samples 
collected during antibiotic treatment. Each dot represents an ASV, and 
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ASVs with a log2FoldChange above zero are enriched during antibiotic 
treatment, whereas ASVs below zero are less abundant. Only ASVs with 
adjusted p-values < 0.01 are plotted in the figure. The different colours 
represent different bacterial phyla.

Additional file 6: Figure S6. Enrichment analyses of bacterial species 
in samples graded as infection. Five BALF samples with dominance of 
Burkholderia-group in the microbiome, all from the same patient, were 
excluded from this analysis in order to assess the possible bias of the 
results due to these samples. Each dot represents an individual ASV and 
only ASVs with adjusted p-values < 0.01 are plotted in the figure. ASVs with 
a log2FoldChange above zero are enriched during antibiotic treatment, 
whereas ASVs below zero are less abundant. The different colours repre-
sent different bacterial phyla.

Additional file 7: Table S1. Grading of infection.

Additional file 8: Table S2. Patient and sample characteristics.

Additional file 9: Table S3. Enrichment analysis for samples collected 
during infection.

Additional file 10: Table S4. Enrichment analysis for the three inflamma-
tory biomarkers.
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