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Abstract

Background: The association between diurnal temperature range (DTR) and hospitalization for exacerbation of
chronic respiratory diseases (CRD) was rarely reported.

Objectives: To examine the association between DTR and daily hospital admissions for exacerbation of CRD and
find out the potential effect of modifications on this association.

Method: Data on daily hospitalization for exacerbation of chronic obstructive pulmonary disease (COPD), asthma
and bronchiectasis and meteorology measures from 2013 through 2017 were obtained from 21 cities in South
China. After controlling the effects of daily mean temperature, relative humidity (RH), particulate matter < 2.5 μm
diameter (PM2.5) and other confounding factors, a standard generalized additive model (GAM) with a quasi-Poisson
distribution was performed to evaluate the relationships between DTR and daily hospital admissions of CRD in a
two-stage strategy. Subgroup analysis was performed to find potential modifications, including seasonality and
population characteristics.
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Result: Elevated risk of hospitalization for exacerbation of CRD (RR = 1.09 [95%CI: 1.08 to 1.11]) was associated with
the increase in DTR (the 75th percentile versus the 25th percentile of DTR at lag0–6). The effects of DTR on hospital
admissions for CRD were strong at low DTR in the hot season and high DTR in the cold season. The RR (the 75th
percentile versus the 25th percentile of DTR at lag0–6) of hospitalization was 1.11 (95%CI: 1.08 to 1.12) for
exacerbations of COPD and 1.09 (95%CI: 1.05 to 1.13) for asthma. The adverse effect of DTR on hospitalization for
bronchiectasis was only observed in female patients (RR = 1.06 [95%CI: 1.03 to 1.10]).

Conclusion: Our study provided additional evidence for the association between DTR and daily hospitalization for
exacerbation of CRD, and these associations are especially stronger in COPD patients and in the cold season than
the hot season. Preventive measures to reduce the adverse impacts of DTR were needed for CRD patients.

Keywords: Diurnal temperature range, Chronic obstructive pulmonary disease, Asthma, Bronchiectasis,
Hospitalization

Introduction
High prevalence of chronic respiratory diseases (CRD)
has contributed to the magnitude of the non-fatal health
burden globally [1]. Chronic obstructive pulmonary dis-
ease (COPD) is the fourth leading cause of mortality in
the world, especially in the elderly population, and the
third leading cause of years of life lost in China [2].
Asthma is also one of the most common CRD in high-
income areas with a global prevalence of 4.3% (95% CI:
4.2 to 4.4) in adults [3]. Given great prevalence in both
developed and developing countries, bronchiectasis is
also regarded as one of the most common chronic re-
spiratory diseases [4]. Acute exacerbations of CRD refer
to episodes of worsening symptoms and commonly re-
sulted in seeking healthcare use, including outpatient
service, emergency room visits, and hospital admissions
[5]. As one of the severe outcomes of exacerbations,
hospitalization is a major contributor to the disease bur-
den of CRD [6].
Climate change, usually caused by human activity, was

suggested to be risk factors of health effects, especially in
CRD [7]. Diurnal temperature range (DTR), as defined
by the difference between the maximum and minimum
temperatures within 1 day, is an important meteoro-
logical indicator associated with climate change [8]. Pre-
vious studies showed a positive association between
DTR and non-CRD hospitalization [9–11]. Moreover,
gender, age, season and geographical location may mod-
ify the effects of DTR on mortality which indicated that
some subpopulations are more susceptible to DTR than
others [10, 12–15]. For example, mortality among the
elderly, the less educated, females were associated more
strongly with DTR [16, 17]. Lee et al. suggested the
DTR-effect on respiratory mortality was observed in ex-
tremely cold region [18]. But the argument about the
modifiers of the DTR and CRD-related hospitalization
still exists. Lim et al. suggested that the asthma admis-
sion was significantly higher in the elderly than those
aged under 75 years in short-term DTR exposure, but no

significant difference was found in patients with COPD
[10]. But Phosri et al. suggested that no significant dif-
ference was found when stratified by sex or age in ex-
tremely high DTR [9]. Further research is needed to
confirm whether those factors (i.e., sex, age, season) will
modify the association between DTR and hospitalization.
Moreover, previous studies have been conducted in a

focus on a single city and then have omitted the spatial
effects of DTR [8]. Applicability of those studies may be
limited on multi-city or country scale [19]. Moreover,
those studies estimated only a single disease of respira-
tory rather than CRD [20, 21].
To fill the gaps listed above, we estimated the associ-

ation of DTR with hospital admissions for exacerbations
of CRD in 21 cities, China, from 2013 to 2017. We also
evaluated whether the associations were modified by sex,
age and seasons (i.e., ‘hot’ and ‘cold’ season).

Methods
Meteorological and air pollution data
Guangdong Province is located in the South of China.
Our study was limited to 21 cities of Guangdong Prov-
ince (179,700 km2) - Zhanjiang, Maoming, Yangjiang,
Zhaoqing, Shaoguan, Heyuan, Meizhou, Qingyuan,
Yunfu, Shantou, Shanwei, Chaozhou, Jieyang, Shenzhen,
Zhuhai, Foshan, Jiangmen, Dongguan, Zhongshan, Huiz-
hou and Guangzhou. Data on daily maximum, minimum
and mean temperatures and relative humidity (RH) were
collected from the National Meteorological Information
Center of China (http://data.cma.cn/). There were 68
local weather stations recorded daily measures across
Guangdong Province from January 1, 2013 to December
31, 2017. We calculated city-wide meteorological mea-
sures by averaging data from stations located in a spe-
cific city. Without local weather stations, data of
Chaozhou city and Foshan city were collected from the
nearest monitoring sites located in Jiexi districts and
Gaoyao districts, respectively. DTR was calculated by
subtracting daily minimum temperature from daily
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maximum temperature. Data on daily city-wide concen-
trations of particulate matter < 2.5 μm diameter (PM2.5)
were obtained from the Guangdong Provincial Environ-
mental Monitoring Center. All data from 102 central
monitoring stations in 21 cities were available.

Hospitalization data
In China, only second and tertiary level hospitals that
are qualified to provide specialized medical-care for ex-
acerbation of COPD, asthma and bronchiectasis.
There were 227 government-tiered second or tertiary

hospitals in 21 cities that have uploaded their daily
hospitalization records to the electronic medical record
system of Guangdong Government Affairs Service Cen-
ter. International Classification of Diseases 10th (ICD-
10) codes including J44, J45–46 and J47 were used to
identified hospitalization for exacerbations of COPD,
asthma and bronchiectasis, respectively.

Statistical analysis
Spearman correlation analysis was performed among
DTR, daily mean temperature, RH and daily concentra-
tion of PM2.5. The association of DTR with daily
hospitalization for exacerbation of CRD was estimated
by a two-stage analysis using 21-city data.
In the first stage, we adopted a standard generalized

additive model (GAM) with a quasi-Poisson distribution
[22] to investigate the city-specific relationship of DTR
and hospital admissions for exacerbations of CRD.
Seven-day moving average (lag 0–6) was used to present
the lag effect of DTR. In the framework of distributed
lag non-linear model (DLNM) function, we used a cubic
spline for DTR and its lag with 5 and 4 degrees of free-
dom, respectively. The 25th percentile of DTR is
regarded as the centering point. We used a natural cubic
function with 8 degrees of freedom per year to control
the long-term trends of years and seasonality [23, 24].
Day of the week and the official holiday were included
as an indicator to remove the effect of short-term fluctu-
ation [25]. Confounding meteorological measures, in-
cluding daily mean temperature at lag 0–14, RH at lag
0–3 [26, 27] and daily concentration of PM2.5 at lag 0–3
was also included into the GAM as follows:
Log [E (Yt)] = α + βDTR0–6t + ns (time, df = 8/per

year) + day of the week + holiday + ns (temperature0–14t,
df = 3) + ns(RH0-3t, df = 3) + ns(PM2.5 0-3t, df = 3).
Where E(Yt) presents the daily hospital admissions for

exacerbation of CRD on day t; α is the intercept in
specific-region; β is the regression coefficient, and its ex-
ponent value indicates the relative risk of hospitalization
per unit increase of DTR; DTR0–6t is 7-day moving aver-
age of DTR; time presents the long term trend (from 1
to 1826); temperature0–14t is 15-day moving average of
daily mean temperature; RH0-3t is 4-day moving average

of daily relative humidity; PM2.5 0-3t indicates 4-day
moving average of daily concentrations of PM2.5; ns()
presents natural cubic function.
In the second stage, we pooled the estimates in 21 cit-

ies by performing a meta-analysis. Considering the het-
erogeneity of city-level estimate, we adapted the
random-effects model by maximum likelihood (REML)
rather than fixed effects to ensure a more robust
estimation.
To explore the seasonal pattern of relationship be-

tween DTR and hospitalization for exacerbation of CRD,
data was stratified by time: hot season (May to October)
and cold season (November to April of the next year).
We used a natural cubic function with 4 degrees of free-
dom within each 6-month subperiod to control the vari-
ation of long-term trends [28]. We also divided the
hospitalization data into diverse CRD groups to investi-
gate the heterogeneity of associations of DTR with
COPD, asthma and bronchiectasis, respectively. Sub-
group analyses on sex and age (i.e., < 65 vs. ≥65 years
old) were performed to identify vulnerable population.

Sensitivity analysis
Several sensitivity analyses were applied to evaluate the
robustness of main results: (1) altering numbers of mov-
ing average for DTR; (2) varying df of the long-term
trend and meteorological measures; (3) replacing the
natural cubic spline function by penalized splines func-
tion; (4) excluding data of cities with ≤5 hospitals in
records.
Analyses were performed in STATA (version 12, Sta-

taCorp, TX) and R (version 3.6.2, R Development Core
Team) with “mgcv” and “mvmeta” packages. Statistically
significance was determined as a two-side P value < 0.05.

Results
Data description
From January 1, 2013 to December 31, 2017, a total of
670,832 hospital admissions for CRD, including exacer-
bations of COPD, asthma and bronchiectasis, were ob-
tained in our studies. E-Fig. 1 presents 21 cities in
Guangdong Province. During our study period, the mini-
mum of DTR in 21 cities was 2.0 °C and the maximum
of DTR was 15.7 °C. The IQR increase of DTR was
4.0 °C (range: 5.0 to 9.0). The mean temperature was
21.9 °C (range: 2.0 to 33.9) in Guangdong Province. The
RH was 75.5% (range: 19.1 to 100). The mean of daily
hospitalization was 263 (range: 74 to 585) for COPD, 42
(range: 8 to 85) for asthma and 62 (range: 11 to 128) for
bronchiectasis (Table 1). The DTR level for each city
was presented in e-Table 1. High correlation (i.e., Spear-
man correlation coefficients>0.7 and P value<0.05) was
not observed between meteorological and PM2.5

(Table 2).
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Regression results
Figure 1 presents the dose-response relationships be-
tween DTR at lag 0–6 days and hospitalization for ex-
acerbation of CRD. The effect of DTR on hospitalization
for exacerbation of CRD followed J-shape curves, sug-
gesting that the RRs changed slightly at low level of
DTR (range: 1.1 to 4 °C) and increased rapidly with both
moderate and high DTR. The RR of hospitalization for
exacerbation of CRD was 1.09 (95%CI:1.08 to 1.11) at
the 75th percentile compared to the 25th percentile of
DTR at lag0–6.
Figure 2 shows the season-specific effects of DTR on

hospitalization for CRD. In the hot season (May to Oc-
tober), the effect of DTR was rapidly increased from the
minimum DTR to 8 °C but slightly increased at DTR

above 8 °C. The RR (the 75th percentile vs. the 25th per-
centile of DTR at lag0–6) of hospitalization was 1.08
(95%CI: 1.05 to 1.11). In the cold season (November to
April of the next year), no significant effect was found at
DTR below 4.4 °C (i.e., 25 percentile of DTR in cold sea-
son), and the RR of hospital admissions climbed sharply
at the 75th percentile compared to the 25th percentile of
DTR at lag0–6 (RR = 1.11 [95%CI: 1.07 to 1.13]) and in-
creased slowly at DTR > 11 °C.
For COPD, the dose-response curve increased con-

stantly in the entire DTR range, with an RR of 1.11
(95%CI: 1.08 to 1.12) (Fig. 3). A positive relationship was
also found between DTR and hospital admissions for ex-
acerbations of asthma and the RR was 1.09 (95%CI: 1.05
to 1.13) at the 75th percentile compared to the 25th

Fig. 1 Pooled exposure-response relationship between DTR and hospitalization for exacerbations of chronic respiratory diseases in 21 cities, China
during 2013–2017. The pooled curves present by the continuous bold red lines and the grey areas represent the 95% confidence intervals. The
vertical dashed lines indicate the interquartile range of DTR (i.e., 25th percentile and 75th percentile) from 2013 through 2017

Table 1 City-wide daily meteorological measures, PM2.5 and hospital admissions for exacerbations of chronic respiratory diseases in
Guangdong Province, 2013–2017

Mean
(SD)

Minimum Percentile Maximum

25th 50th 75th

Daily meteorology

Diurnal Temperature Range (°C) 7.1 (3.0) 1.1 5.0 7.0 9.0 15.7

Mean Temperature (°C) 21.9 (6.1) 2.0 17.3 22.8 27.2 33.9

Relative Humidity (%) 75.5 (12.2) 19.1 67.7 76.9 84.5 100.0

PM2.5 (μg/m3) 37.2 (20.3) 7.1 19.4 32.8 46.1 141.7

Daily hospitalizations

Chronic Obstructive Pulmonary Disease 263 (76) 74 210 251 309 585

Asthma 42 (11) 8 34 41 49 85

Bronchiectasis 62 (17) 11 50 62 73 128
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percentile of DTR at lag0–6. However, statistical signifi-
cance disappeared at the high level of DTR. For bronchi-
ectasis, the lower 95% CI of the estimate was less than 1
in the whole range of DTR, showing on significant asso-
ciation (Fig. 3).
Table 3 shows the RR of hospitalization for exacerba-

tions of CRD stratified by age (≥65 years and <65 years)
and sex (male and female). Associations of
hospitalization for COPD and asthma with DTR were
found when the analysis stratified by age and sex. In
bronchiectasis patients, non-significant association was
observed in the aged subgroup or male group, while a
positive relationship was found in female patients (RR =
1.06 [95%CI: 1.03 to 1.10]).
City-specific estimates and results related to meta-

analysis, such as I2 and Q test for heterogeneity from
random-effect meta-analysis were presented in e-
Table 2.

Sensitivity analysis
The RR was consistent when we altered numbers of
moving average for DTR at lag0–6, lag0–13 and lag0–
20. Estimates were also stable when degrees of freedom
for long-term trend and meteorological measure chan-
ged. We also observed similar results when replaced the
natural cubic spline function with the penalized splines
function. Estimated RRs remained statistically significant
at lag0–6 even when data for Chaozhou, Jieyang, Shan-
tou and Shanwei were excluded (e-Table 3).

Discussion
After adjusting for confounding factors (i.e., daily mean
temperature, RH and PM2.5), we confirmed that DTR
was an independent risk factor on hospital admissions
for exacerbations of CRD, represented by COPD, asthma
and bronchiectasis. We also assessed the potential effect
modification of season and population characteristics
(i.e., sex and age). We found that the associations, as
well as the dose-response curves, were diverse in the hot
and cold seasons. Hospital admissions for COPD and
asthma were associated with DTR. Adverse effects of
DTR on bronchiectasis patients were only observed in
female.

Most of the previous studies focused on the relation-
ship between DTR and mortality, and respiratory and
cardiovascular diseases were regarded as the main cause
of mortality after short-term exposure of DTR [29].
Morbidity is another important outcome of exposure to
DTR. The effects of DTR on respiratory-related emer-
gency room visit and out-patients service were usually
investigated in the previous study but few hospital ad-
missions which reflects severe effects of DTR [30–33].
To fill this knowledge gap, we carried out a province-
wide study to investigate the association of
hospitalization for exacerbation of CRD, represented by
COPD, asthma and bronchiectasis. Our study discovered
a nonlinear DTR-CRD relationship in subtropical re-
gions. High RRs of moderate and extreme high (i.e., 50th
percentile and 100th percentile) DTR deserved more
attention. There are potential mechanisms linking
DTR and hospitalization for exacerbation of CRD: 1)
the host defense function of the respiratory system,
nasal responses and airway mucociliary clearance
could be influenced when the temperature of respira-
tory epithelium fluctuated [34, 35]; 2) increased DTR
might enhance the transmission of virus and bacteria
and resulted in the occurrence of exacerbations of re-
spiratory diseases [29, 36].
In our study, the maximum lag effect of DTR was

identified at lag0–6 (RR = 1.09 [95%CI 1.08 to 1.1]) (e-
Table 2). Furthermore, the lag effect persisted even when
the number of moving average days increased to 21 days
(RR = 1. 09 [95%CI: 1.06 to 1.12]). A previous study also
demonstrated that 8 days moving average of DTR was
associated with respiratory emergency room admissions
[30]. Similar characteristics of the lag effect of DTR mea-
sures deserve great attention, especially in severe out-
come variables like hospital admission. Identifying the
significant effect period for the occurrence of the disease
is helpful for the prediction of the DTR-related adverse
events [29].
Our study has focused on the whole range of DTR, in-

cluding extreme DTR in both hot and cold seasons. In
the hot season, the RRs of CRD hospitalization increased
rapidly in the relatively low DTR (Fig. 2). Heatwaves are
appeared in the hot season with extreme low DTR. The
adverse effects of Heatwaves on health have been widely
confirmed. We conjecture that the adverse effects of low
DTR in hot season may be related to the heatwaves [37].
However, insignificant effects of extremely low DTR
were found in the cold season. Given the minimum
temperature in the study period is 2.0 °C (Table 1), the
adverse effect of cold spells was insignificant on
hospitalization for CRD in Guangdong Province. Higher
RRs in moderate and high DTR were observed in the
cold season, demonstrating the importance of develop-
ing the preventive measures of adapting to large DTR in

Table 2 Spearman correlation coefficients between
meteorological measures and PM2.5 in Guangdong Province,
2013–2017

PM2.5 Temperature Relative humidity DTR

PM2.5 1.00 −0.47* −0.51* 0.38*

Temperature 1.00 0.19* 0.12*

Relative humidity 1.00 −0.61*

DTR 1.00

* P value < 0.005
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the cold season. For example, it is needed to provide
home heating and timely clothing for large DTR in the
cold season [38].
The associations of DTR with adverse outcomes of

COPD patients have been confirmed in previous studies.
A time-series analysis conducted in Shanghai city re-
ported that the association between DTR and daily
COPD mortality was significant [39]. The emergency

room visit for exacerbations of COPD was associated
with DTR in an ecological study in Taichung city,
Taiwan [31]. However, a city-level time series analysis
reported that the insignificant relationship between DTR
and hospitalization for total COPD patients was found
in Changchun, a northeastern city of China [21]. Using
data from 21 cities and the method of meta-analysis, we
demonstrated that the RR of hospital admissions for

Fig. 2 Pooled DTR –hospitalization for Chronic respiratory disease (CRD) association in hot season and cold season. The pooled curves present by
the continuous bold red lines and the grey areas represent the 95% confidence intervals. The vertical dashed lines indicate the interquartile range
of DTR (i.e., 25th percentile and 75th percentile) in hot season and cold season
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Fig. 3 (See legend on next page.)
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exacerbations of COPD was 1.11 (95%CI: 1. 08 to 1.12)
at the 75th percentile compared to the 25th percentile of
DTR at lag0–6. Furthermore, a previous study in Chang-
chun city observed the greatest estimates for males ap-
peared at lag 7 days, which is in line with our maximum
estimate at lag0–6. Several single-city studies have ob-
served the association of DTR with adverse health out-
comes, including emergency room visits and hospital
admissions, of asthma patients [9, 40, 41]. Our study dis-
covered that the maximum lag effect of DTR on asthma
exacerbations was at lag0–6 and the changed slightly
until lag0–14. Similar effects were found on emergency
department admissions in Brisbane, Australia [40]. To
our knowledge, the relationship between hospitalization
for bronchiectasis and DTR was assessed firstly. No sig-
nificant association between DTR and total bronchiec-
tasis patients was found. However, we found that DTR
was a risk factor for female bronchiectasis patients who
has a higher rate of hospitalization than male patients
[42]. Both exacerbations of COPD and asthma have been
confirmed to be associated with DTR, but their associa-
tions have not been compared directly. The subgroup
analysis on diverse CRD shows that COPD patients are
most vulnerable to D TR (RR = 1.11[95%CI: 1.08 to 1.1]),
and bronchiectasis patients are not sensitive to the
temperature change within a day. These results en-
hanced the importance of reducing the adverse impacts
of DTR on CRD patients, especially COPD patients.
To the best of our knowledge, this is the first multi-

city study to examine the short-term effect of the DTR
on daily hospitalization of CRD. However, there are sev-
eral limitations of our study. Firstly, measures of DTR
were mainly obtained from 21 fixed-site monitoring sta-
tions (the data of Chaozhou city and Foshan city was

replaced by nearest monitoring site) rather individual ex-
posure. Using city-wide meteorological measures could
lead to exposure measurement errors that underestimate
the adverse effect of the temperature variation within a
day [43]. Secondly, the hospitalization data of each pa-
tient depend on the hospital address, not exactly the in-
dividual living region. We assumed people would go to
the hospital near their living region in a critical situation,
and the exposure measurement errors for inter-cities pa-
tients could not be solved. Thirdly, although we obtained
data from fixed 227 hospitals, the existing CRD popula-
tions might have increased due to the aging process of
society, which could influence our estimates.
Our findings may close the knowledge gap of the rela-

tionship between DTR and CRD and highlight the im-
portance of preventive measures, such as providing
home heating, suitable clothing for large DTR, staying
indoor to avoid environment temperature variation.

Conclusion
Our study observed the independent effect of DTR on
hospitalization for CRD (i.e., COPD, asthma and bron-
chiectasis). The effects of DTR on hospital admissions
for CRD were strong at low DTR of the hot season and
high DTR of the cold season. COPD and asthma patients
were more vulnerable to DTR than bronchiectasis pa-
tients. The adverse effect of DTR on hospital admissions
for bronchiectasis was only observed in female patients.
Preventive measures to reduce the adverse impacts of
DTR were needed for CRD patients.
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Table 3 Subgroup analysis based on age, sex and seasona

COPD Asthma Bronchiectasis

Age

≥ 65 1.10 (1.05 to 1.14) 1.08 (1.02 to 1.15) 1.05 (0.97 to 1.13)

< 65 1.11 (1.10 to 1.13) 1.08 (1.03 to 1.13) 1.02 (0.89 to 1.13)

Sex

Male 1.11 (1.08 to 1.14) 1.10 (1.05 to 1.16) 1.01 (0.97 to 1.05)

Female 1.11 (1.08 to 1.13) 1.06 (1.02 to 1.11) 1.06 (1.03 to 1.10)

Season

Hot season 1.02 (1.00 to 1.04) 1.05 (0.99 to 1.11) 1.00 (0.96 to 1.04)

Cold season 1.09 (1.07 to 1.12) 1.05 (1.01 to 1.09) 1.01 (0.98 to 1.04)
a Results are presented by relative risk (95% CI) at 75th percentile compared
to 25th percentile of DTR at lag0–6
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