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Abstract

between the local microbiome and metabolome.

Background: Recent studies suggest that alterations in lung microbiome are associated with occurrence of chronic
lung diseases and transplant rejection. To investigate the host-microbiome interactions, we characterized the airway
microbiome and metabolome of the allograft (transplanted lung) and native lung of single lung transplant recipients.

Methods: BAL was collected from the allograft and native lungs of SLTs and healthy controls. 165 rRNA microbiome
analysis was performed on BAL bacterial pellets and supernatant used for metabolome, cytokines and acetylated
proline-glycine-proline (Ac-PGP) measurement by liquid chromatography-high-resolution mass spectrometry.

Results: In our cohort, the allograft airway microbiome was distinct with a significantly higher bacterial burden and
relative abundance of genera Acinetobacter & Pseudomonas. Likewise, the expression of the pro-inflammatory cytokine
VEGF and the neutrophil chemoattractant matrikine Ac-PGP in the allograft was significantly higher. Airway
metabolome distinguished the native lung from the allografts and an increased concentration of sphingosine-like
metabolites that negatively correlated with abundance of bacteria from phyla Proteobacteria.

Conclusions: Allograft lungs have a distinct microbiome signature, a higher bacterial biomass and an increased Ac-
PGP compared to the native lungs in SLTs compared to the native lungs in SLTs. Airway metabolome distinguishes the
allografts from native lungs and is associated with distinct microbial communities, suggesting a functional relationship

Introduction

Recent studies have implicated the lung microbiome in the
occurrence of chronic lung diseases such as idiopathic pul-
monary fibrosis (IPF), chronic obstructive pulmonary dis-
ease, cystic fibrosis and chronic lung allograft dysfunction
(CLAD) in lung transplant recipients [1-4]. There is emer-
ging evidence that early alterations in lung microbiome
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and/or dysbiosis modulates inflammatory mediators leading
to pathogenesis and/or progression of chronic lung diseases
including CLAD [5-7]. Our group recently reported that a
shift to a Proteobacteria dominant allograft microbiome
was associated with CLAD in lung transplant recipients [8].
Likewise, microbial adaptations and changes in bacterial di-
versity have been implicated in progression of fibrosis in
IPF subjects [4]. However, the mechanisms involved in the
microbiome-host interactions leading to chronic lung in-
flammation are not well understood.

Delineation of the microbiome signatures and taxonomic
profiles of bacterial communities in various disease states is
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an important first step but does not directly provide an
insight into bacteriome-allograft-host interaction. Bacterial
colonization and/or infection leading to pathology often re-
sults in physiological changes in the host, including alter-
ations in metabolic profile [9, 10]. A better understanding
of these metabolic shifts associated with a specific infection
can improve our understanding of disease pathophysiology
through the identification of by-products of host and mi-
crobial metabolism, while also providing vital information
about the unique metabolites produced with these ever-
changing interactions [11]. In particular, the delineation of
bacterial metabolism and the host/allograft inflammatory
response is critical to better define factors modulating the
local microbiome. Metabolites or metabolomic profiles
identified in a defined cohort can also serve as potential
biomarkers for disease characterization and/or novel thera-
peutic targets [12]. In the context of a potential clinical ap-
plication, unique metabolome signatures in urine have
been found to distinguish Streptococcus pneumoniae from
Staphylococcus aureus lung infection [13]. Similarly, lung
metabolome analysis from HIV subjects have shown that
pyochelin, a siderophore produced by Pseudomonas aeru-
ginosa, is elevated in HIV-infected individuals compared
to HIV-uninfected individuals [14]. Likewise, specific me-
tabolome pathways have been identified in lung transplant
recipients with CLAD [15], though further investigations
are needed to delineate its relevance to CLAD pathobiol-
ogy. Identification and correlation of novel metabolome
profiles associated with specific pathological microbiome
signatures may help guide personalized treatment of host
disease states [16].

Dysregulation of muco-ciliary clearance and subsequent
increases in bacterial burden are well described in advanced
lung disease [17, 18]. Moreover, colonization of pathobionts
in diseased native lungs of single lung transplant recipients
(SLTs) may alter and/or contribute to the microbiome of
the allografts [19, 20]. However, to date, the interaction of
the metabolome and microbiome in the allografts and na-
tive lungs has not been evaluated in patients after lung
transplantation. In this study, we utilized the airway micro-
biome and metabolome signatures of the native lungs and
transplanted lungs (allografts) of SLTs as a model system to
answer fundamental questions regarding the inherent lung
metabolome and its influence on the lung microbiome. We
hypothesized that the airway metabolome would correlate
with the abundance of distinct microbiome signatures in
the native and allografts lungs of SLTs.

Material and methods

Subjects for the study were recruited from the adult lung
transplant program at the University of Alabama at Bir-
mingham between September 2014 to July 2016. Six
consecutive adult (> 18 years) single lung transplant re-
cipients undergoing bronchoscopy due to a decline in
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pulmonary function were recruited for this study. Writ-
ten consent was obtained for sample collection under an
institutional review board—approved protocol (IRB No.
X120606006, University of Alabama at Birmingham).
Subject details are elucidated in Table 1. Bronchoalveo-
lar lavage (BAL) samples from non-transplant volunteers
attending the UAB lung health center clinic and Univer-
sity of South Florida were collected. Demographics of
the non-transplant volunteers are detailed in supplemen-
tary text.

Sample collection

Bronchoalveolar lavage (BAL) fluid from the allograft
(A) (i.e. the transplanted lung) and the native lung (N)
of each SLT subject were collected using two separate
bronchoscopes. Bronchoscopic control samples (C) were
collected from each bronchoscope used prior to the pro-
cedure (25 ml of sterile saline flushed via the broncho-
scope and collected). For standardization, all
bronchoscopies were conducted via the oral route and
separate scopes used for sampling the A and N sides of
each subject. A total of 120 ml of saline (4 aliquots of 30
cc) were instilled for the BAL on each side (right middle
lobe and lingula) and remnant BAL fluid was collected
from the last aliquot fraction from the right middle lobe
and lingula of allograft and native lung. Similarly, non-
transplant normal lung volunteers BAL (H) were col-
lected and processed.

Processing of samples

Two aliquots (5 ml each) of N, A and H BAL fluid sam-
ples were centrifuged at 1000 rpm for 5 min to separate
the eukaryotic cellular fraction. The supernatants were
centrifuged again at 15,000 rpm for 10 min to pellet the
bacterial component. Similarly, 2 aliquots (5 ml each) of
control (C) samples from each bronchoscope used were
collected and centrifuged at 15,000 rpm for 10 min to
pellet the bacterial component. All bacterial pellets were
then stored at — 80 °C. Supernatants from each samples
after collection of bacterial pellet were also stored at -
80 °C. DNA was extracted from the bacterial pellets. The
two processed aliquots from each BAL sample served as
technical replicates. Microbiome sequencing as below
was performed from each BAL sample in duplicates.
DNA from pellets was extracted using Zymo DNA ex-
traction (CA) kit. Polymerase chain reaction (PCR) amp-
lification of the V4 region of the 16S rRNA gene was
performed and products used for microbial DNA se-
quencing using illumina miseq platform. Data was ana-
lyzed used QIIME pipeline and CLC genomics
workbench platforms [8]. 16S quantitative PCR to esti-
mate bacterial count was performed using published
methodologies [21-23]. Supernatant from the above
samples were used to measure Ac-PGP levels, multiplex
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Table 1 Baseline Characteristics of Single lung transplant subjects
S. Age Gender Side of Duration of Pre-transplant IS Prophylactic BAL Culture  BAL cell CLAD at  CLAD at
No Transplant Transplant  diagnosis Antibiotic count sample follow-up
(months) differential collection (2 years)
(Y/N) (Y/N)
1 64 M Left 20 IPF Tac, Pred, Val, Itra, Dapsone, Negative M-99%, N-1% N N
Aza
2 57 M Right 13 CTD-ILD Tac, Pred, TMP/SMX, Val, Negative M-95%, L-3%, Y Y
MMF Vori N- 2%
3 64 M Left 30 IPF Tac, Pred, Azithro, TMP/ Negative M-10%, L-40%, N Y
MMF SMYX, Val N- 50%
4 69 M Left 31 IPF Tac, Pred, Dapsone, Negative M-93%, L-5%, N Y
Aza Azithro, N-2%
5 59 F Right 18 IPF Tac, Aza TMP/SMX Negative M-38%, L- 54%, N Y
Pred N 8%
6 62 M Left 79 IPF Tac, Pred Dapsone 1000 CFU M-58%, L-3%, Y Y

normal flora N-39%

Abbreviations: IS Immunosuppression, Azithro Azithromycin; CLAD Chronic Lung Allograft Dysfunction, IPF Idiopathic pulmonary fibrosis, CTD-ILD Connective tissue
disease related interstitial lung disease, Aza Azathioprine, Itra itraconazole, MMF Mycophenolate mofetil, Pred Prednisone, Tac Tacrolimus, TMP/SMX Trimethoprim-
sulfamethoxazole, Val Valganciclovir, Vori Voriconazole, M Macrophages, L Lymphocytes, N Neutrophils

cytokine assays and untargeted metabolome analysis
using liquid chromatography-high resolution mass spec-
trometry using established techniques. Details of our ex-
perimental protocols are provided in the supplementary
materials.

Statistical analysis
To compare P-diversities between individual patient allo-
graft and native lung samples, weighted UniFrac distances
were calculated between all pairs of samples and then each
sample type was plotted separately in 3-dimensional (3D)
space by principal coordinate analysis. The plots were
then transformed by Procrustes analysis to achieve max-
imum alignment. Within the 3D plots, blue color repre-
sents 1 sample and the red color represents the other
sample, and the 2 points from individual subjects are con-
nected by a bar. If both plots are similar, then the relative
distance will be small. The overall similarity is summa-
rized by the M? value, and statistical goodness-of-fit is
measured by a Monte Carlo label permutation approach.
To identify individual OTUs at the phylum and/or genus
levels that were distinctive between the 2 airway compart-
ments in native and allograft, wilcoxon test (non-paramet-
ric). Differences between the native, allograft and normal
was calculated using non-parametric ANOVA (Kruskal
Wallis) with subgroup analysis conducted by Dunn mul-
tiple comparison test. Significant differences in commu-
nity membership identified via constrained ordination
were confirmed by using PERMANOVA (permutational
multivariate analysis of variance) and plotted in R package
vegan via RDA function.

Features in the LC-MS metabolomics data were
aligned and peak areas determined using XCMSonline
(https://xcmsonline.scripps.edu/) [24]. Statistical analysis

of peak areas was carried using the univariate (Volcano
plot) and multivariate (sparse Partial Least Squares-
Discriminant Analysis, sSPLS-DA) programs of MetaboA-
nalyst  (http://www.metaboanalyst.ca) [25]. Metlin
(https://metlin.scripps.edu/) [26] was used to identify the
individual m/z features. Mummichog (http://www.
mummichog.org, version 1.0.9) [27] was used for path-
way analysis. Fischer’s Exact test was used for compari-
son and generation of enrichment P values. P-values for
all pathways were then modeled as a Gamma distribu-
tion and then adjusted for the permutations. The corre-
lations and interaction plot between proportions of a
metabolome and a bacterial phylum were generated
using the online software XMWAS (https://kuppal.shi-
nyapps.io/xmwas/) [28]. GRAPHPAD PRISM version 7.0
(GraphPad, Inc., San Diego, CA software) was used for
statistical analysis and generation of figures, with static-
ally significance achieved at p value = 0.05.

Results

Differences between the allograft and native lung
microbiome

We first determined the bacterial count in Allograft (A),
Native (N), normal (H) groups using 16 S quantitative
PCR. Overall, bacterial 16S DNA levels reported as log
16S copies/ml of BAL were significantly different among
the groups (P =0.02, A 4.15x 10" vs N 2.0 x 107, P=0.1,
A 4.15x 10" vs H1.8 x 10°, P=0.04, N vs H, P=NS) and
higher in the allograft compared to normal controls
(Fig. 1a). Next, to determine whether A, N and H differed
in diversity of bacterial communities between samples, we
used the Shannon diversity index [29], a measure of «-
diversity within a sample that represents both species rich-
ness and evenness (Fig. 1b). A Shannon diversity index of
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Fig. 1 a Bacterial 165 gene copies/ml in allograft (A), native (N) of single lung transplant recipients and normal (H) lung controls. The Y axis
indicates 16S rRNA gene copy number by quantitative PCR. (N vs A vs H, P=0.02 (Kruskal Wallis), post-hoc Dunn’s test, N vs A=0.1, N vs H=NS,
A vs H=0.04,) (b) Shannon diversity index in allograft (A), native (N) of single lung transplant recipients and normal (H) lung controls. N vs A vs H,
P =0.06 (Kruskal Wallis), post-hoc Dunn’s test, N vs A=NS, N vs H=NS, A vs H=NS (c) Relationship between native and transplant airway bacterial
communities within individual subjects. Weighted UniFrac distances were calculated between all pairs of samples within native or allograft, and
then each sample type was plotted separately in 3D space by principal coordinate analysis. The two plots (allograft and transplant) were then
transformed by Procrustes analysis to achieve maximum alignment. Each point corresponds to a bacterial community, with native communities
shown in red, allograft communities shown in blue, and the two communities from each subject connected by a bar. The black end of each bar

connects to the native sample data; the grey end connects to the allograft lung sample data from the same individual. If native and allograft
plots are similar, then the relative distance between connected points (residuals) will be small. The overall similarity is summarized by the M?
value, and statistical goodness of fit is measured by a Monte Carlo label permutation approach (10,000 iterations). The M? value ranges from 0 to
1, with 0 suggesting complete overlap i.e. similarity and 1 suggesting maximum variation. M? = 0.715 suggests a greater degree of variation
between the native and allograft microbiome from individual patients. d Principal coordinate analyses (PCoA): ordination constrained by
specimen group (RDA) showing spatial relationship of the variance between allograft (A) and native (N) of single lung transplant recipient
microbiomes. Native are shown in red and allograft in blue. P value calculated via PERMANOVA analysis N vs A, P=0.05. e Principal coordinate
analyses (PCoA): ordination constrained by specimen group (RDA) showing spatial relationship of the variance between allograft (A) and normal
(H) lung microbiomes. Normal lung controls are shown in green and allograft in blue. P value calculated via PERMANOVA analysis A vs H, P=
0.0009 (f) Principal coordinate analyses (PCoA): ordination constrained by specimen group (RDA) showing spatial relationship of the variance
between native (N) lung of single lung transplant recipients and normal (H) lung control microbiomes. Normal lung controls are shown in green
and native in red. P value calculated via PERMANOVA analysis N vs H, P=0.003

>3.5 indicates a highly diverse bacterial community [30].
Although shannon diversity index of the allograft was lower
(2.4) compared to was higher in H (5.38) and N (3.8) sam-
ples, these were not statistically different (P = 0.06).

We evaluated the differences in the microbiome compo-
sitions between A and N of each individual lung trans-
plant recipient. Using Procrustes analysis, we mapped
individual samples on a principal component analyses
(PCoA) plot using weighted UniFrac distances. The PCoA
showed wide separation between A and N microbiomes of
each individual subject (Fig. 1c). Monte Carlo label per-
mutation was used to calculate a M* value. The M? value
varies between 0 to 1 and a higher number suggests
greater variation between the samples groups. The M?>
value was 0.715 suggesting a wide variation between the A
and N samples derived from individual patients. In
addition, the pooled analysis using redundancy analysis
(RDA) showed a cluster pattern for A versus the N

microbiomes. Significant differences in community mem-
bership between the constrained ordination plot were
confirmed using PERMANOVA, P =0.05 (Fig. 1d). When
comparing the A and N microbiome to normal lung
microbiome (H), again a distinct clustering pattern was
noted for each group (PERMANOVA H vs A, P =0.0009,
H Vs N, P=0.003, Fig. 1le and f). Significant microbiome
signature differences between the A and N groups are de-
tailed in Table ST1 in the supplemental materials.

To confirm the validity of our findings and rule out con-
tamination from the bronchoscope, we assessed the mi-
crobial signatures present in the bronchoscope washes (C)
collected prior to the collection of BAL fluid samples.
PCoA analysis showed significant weighted UniFrac dis-
tances between the C microbiome of the bronchoscopes
when compared to their respective N and A microbiome
of individual subjects (Figure S1A and B and Tables ST2
and ST3 in Supplementary Material).
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Allograft lung has a higher abundance of genera diseases. In our sample both F/B (A (3.25) vs N (2.8) vs H
Acinetobacter, Pseudomonas and increased ac-PGP (2.9)) ratio and P/F (A (5.5) vs N (1.7) vs H (1.4)) were
Emergence of microbiome dominated by a single and/or  higher in the allografts compared to both the native and
a group of bacteria, gives rise to microbial dysbiosis in  healthy lung controls. At the genera level, Acinetobacter
the gut and lung; this is associated with immune dysreg- and Pseudomonas were significantly higher in the allo-
ulation and has been linked to several chronic inflamma-  grafts compared to both the native and normal lung con-
tory disease states [31, 32]. The healthy lung trols (Fig. 2d and e). The hospital-based BAL cultures
microbiome is largely composed of the phyla Firmicutes, —were negative for Pseudomonas, Acinetobacter or any
Bacteroidetes and Proteobacteria [33]. To understand other significant pathogenic bacteria (Table 1).

the local microbiome of the native lung and allograft, we Next, we measured the levels of Ac-PGP, a collagen
studied the overall community composition structure in  breakdown matrikine peptide that is known to upregu-
samples from the allograft of SLTs and compared them late neutrophil chemotaxis and increase lung vascular
to the corresponding native lung microbiome. In  permeability [35, 36]. We found that Ac-PGP was ele-
addition, we analyzed their differences with the normal vated (p =0.03) in the allograft as compared to native
lung microbiome. Overall, the relative abundance of lungs (Fig. 2f). Additionally, we measured other neutro-
Phyla Proteobacteria (A 77% vs N 52% vs H 39%, p=  philic chemoattractants, IL-8 and LTB4 in the native
0.02) and Firmicutes (A 14% vs N 29% vs H 41%, p=  and allograft samples and these were not found to be
0.009) were significantly different between the allograft, statistically different between the two groups (supple-
native and normal lung controls (Fig. 2a, b, c). Previ- mentary Figure 2A and B). Thereafter, we measured the
ously, an increased Firmicutes/Bacteroidetes (F/B) ratio levels of pro-inflammatory cytokines (VEGF, TNF -q,
has been suggested as a marker for dysbiosis in the gut IFN-y) in the BAL. Overall, the levels of all three cyto-
[34]. We calculated the F/B ratio in our cohorts. Addition-  kines were statistically different between A, N and H.
ally, we calculated the Proteobacteria/Firmicutes (P/F) ra-  Subgroup analysis showed that VEGF was significantly
tio given that several members of the phyla Proteobacteria  increased in the A compared to H. In contrast, the levels
have been implicated in the pathogenesis of respiratory  of IFN-y were reduced in N compared to H (Fig. 2g).
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Fig. 2 Composition of major bacterial phyla in the bronchoalveolar lavage samples from (a) native lungs of SLTs (b) allograft lungs of SLTs and
(c) normal lung subjects (d) Relative abundance of genus Acinetobacter in the bronchoalveolar lavage samples from allograft (A), native (N) of
single lung transplant recipients and normal (H) lung controls. N vs A vs H, P =0.003 (Kruskal Wallis), post-hoc Dunn’s test, N vs A=0.04, N vs H=
NS, A vs H=0.004 (e) Relative abundance of genus Pseudomonas in the bronchoalveolar lavage samples from allograft (A), native (N) of single
lung transplant recipients and normal (H) lung controls. N vs A vs H, P =0.01 (Kruskal Wallis), post-hoc Dunn’s test, N vs A=0.03, N vs H=NS, A vs
H=0.02. f Concentration of Ac-PGP in the bronchoalveolar lavage samples from native lungs and allografts of SLTs, P=0.03 (Wilcoxon test) (g)
Pro-inflammatory cytokines VEGF, TNF-a, and IFN-y in the bronchoalveolar lavage samples from native lungs, allografts of SLTs and normal
controls. VEGF A vs N vs H, P=0.002, Post-hoc Dunn'’s test, N vs A=NS, N vs H=NS, A vs H=0.002, TNF-a A vs N vs H, P=0.03, Non-significant
subgroup comparisons, IFN-y A vs N vs H, P=0.01, Post-hoc Dunn’s test, N vs A=NS, N vs H=0.03, A vs H=NS
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Airway metabolome distinguishes native lungs and
allografts

Airway metabolome can provide an insight in to the in-
flammatory state of the lung [37]. Using an untargeted
metabolomics approach and analysis previously de-
scribed [38, 39], we identified a total of 4886 mass/
charge (m/z) features in LC-MS data collected in both
the negative ion and positive ion modes. Of these, 676
m/z features in the negative ion mode and 586 m/z fea-
tures that were significantly different (p < 0.05) between
the allografts and native lungs. After reorganizing the
downloaded LC-MS data from XCMSonline to remove
early (non-bound) metabolite ions and ions collected in
the solvent wash period, a volcano plot (Fig. 3a, b) re-
vealed several negatively charged ions and positively
charged ions with fold changes > 1.5 and p-values < 0.05.
PCoA and PLS-DA analyses were performed to assess
chemometric separation among the allograft and native
lung BAL fluid samples. A sparse PLS-DA plot showed
complete separation of the allograft and native lung BAL
samples in both the negative and positive ion mode (Fig.
3c and d).

The molecular identity of the top variable importance
in projection (VIP) score metabolites (Figure S3A, B) ob-
served by nanoLC-MS that were significantly changed
in the negative and positive ion mode were determined
based on their measured accurate mass using the Metlin
database (https://metlin.scripps.edu/) or by fragmenta-
tion pattern of the ion. The m/z features 332.278,
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316.283, 296.257, 314.268, 298.273 were identified as
sphingosine like metabolites and found to be signifi-
cantly increased in the native lungs compared to the
allograft (Figure S3A and Table 2).

Metabolite annotation and pathway enrichment ana-
lysis were performed using mummichog analysis to
understand the role of the identified ions in different
metabolic pathways. Mummichog identified 21 pathways
associated with the negative ion metabolites that were
found in the native and allograft BAL fluid samples
(Table 3). Metabolites identified were known to be in-
volved in fatty acid activation/metabolism, beta-
oxidation, Krebs cycle and amino acid and nucleotide
metabolism.

Sphingosine metabolites negatively correlate with
abundance of Proteobacteria

To understand the correlation between the microbiome
and metabolome, we performed integration analysis
using sparse PLS-DA regression of all m/z features
(4885) and the 16 Phyla found in the native lung and
allograft samples. We found that overall 864 m/z features
were associated with the various bacterial phyla [16] at a
correlation of > 0.4. The phyla Proteobacteria, Firmicutes
and Bacteroidetes had positive and negative correlations
with several m/z features both in the native and allograft
lungs (Table ST4, ST5). Next, we performed integration
analysis of the top 25 m/z features by VIP score each in
the positive and negative mode and the significantly
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Fig. 3 a Volcano plot in positive ion mode showing the statistical significance (y axis) and fold change (x axis) for difference between the
metabolome of native and allograft lung bronchoalveolar lavage samples. P < 0.05, Fold change 21.5 (b) Volcano plot in negative ion mode
showing the statistical significance (y axis) and fold change (x axis) for difference between the metabolome of native and allograft lung
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analysis of metabolome from native and allograft bronchoalveolar samples in the negative ion modes. These plots display a clear separation
between native and allograft metabolome. The color circle (green and red) around each sample group represents the 95% confidence intervals
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Table 2 Table of differentiating metabolites by VIP score
between native and allograft BAL samples (matched in Metlin at
TOPPM or by fragmentation pattern of the ion)

Input m/z Adduct  Actual Database Match Formula
Mass

184.133 M+H" 183.126 Acetyltropine C10H17NO2

332278  (M+H)* 331272  Sphingosine C18H37NO4
like molecule

202,143 (M+H)* 201.137  Capryloyglycine C10H19NO3

316283  (M+H)* 315277  Dehydroxysphingosine C18H37NO3

296.257 (M+H)* 295251  (4E8E,10E-d18:3) C18H33NO2
sphingosine

314.268 (M+H)" 313262 Sphingosine like molecule C18H35NO3

186.115 (M-H)~ 187.121  (E)-2-Butenyl-4-methyl- C9H17NO3
threonine

2011 (M+H)* 200.12 N-(5-Methyl-3-oxohexyl) CT0H19NO03
alanine

3392682 (M+H)* 3382610 Androstane C24H340

Table 3 Metabolite annotation and pathway enrichment
analysis using Mummichog for negative ion m/z features
present in the native and allograft BAL fluid. * P < 0.05, Native vs
Allograft samples with less enrichment of these pathways.
Fischer's Exact test was used for comparison and generation of
enrichment P values. P-values for all pathways were then
modeled as a Gamma distribution and then adjusted for the
permutations

Pathways Pathway  Adjusted
Size P Value

Purine Metabolism 22 0.001
Methionine and Cysteine Metabolism 13 0.002
Denovo-Fatty acid biosynthesis 10 0.002
Fatty acid activation 7 0.003
Vitamin B5-CoA biosynthesis 7 0.003
Aspartate and Aspargine Metabolism 21 0.003
Alanine and Aspartate Metabolism 0.005
Arginine and Proline Metabolism 9 0.006
Drug Metabolism CYP 450 33 0.008
Saturated fatty acid beta-oxidation 2 0.008
Phosphatidylinositol Phosphate Metabolism 6 0.009
TCA Cycle 3 0.01
Alkaloid Biosynthesis Il 3 0.01
Urea cycle 20 0.01
Pyrimidine Metabolism 13 0.03
Dynorphin Metabolism 4 0.03
Omega 3 Fatty acid Metabolism 4 0.03
COA Metabolism 4 0.03
Fatty acid Metabolism 4 0.03
Vitamin E Metabolism 27 0.03
Linoleate Metabolism 9 0.03
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different microbial genera [28] between the two groups.
The VIP score is a measure of a variable’s importance in
the PLS-DA model. The VIP score of a variable is calcu-
lated as a weighted sum of the squared correlations be-
tween the PLS-DA components and the original
variable. It summarizes the contribution a variable
makes to the model. Of the top 50 metabolites by VIP
score in the positive and negative mode, 35 m/z features
correlated with 18 bacterial genera in the allografts and
26 m/z features correlated with 20 bacterial genera in
the native lung. In the native lungs, the genera associ-
ated with most features at a correlation >0.4 were Acine-
tobacter (22 features) and Pseudomonas (17 features)
(Fig. 4a). Whereas in the allografts, the genera associated
with the greatest number of features at a correlation
>0.4 were Acinetobacter (18 features), Pseudomonas (17
features), Bacteroidetes (18 features) and Streptococcus
(17 features). The genera Burkholderia, Enterobacter and
some of their associated m/z features were in a separate
network compared to the others as illustrated in the net-
work plot 4B. In the native lungs, several sphingosine-like
metabolites (e.g., m/z 296.257, 298.273, 314.268) had a
negative correlation with bacterial genera (Pseudomonas,
Acinetobacter) from the phyla Proteobacteria (Table ST6,
Fig. 4a). Similarly, amino acid metabolites m/z features
(201.1, 186.115) had positive correlation with genus Acine-
tobacter and Pseudomonas in the allograft lung.

Discussion
Emerging evidence suggests a role for the lung micro-
biome in the pathogenesis of chronic inflammatory lung
diseases including CLAD [5, 8, 40]. In this study, we uti-
lized the airway microbiome and metabolome signatures
of the native lungs and transplanted lungs (allografts) of
SLTs as a model system to answer fundamental questions
regarding the inherent lung metabolome and its influence
on the lung microbiome. We characterized the associa-
tions between the airway microbiome and metabolome of
the allograft and the native lungs of SLTs. In our cohort,
we found that the airway microbiome of the native and
allograft lungs were distinct with a significantly higher
abundance of genus Pseudomonas and Acinetobacter
(phyla Proteobacteria) and elevated levels of VEGF and
ac-PGP in the allograft. Furthermore, the native lung me-
tabolome differed from the allograft with a higher abun-
dance of sphingosine and sphingosine-like metabolites
and its presence negatively correlated with the abundance
of bacteria Pseudomonas and Acinetobacter. These hy-
pothesis generating observations lay the foundation for fu-
ture studies to evaluate the cause-effect relationship
between the airway metabolome and microbiome.

To our knowledge, this is the first report characterizing
the microbial heterogeneity of the native and transplanted
lung in the same individual. The results from our cohort
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A. Native

/ Streptococcus

m/z 316.283
SLM

m/z 296.257
SLM

m/z 298.273
SLm

Acenitobacter

Fig. 4 a Multidata network plot with the communities identified using the multilevel community detection algorithm. Correlation networks of
bacterial genus and metabolome m/z features of the native lung bronchoalveolar lavage. Metabolome features are shown in green squares and
microbiome measurements of genera level OTU in blue circles. Links indicate pairwise Pearson’s correlations, |r| > 0.40. Red links indicate a
positive correlation, whereas blue links indicate a negative correlation. Thickness of the link indicates the strength of the pairwise correlations.
Sphingosine like molecules (SLM) with significant negative correlation with microbiome features are highlighted. Each green square has an
encoded number starting with X that represents the metabolite found to have significant correlation with a corresponding microbiome feature
(encoded in Y) in blue circles. Details of the X and Y number notations in native lung can be found in table ST6. b Multidata network plot with
the communities identified using the multilevel community detection algorithm. Correlation networks of bacterial genus and metabolome m/z
features of the allograft bronchoalveolar lavage. Metabolome features are shown in green squares and microbiome measurements of genera
level OTU in blue circles. Links indicate pairwise Pearson’s correlations, || > 0.40. Red links indicate a positive correlation, whereas blue links
indicate a negative correlation. Thickness of the link indicates the strength of the pairwise correlations. Each green square has an encoded
number starting with X that represents the metabolite found to have significant correlation with a corresponding microbiome feature (encoded
in Y) in blue circles. Details of the X and Y number notations in the allograft can be found in table ST7

B. Allograft

Burkholderia

Pseudomonas

Enterobacter

suggests that the allograft’s airway microbiome is distinct
with a significantly increased relative abundance of genera
Acinetobacter & Pseudomonas (phyla Proteobacteria)
(Figs. 1a, 2d and e). In comparison, the microbiome in na-
tive lungs of SLTs and healthy individuals have a greater
proportion of the phyla Firmicutes and Bacteroidetes. Alter-
ations in the Firmicutes/Bacteroidetes (F/B) ratio have pre-
viously been proposed as a marker for intestinal dysbiosis
in various disease states [34]. In the lung, where a higher
proportion of Proteobacteria is present than the gut [33],
the Proteobacteria/Firmicutes (P/F) ratio may be a better
marker for dysbiosis, given the predominance of Firmicutes
in the healthy lung [33]. In our cohort, the allografts had an
elevated F/B and P/F ratios compared to the native lungs
and normal lung controls suggesting greater dysbiosis.
Donor lungs at the time of implantation harbor a different
microbiome than the recipient, indicative of greater mi-
crobial variation between the allograft and native lung at
the time of transplantation. Following transplantation,
common thinking is that over time the microbiomes of
the allograft and native lung would become similar. How-
ever, in our cohort, despite the subjects being more than a
year post-lung transplantation, the microbiome remained
varied between the allograft and native lung. Likewise, we

noted an increased bacterial biomass burden and dysbiosis
in the allografts compared to the native and healthy lung
controls. These results are concordant with other studies
linking elevated bacterial biomass to microbial dysbiosis
[41]. Increased bacterial biomass and colonization with
pathogenic bacteria such as Acinetobacter and Pseudo-
monas has been associated with allograft dysfunction in
lung transplant recipients [42].

Cytokine VEGF and tripeptide Ac-PGP were found to
be significantly elevated in allograft BAL samples. We
and others have shown that Ac-PGP, a matrikine tripep-
tide, mediates inflammation in acute and chronic lung
diseases including CLAD and bacterial infections [43,
44]. Interestingly, elevated VEGF levels has been linked
to lung infections with Pseudomonas [45] as well as allo-
graft rejection including post lung transplant primary
graft dysfunction and bronchiolitis obliterans syndrome,
a form of chronic lung allograft dysfunction [46—48].
Likewise, dysbiosis in the lung and gut has been impli-
cated in heightening inflammatory states in several
chronic diseases [31, 32]. The increase in the ratio of the
pro-inflammatory bacteria such as Pseudomonas and low
stimulatory bacteria such as Prevotella and Streptococcus
are known to upregulate the inflammatory gene
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expression profile [5]. Although we see an association be-
tween elevated Proteobacteria the inflammatory markers
Ac-PGP and VEGF, additional investigations need to be
conducted to establish a causal link between a Proteobac-
teria-dominant microbiome and pro-inflammation.

To further understand the functional impact of the
microbiome on the host, we conducted metabolome ana-
lyses. The airway metabolome differentiated the allograft
and the native lung of the participants of our study (Fig. 3b
and c). Several of these metabolites had significant negative
and positive correlations with various bacterial genera (Fig.
4a, b). In the positive ion mode, the top m/z features that
differentiated the allograft from the native lung (high VIP
scores) were dominated by sphingosine-like molecules that
were found to be increased in the native lungs (Table 2 and
Figure S3A &B). These sphingosine metabolites had a nega-
tive correlation with bacterial genera (Pseudomonas, Acine-
tobacter) from the phyla Proteobacteria in the native lungs.
Sphingolipids are bioactive lipids known to be part of the
plasma membrane lipid bilayer in eukaryotic cells [49] and
are cleaved by sphingosine kinases, with several of these
molecules having key roles in the regulation of oxidative
stress and immune function [50]. Sphingosine improves the
host response to Pseudomonas infections and augments
neutrophil killing of reactive oxygen species resistant
Pseudomonas [51-53]. An increased presence of
sphingosine-like molecules in the metabolome of native
lungs may account for the lower Proteobacteria signature
found in them as compared to the allografts. Likewise,
some metabolite features had positive correlation with the
microbial genera (Pseudomonas and Acinetobacter) in the
allograft lungs. Metabolite m/z 201.1, a alanine metabolite
and m/z 186.115, a threonine metabolite are involved in
maintenance of bacterial cell wall structure and cellular
stiffness, promote bacterial proliferation [54, 55] and have
regulatory role in T cell activation [56]. Mummichog ana-
lysis of the metabolome suggested the presence of metabo-
lites that were increased in the allograft compared to the
native lung (Table 3). Pathways in the amino acid metabol-
ism, fatty acid activation and fatty acid beta-oxidation were
increased in the allograft compared to the native lung. Me-
thionine and cysteine metabolism pathways are known to
regulate oxidative stress through the methionine/glutathi-
none trans-sulfuration pathway. Disruption of this pathway
can lead to increased oxidative injury. Likewise, increased
fatty acid activation can result in mobilization of cell
membrane derived lipid signaling molecules such as
sphingospine-1-kinase and arachidonic acid derived eicosai-
noides [57, 58]. More studies are needed to further under-
stand if the variations in metabolome are in part influenced
by the difference in airway microbiome or vice-versa.

As the primary antigen presenting cells of the lung,
resident alveolar macrophages originate in the embryo-
genesis period and are sparsely replenished by the bone
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marrow during adult life [59]. Studies in lung transplant
recipients have shown that most of the alveolar macro-
phages even 3.5 years after lung transplant are donor de-
rived in the allografts [60]. An alternate explanation to
the difference in the lung microbiome in the native and
allograft lungs could be due to the variable antigen pre-
senting/regulatory nature of donor-derived and recipient
alveolar macrophage phenotypes in the allografts and
native lungs.

Our study has limitations, including sample size and
design. We did not find any differences in the micro-
biome or inflammatory signatures in those diagnosed
with CLAD at sampling or at follow-up. However, with a
cross-sectional study design and inadequate power, we
cannot comment on the dynamic changes in the micro-
biome and metabolome of native lungs and allografts
and their association with chronic lung allograft dys-
function. However, this study is hypothesis generating
and provides insightful data to further advance our un-
derstanding of microbiome-metabolome interactions in
the lung. One of the unique challenges in the field of
lung microbiome is presence of low biomass in BAL
samples compared to samples from the GI tract [61, 62].
Interpretation of results obtained from a single low bio-
mass sample without appropriate controls can be mis-
leading. To circumvent this issue, we collected control
samples from the separate bronchoscopes used during
each A and N sample collection. The bronchoscope con-
trol microbiome signatures were found to be dissimilar
to the A and N airway microbiome (Figure S2A, B). Fur-
thermore, the bacterial 16S DNA levels in the broncho-
scope control samples were below the lower limit of
PCR quantification suggesting absence of bronchoscope
contamination (data not shown). BAL samples from
normal lung control subjects, collected and processed
using a similar methodology were also analyzed and
compared to the allograft/native lung microbiome. We
processed technical replicates of each biological sample
to evaluate variability in both the relative abundance and
bacterial 16S DNA quantification. Although, antimicro-
bial prophylaxis and immunosuppression regimen can
also influence the microbiome [63], in our subjects
these were given systemically, and hence would impact
both the native and the allograft similarly. While we found
that lung allografts harbored a more Proteobacteria
dominant microbiome and higher PGP levels, longitudinal
studies are needed to investigate the causal association,
role of varied prophylactic antibiotics, immunosuppres-
sion on microbial composition in the lung and whether
this inflammation translates into allograft rejection. Our
healthy controls did not have Ac-PGP measurements.
Nevertheless, our previous studies have shown absent or
extremely low levels of Ac-PGP in healthy lung airway
fluid [64]. It has been reported that BAL samples obtained
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from separate geographic regions within the same lung
can demonstrate highly dissimilar microbial communities
[33, 65]. Although, it is possible that the variations in
microbiome in the native lung and allograft may be re-
lated to expected variation in sampling from different re-
gions of the lung, these spatial variations are known to be
less significant compared to variations across individuals
[65]. Finally, all metabolites that correlated with bacterial
genera were not able to be identified due to the current
limitations of untargeted mass spectrometry and the ad-
justed P values had limitations due to the smaller samples
size [66]. Although, we found correlations between
sphingosine like molecules with bacterial genera in the na-
tive lungs, due to the very low concentration of these
sphingosine metabolites in the allograft, these bacterial-
sphingosine correlations could not be accurately predicted
in the allograft and targeted LC-MS analysis was not per-
formed to validate the metabolite. Nevertheless, these ob-
servations are hypothesis generating and warrant further
validation in future mechanistic studies.

Conclusion

Allograft lungs have a distinct microbiome signature,
and an increased pro-inflammatory milieu compared to
the native lungs in SLTs. Airway metabolome distin-
guishes the allografts from native lungs and is associated
with distinct microbial communities, suggesting a func-
tional relationship between the local microbiome and
metabolome. Our studies have characterized, for the first
time, the native lung and allograft microbiome of SLTs
and provide fundamental insight into host-microbiome
and metabolome interactions, a potentially important
early feature for long-term allograft viability and host-
pathogen related lung injury. These hypothesis generat-
ing results pave way for future well powered longitudinal
studies to elucidate dynamic changes in the lung micro-
biome and metabolome, determine their associated in-
teractions, and measure their subsequent impact on lung
allograft health and function.
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