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Quantitative CT analysis using functional
imaging is superior in describing disease
progression in idiopathic pulmonary
fibrosis compared to forced vital capacity
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Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is chronic fibrosing pneumonia with an unpredictable natural
disease history. Functional respiratory imaging (FRI) has potential to better characterize this disease. The aim of this
study was to identify FRI parameters, which predict FVC decline in patients with IPF.

Methods: An IPF-cohort (treated with pamrevlumab for 48 weeks) was retrospectively studied using FRI. Serial CT’s
were compared from 66 subjects. Post-hoc analysis was performed using FRI, FVC and mixed effects models.

Results: Lung volumes, determined by FRI, correlated with FVC (lower lung volumes with lower FVC) (R2 = 0.61,
p < 0.001). A negative correlation was observed between specific image based airway radius (siRADaw) at total lung
capacity (TLC) and FVC (R2 = 0.18, p < 0.001). Changes in FVC correlated significantly with changes in lung volumes
(R2 = 0.18, p < 0.001) and siRADaw (R2 = 0.15, p = 0.002) at week 24 and 48, with siRADaw being more sensitive to
change than FVC. Loss in lobe volumes (R2 = 0.33, p < 0.001), increasing fibrotic tissue (R2 = 0.33, p < 0.001) and
airway radius (R2 = 0.28, p < 0.001) at TLC correlated with changes in FVC but these changes already occur in the
lower lobes when FVC is still considered normal.

Conclusion: This study indicates that FRI is a superior tool than FVC in capturing of early and clinically relevant,
disease progression in a regional manner.

Keywords: Functional respiratory imaging is superior in describing disease in IPF

Background
Idiopathic pulmonary fibrosis (IPF) is a fatal, chronic
fibrosing interstitial pneumonia with a variable and un-
predictable natural history [1–3]. Diagnosing IPF at an
early stage enables more effective treatment and im-
provement of the long-term clinical outcome of this pro-
gressive debilitating disease [4–6]. Predicting prognosis
is an important part of IPF management, but it remains
difficult in individual patients with the current standard

investigations as forced vital capacity (FVC) and high
resolution computed tomography (HRCT) [7, 8].
FVC best predicts disease progression and mortality

[9, 10]. It therefore serves as a primary endpoint in IPF, al-
though it’s not a proven surrogate for mortality [11, 12]. A
2–6% change in predicted FVC has been proposed as the
minimal clinical important difference [9], and where 10%
decline in absolute FVC correlated well with mortality
[10]. Due to weak signal-to-noise ratios [13], FVC is not
able to pick up small changes in progressing fibrosis in
these patients. In future studies, where patients are treated
with (combination of) antifibrotic drugs, its use as a clin-
ical endpoint is less compelling since FVC decline is im-
pacted by this therapy [14–16].
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The disease stage, as measured by HRCT, has been
correlated to lung function measurements [17, 18]. In
recent years quantitative computer-derived CT (qCT)
variables have been studied in IPF, and have been
shown to be superior predictors of mortality compared
to any visually scored CT parameter (e.g. extent of fi-
brosis) [19, 20]. Despite these advances in the field, no
radiological marker is widely accepted as a biomarker
in IPF [21].
Functional respiratory imaging (FRI) is a post-processing

technology that utilizes multi-slice HRCT scans and com-
putational fluid dynamics (CFD) to assess the overall lung
health and function in a regional manner by quantifying
endpoints as airway volume and resistance [22, 23]. FRI is
considered a more sensitive method for observing changes
in airway volume and resistance than classical lung function
tests (e.g. forced expiratory volume in 1 s) [23–25]. This
image-based method can also be used to provide a compre-
hensive assessment of airway tree changes [24, 26] (Fig. 1).
Therefore FRI has the potential to better characterize dis-
ease, provide more accurate information in treatment
follow-up of a patient in clinical practice and to predict and
evaluate therapeutic interventions in many respiratory con-
ditions. Comparable qCT methods to FRI have been used,
in IPF and other fibrotic lung disease, as (treatment) end-
point [27–29].
The use of FRI and other qCT measurements may

thus allow better monitoring of disease progression and
response to treatment, improving our understanding of
this disease.

Methods
Study design
The aim of this study was to identify FRI parameters,
which predict FVC decline in patients with IPF. We
retrospectively studied data from a Phase 2 open-label,
dose-escalation study to evaluate the safety and effi-
cacy of an anti-CTGF monoclonal antibody, pamrevlu-
mab (FG-3019), for treatment of IPF. In the Phase 2
study, conducted by FibroGen, Inc., diagnosis of IPF
was based on a usual interstitial pneumonia (UIP)-pat-
tern on HRCT or a possible UIP-pattern with a
UIP-pattern on surgical lung biopsy, as per applicable
diagnostic guidelines at the time (2011) [2]. HRCT
scans, with a breath hold at inspiration and used as
outcome measure in the original study protocol, were
taken at baseline, 24 weeks and 48 weeks after treat-
ment commenced (n = 89 enrolled; 67 completed
treatment; 66 full data set). The trial was composed
of two dose cohorts. In the first, patients had been
diagnosed with IPF within 5 years of trial inclusion
with FVC ≥ 45% predicted and DLCO ≥ 30% predicted
and participants had to show disease progression in
the last year (FVC decline ≥10%, HRCT worsening,
and/or other objective changes). In the second cohort,
the minimum FVC % predicted was raised to 55%.
For all subjects, baseline HRCT had to indicate 10–50%
reticular fibrosis and no more than 25% honeycombing.
This study was performed in accordance with the
Declaration of Helsinki. (www.ClinicalTrials.gov num-
ber NCT01262001) (Raghu Eur Respir J 2016; 47:
1481–1491) [29]. The investigators initiated this study
in consultation with FibroGen, Inc. for use of the original
HRCT data.

Methods and analysis
Post-hoc analysis of this patient cohort was performed
using FRI and mixed effects (regression) models on all
available data in the data set, to understand change
from baseline at week 24 and at week 48 for all pa-
tients in FRI parameters relative to FVC in terms of
disease progression. Detailed explanation of this tech-
nique can be found in Additional file 1 and the FRI
manual [30]. Subjects in this study had complete CT
scans at baseline, week 24 weeks and week 48 weeks.
FRI parameters were determined for the whole lung
(all lobes), for the lower lung zones (right and left
lower lobes) and for the upper lung zones (right upper
and middle lobe; left upper lobe). Typical FRI param-
eters that were included were: specific image-based
airway radius (siRADaw), percentage of fibrotic tissue
at total lung capacity (TLC) and predicted lobe vol-
ume at TLC. In addition, sample size calculations
were conducted to demonstrate sensitivity to change
for each measurement (PFT or FRI parameter), from

Fig. 1 Functional Respiratory Imaging provides visualisation and
quantification of airway volumes (depicted in blue), lobe volumes,
fibrosis (depicted in green), emphysema (depicted in black) and
blood vessel volumes (depicted in red)
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baseline to week 48. Sample sizes were obtained for a
power goal of 80%, a significance level of 0.05 and
two-tailed. These were based on the effect sizes calculated
on the mean and standard deviation of the within subject
differences between week 48 and baseline.

Results
Patient characteristics are shown in Table 1. Subjects were
predominately male with a mean FVC < 80% predicted.
On univariate analysis, good correlation between lung

volume based on FRI assessment and FVC was demon-
strated (R2 = 0.61, p < 0.001) (Fig. 2). A negative correl-
ation between specific airway radius and FVC was
demonstrated at TLC (R2 = 0.18, p < 0.001) (Fig. 2). At
TLC, FVC decline correlated significantly with lung vol-
ume decline (R2 = 0.18, p < 0.001) and increase in spe-
cific airway radius (R2 = 0.15, p = 0.002) (Fig. 3) both at
TLC. The lower lobes were most affected (Fig. 4).
Importantly, a decline in FVC was not observed until a
40–50% loss of lower lobe volume was measured.
In more advanced disease (i.e. lower FVC) there was a

negative correlation with fibrotic tissue (Fig. 5). Again,

Table 1 Patient characteristics

Number of subjects 89

Age [y] (range) 68 (47–82)

Male, n (%) 71 (79.8)

Time from IPF diagnosis, n (%) < 1 year 34 (38.2)

1–3 years 33 (37.1)

> 3 years 22 (24.7)

FVC [L] (range) 2.52 (1.32–5.51)

FVC [% predicted] (range) 65.9 (42.6–111.7)

Fig. 2 (Upper panel) Correlation between the FRI-based lung volume measured at Total Lung Capacity (TLC) [L] and the Forced Vital Capacity
(FVC) [L]; (Lower panel) Correlation between the specific image based airway radius (siRADaw) measured at Total Lung Capacity (TLC) [cm/L] and
the Forced Vital Capacity (FVC) [L]
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the same observation can be made that the lower lobes
are more diseased.
Airway radius (expressed as siRADaw) increased with

FVC decline (Fig. 6). This effect was more pronounced
in the lower lobes. In contrast to observations made in
the lobe volumes, there was a trend of divergence
(regression lines) for a lower FVC, indicating that more
pronounced disease correlated with larger airways rela-
tive to the total lung volume.
Airway radius (siRADaw) also correlates positively

with fibrotic tissue (R2 = 0.31, p < 0.001) (Fig. 7), i.e. air-
ways enlarge, calculated in respect to the total lung vol-
umes, with progressive disease.
Sample size calculations based on FRI parameters

measured for the lower lobes were more sensitive in de-
tecting change after 48 weeks (FVC: N = 43, effect size
dz. = 0.437; lower lobe volumes: N = 42, effect size dz. =

0.443; lower lobe fibrosis: N = 28, effect size dz. = 0.549;
lower lobe specific airway radius: N = 38, effect size dz.
= 0.467). Moreover, when only considering patients with
an FVC > 75% predicted at baseline, siRADaw lowered
the required patient number from 101 to 13 patients
(effect size dz. = 0.281 to 0.847) in demonstrating a sig-
nificant change after 48 weeks. When assessing the
changes after 24 weeks in this subgroup a sample size of
428 (effect size dz. = 0.136) was required when consider-
ing FVC as endpoint and 26 patients (effect size dz. =
0.572) for siRADaw endpoint. Dz stands for standardised
difference scores, a technique typically used in within
subject designs.

Discussion
Our data shows a correlation between declining FVC
with the FRI determined parameters: declining lung

Fig. 3 (Upper panel) Correlation between the change in lung volume measured at Total Lung Capacity (TLC) [L] and the change in Forced Vital
Capacity (FVC) [% predicted]; (Lower panel) Correlation between the change in specific image based airway radius (siRADaw) measured at Total
Lung Capacity (TLC) [cm/L] and change in FVC (% predicted)

Clukers et al. Respiratory Research          (2018) 19:213 Page 4 of 9



volumes, increasing fibrotic tissue and increase in the
specific airway radius. For these three FRI parameters,
the lower lobes are more affected even at the mild stage
of the disease, keeping with early reports on IPF [31, 32].
IPF is a heterogeneous and unpredictable disease. The

use of FVC is widespread in clinical research and prac-
tice, although the drawbacks and shortcomings of this
test are well known [9, 10, 33, 34]. The use of qCT, as a
new biomarker of disease characterisation, shows great
potential in resolving the issue with FVC. Current qCT
methods have focused on the lung parenchyma and pul-
monary vessels. Many of these methods have great difficulty
separating honeycombing from traction bronchiectasis and
emphysema. Consequently, objective quantification of trac-
tion bronchiectasis severity, which has been reported as an
important predictor of mortality in IPF, has been challen-
ging [19–21, 35, 36].
FRI also captures lower lobe disease (50 to 60% pre-

dicted lobe volume) before any decline can be seen in FVC
(100% predicted) [1, 2]. An explanation for this finding
could be in the fact that FVC is patient effort dependent
and is the sum total of everything that happens in the both
lungs. The upper lobes likely compensate for the volume
loss of the lower lobes. FVC remains fairly stable – or at
least progresses slowly – until an FVC ± 75% predicted
(Fig. 4) at which point the upper lobes also show progres-
sive loss in volume and a more pronounced decline in
FVC (convergence of the regression lines for the upper
and lower lobes). This places the significant but weak cor-
relations between FRI and FVC in perspective; that is, FRI
already reveals disease related information not (yet) cap-
tured by the conventional lung function test. Similar corre-
lations on (semi)-qCT for simultaneous changes in fibrosis

and FVC have been reported [35, 37] with this exception
that our data differentiates between upper and lower lobes
and quantifies the loss of lobe volumes.
To the best of our knowledge we report, for the first

time, the use of an automated method for quantification
of traction bronchiectasis, overcoming the problems with
semi-quantitative methods, which are inherently subject-
ive and liable to significant interobserver variability. The
airways are capturing disease signal that cannot solely be
explained by the extent of disease itself. This is in keeping
with a previous visual score study [38].
The observation that, progressive disease correlated

with an increase in siRADaw (i.e. airway volumes), could
likely be explained as a combination of two processes:
traction bronchiectasis and the intra-pulmonary pressure
re-distribution due to increased stiffness (resistance) of
alveolar region.
In a CT scan taken at TLC during a breath hold, the

intra-thoracic pressure tends to redistribute due to the
stiffness of the alveolar region and subsequently dilates
the central and distal airways as illustrated in Fig. 8. The
relative enlargement of the airways is maintained and
possibly exacerbated by traction bronchiectasis. The lat-
ter entails an increase in airway luminal dimensions due
to the traction exerted by the fibrosis on the airway wall,
as well as bronchiolar proliferation, both resembling dis-
ease progression in IPF [39].
HRCT findings of traction bronchiectasis correlate

well with histopathology of fibroblast foci: profusion of
fibroblastic foci is strikingly related to the severity of
traction bronchiectasis [40, 41]. Traction bronchiectasis
shows to be a clear indicator of mortality and remains a
significant predictor of a poor outcome, independent of

Fig. 4 Correlation between Forced Vital Capacity (% predicted) and FRI-based lobe volume (% predicted) measured at Total Lung Capacity (TLC)
for upper and lower lung zones
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other associated parenchymal interstitial lung disease
patterns [38, 42, 43]. Patients, recruited from the
INPULSIS trials with possible UIP pattern on HRCT (i.e.
traction bronchiectasis and no honeycombing), show to
have the same grade of disease progression as a response
to treatment with nintedanib in comparison to patients
with definite UIP pattern (i.e. honeycombing) [44].
The specific airway radius may have a greater potential

in predicting disease severity and progression than
FRI-based lobe volumes alone, because of the increasing
difference between the upper and lower lung zones in
more advanced disease. Furthermore, siRADaw shows
greater sensitivity for detecting change, especially in

what are considered mildly diseased patients with an
FVC > 75% predicted. Other IPF patient cohorts with
mild disease eventually show progression [45, 46], thus
regional information in IPF is clinically relevant and can
be accurately captured using FRI.
Many patients with a FVC > 75% predicted demon-

strated FRI characteristics associated with progressively
declining FVC. This is an argument for the fact that early
or asymptomatic disease is not detected by classical PFT
measurements (i.e. FVC). Consequently, quantifying re-
gional information about lung structures may reduce sam-
ple sizes needed to detect decline and treatment effect in
IPF studies with new therapeutic options. Prospective

Fig. 6 Correlation between Forced Vital Capacity (% predicted) and FRI-determined specific image based airway radius measured (siRADaw) at
Total Lung Capacity (TLC) [cm/L] for upper and lower lung zones

Fig. 5 Correlation between Forced Vital Capacity (% predicted) and FRI-determined fibrotic tissue (% predicted) measured at Total Lung Capacity
(TLC) for upper and lower lung zones. Fibrotic tissue is determined from the scans based on segmentation of areas with Hounsfield Units
between − 600 and 600
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validation of FRI use in IPF is warranted to, reliably, strat-
ify patients in clinical trials as well as predicting outcome
in individuals.
We acknowledge the fact that we didn’t compare our

FRI measurements to a gold standard, although IPF clin-
ical trial design has struggled the last decades to find a pri-
mary clinical endpoint (FVC or a qCT measurement) that
can be routinely used with adequate precision [47, 48].
The correlation between decline in FVC and progres-

sive reticular fibrosis (after 48 weeks) was also estab-
lished in the original study cohort by a qCT method
[29], as by another recent study [49]. This does

demonstrate the utility and relevance of our qCT
method (FRI) and accompanying results.
All patients studied in this trial were treated with a novel

investigational drug (pamrevlumab) and no placebo arm
was included in this study. The mixed effects model used
in the statistical analysis of the data, however ensured that
disease progression could be captured by using all available
measurement points while correcting for multiple mea-
surements per patient, thereby mitigating the potentially
confounding effect of the treatment. The progression itself
could potentially be influenced by a treatment effect so this
IPF cohort does not represent natural disease progression.

Fig. 8 Hypothesis of IPF disease manifestation and progression in terms of FRI parameters. More severe IPF appears to be associated with
relatively larger airways. This supports the rationale that the intra-thoracic pressure tends to redistribute due to the stiffness of the alveolar region
and subsequently dilate the central and distal airways

Fig. 7 Correlation between the specific image based airway radius (siRADaw) measured at Total Lung Capacity (TLC) [cm/L] and FRI-determined
fibrotic tissue (% predicted) measured at Total Lung Capacity (TLC)
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Conclusion
In conclusion, in patients with IPF, FRI parameters
(siRADaw, percentage of fibrotic tissue at TLC and pre-
dicted lobe volume at TLC) allow monitoring of regional
changes in disease and may capture disease progression
in patients with preserved FVC.

Additional file

Additional file 1: Appendix - Functional respiratory imaging (FRI)
methodology. Detailed description of the FRI methodology and FRI
parameters used in the manuscript/study. (PDF 74 kb)
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