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Abstract

Background: Pulmonary inflammation in response to respiratory infections can evoke muscle wasting. Increased
activity of the ubiquitin (Ub)-proteasome system (UPS) and the autophagy lysosome pathway (ALP) have been
implicated in inflammation-induced muscle atrophy. Since poly-Ub conjugation is required for UPS-mediated
proteolysis and has been implicated in the ALP, we assessed the effect of impaired ubiquitin conjugation on
muscle atrophy and recovery following pulmonary inflammation, and compared activation and suppression of
these proteolytic systems to protein synthesis regulation.

Methods: Pulmonary inflammation was induced in mice by an intratracheal instillation of LPS. Proteolysis (UPS and ALP)
and synthesis signaling were examined in gastrocnemius muscle homogenates. Ub-conjugation-dependency of muscle
atrophy and recovery was addressed using Ub-K48R (K48R) mice with attenuated poly-ubiquitin conjugation, and
compared to UBWT control mice.

Results: Pulmonary inflammation caused a decrease in skeletal muscle mass which was accompanied by a rapid increase
in expression of UPS and ALP constituents and reduction in protein synthesis signaling acutely after LPS. Muscle atrophy
was attenuated in K48R mice, while ALP and protein synthesis signaling were not affected. Muscle mass recovery starting
72 h post LPS, correlated with reduced expression of UPS and ALP constituents and restoration of protein synthesis
signaling. K48R mice however displayed impaired recovery of muscle mass.

Conclusion: Pulmonary inflammation-induced muscle atrophy is in part attributable to UPS-mediated proteolysis, as
activation of ALP- and suppression of protein synthesis signaling occur independently of poly-Ub conjugation during
muscle atrophy. Recovery of muscle mass following pulmonary inflammation involves inverse regulation of proteolysis
and protein synthesis signaling, and requires a functional poly-Ub conjugation.
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Background
Pulmonary inflammation may develop in response to re-
spiratory infections or acute lung injury, and result in in-
tensive care unit hospitalization and ICU-acquired
muscle wasting [1]. Moreover, pulmonary inflammation
often accompanies chronic obstructive pulmonary disease
(COPD) exacerbations [2, 3]. Severe disease exacerbations
in COPD often require hospital admission, and have been
suggested to contribute to muscle wasting [4]. Muscle wast-
ing contributes to a reduced quality of life and increased
disability and mortality in COPD [5], and during or follow-
ing critical illness [6]. Previous studies have shown that pul-
monary inflammation is sufficient to induce muscle
atrophy [7, 8], emphasizing the relevance of an improved
understanding of the underlying mechanisms of loss and
recovery of skeletal muscle mass to clinical conditions ac-
companied by acute pulmonary inflammation.
Protein turnover is an important determinant of

muscle mass, and in homeostasis protein synthesis and
breakdown rates are in balance. Muscle proteolysis in-
volves multiple systems, including the ubiquitin 26S-
proteasome system (UPS) and the autophagy lysosomal
pathway (ALP) [9–11]. Proteasomal degradation of pro-
tein substrates requires conjugation of poly-ubiquitin
chains. Although Ub conjugation can occur on various
lysine residues, Ub K48-linkage is implicated as the main
post-translational modification involved in Ub-mediated
targeting of protein substrates to the 26S proteasome
[12]. Ubiquitin conjugation is catalyzed by E3-ligases. In
skeletal muscle, these include MuRF1 and Atrogin-1,
and E3-ligase expression levels appear a rate limiting
step in UPS-mediated proteolysis [13, 14]. The UPS and
ALP have long been regarded as independent degrad-
ation pathways [15]. However, UPS dependency of au-
tophagy termination [16], suggests that ALP mediated
proteolysis may involve Ub conjugation.
Several studies have suggested UPS involvement in

lung disease-associated muscle atrophy. Induction of E3
Ub-ligase expression in muscle following pulmonary in-
flammation has been documented [8], and Files et al. [7]
have shown that muscle atrophy requires MuRF1 ex-
pression. However, as the expression of multiple E3 Ub
ligases is concomitantly elevated during rapid muscle at-
rophy [17], the overall contribution of the UPS remains
to be determined in pulmonary inflammation-induced
muscle atrophy. Moreover, the role of ALP activation
and suppression of protein synthesis signaling in
inflammation-induced muscle wasting has received little
attention, and their dependency on poly-ubiquitination
has not been addressed. Finally, recovery of muscle mass
following muscle atrophy involves a net increase in pro-
tein synthesis compared to proteolysis [18]. Although
the dynamics in muscle mass have been described [8],
UPS-, ALP-, and protein synthesis signaling during

muscle mass recovery following pulmonary inflamma-
tion have not been explored.
We hypothesized that poly-ubiquitination is required

for acute pulmonary inflammation-induced muscle atro-
phy, and that UPS-and ALP-related proteolysis signaling
correlate inversely with protein synthesis signaling dur-
ing muscle atrophy and recovery following pulmonary
inflammation. To this end, muscle mass, UPS, ALP, and
protein synthesis signaling in skeletal muscle were
assessed following induction of pulmonary inflammation
in transgenic mice expressing wild type ubiquitin
(UBWT, control) or K48R-mutated ubiquitin, which im-
pairs poly-ubiquitin conjugation.

Materials and methods
Animals and experimental protocol
All mouse studies were approved by the institutional Ani-
mal Care Committee of Maastricht University and the care
and handling of the animals were in accordance with Na-
tional Institutes of Health guidelines. Twelve-week-old
male transgenic mice expressing a conjugation-terminating
mutant form of Ub (K48R) and WT Ub expressing trans-
genic mice (UBWT) as appropriate controls on a FVB
background [19, 20], were allowed food and water ad libi-
tum throughout experiments. Mice received intratracheal
(IT) instillation of a bolus (50 μl) LPS solution (0.6 μg per
gram mouse, Escheria coli, serotype o55:B5, Sigma, St.
Louis, MO [8]) to induce lung inflammation or 50 μl sterile
saline (vehicle control). Body weights and food intake were
recorded throughout the experiment. With the exception
of 7 h (UBWT mice only), UBWT and K48R mice were
sacrificed 24, 48, 72, 96, and 120 h after LPS (n = 5–7/time-
point) or saline (n = 3–4/time-point) instillation and gastro-
cnemius muscle was collected, weighed and stored in − 80 °
C for further analysis. At 48 h after LPS, also lungs were
collected for mRNA analysis of inflammation markers.

Histological analysis
The lungs were fixated by infusion of 4% paraformalde-
hyde through a tracheal cannula and excised for quanti-
tative assessment of lung structure [21, 22]. The lung
lobes were embedded in paraffin, and sections were
stained with haematoxylin and eosin staining to confirm
pulmonary inflammation.

RNA isolation
Total RNA was isolated from homogenized gastrocnemius
muscle using the TRI REAGENT™ (Sigma-Aldrich Che-
mie B.V, Zwijndrecht, NL). Before precipitation with iso-
propanol, glycogen (Invitrogen 10,814–010) was added as
co-precipitant according to the manufacturer’s instruc-
tions. cDNA was made with the Tetro cDNA Synthesis kit
(GC biotech). qPCR primers were designed using Primer
Express 2.0 software (applied Biosystems) and ordered
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from Sigma Genosys (Table 1). The relative DNA starting
quantities of the samples were derived using LinRegPCR
software (Version 2014.0, Ruijter). The expression of
genes of interest was normalized to the geometric average
of three or four reference genes (cyclophilin A, beta-2-
microglobulin, GAPDH, RPLP0, GUSB) by the GeNorm
software.

Western blotting
Gastrocnemius muscle was ground to powder using an
N2-cooled steel mortar. The powder (~ 20 mg) was lysed
in 600 μl lysis buffer [50 mM Tris, pH 7.4; 150 mM
NaCl; 10% glycerol; 0,05% Nonidet P-40; 1 mM EDTA;
500 μM Na3VO4; 500 μM NaF, 100 μM β-
glycerophosphate; 100 μM sodium pyrophosphate;
1 mM DTT, 10 μg/mL Leupeptin and 1% Aprotenin] (all
chemicals from Sigma-Aldrich Chemie, Zwijndrecht,
Netherlands), and protease inhibitors (Complete; Roche
Nederland, Woerden, Netherlands), using a mini-
BeadBeater. Lysates were incubated at 4 °C in a tube ro-
tator for 60 min, followed by 30-min centrifugation at
14,000 g. Pellet fractions were stored at − 80 °C for fu-
ture analysis. Total protein concentration of the super-
natant was determined with a BCA protein assay kit
(Pierce Biotechnology, #23225, Rockford, IL) according
to manufacturer’s instructions. To part of the super-
natant fraction 4× laemmli buffer [0.25 M Tris, pH 6.8;
8% SDS; 40% glycerol; 0.4 M DTT and 0.02% Bromophe-
nol Blue] was added and denatured by heating at 100 °C
for 5 min. Samples were analyzed by western blot. Briefly,
10 μg of protein per lane were separated on a Criter-
ionTM XT Precast 4–12% or 12% Bis-Tris gel (Bio-Rad
Laboratories, Veenendaal, Netherlands) and transferred to
a nitrocellulose transfer membrane (Bio-Rad Laboratories)

by electroblotting. The membrane was stained with Pon-
ceau S solution (0.2% Ponceau S in 1% acetic acid; Sigma-
Aldrich Chemie) to control for equal protein loading. The
membrane was blocked for 1 h at room temperature in
3% (wt/vol) nonfat dried milk (Campina, Zaltbommel,
Netherlands) dissolved in TBS-Tween-20 (0.05%). Nitro-
cellulose blots were washed in TBS-Tween-20 (0.05%) on
a rocking platform for 5 min, followed by overnight incu-
bation at 4 °C with primary antibodies [AKT: no. 9272; p-
AKT(Ser473): no. 9271; FOXO1: no. 2880; p-FOXO
1(Ser256): no. 9461; TSC2: no. 4308; p-TSC2(Thr1462):
no. 3617; mTOR (7C10): no. 2983; p-mTOR(Ser2448): no.
2971; S6: no. 2217; p-S6(Ser235/236): no. 4856; P70S6K1:
no. 9202; p-P70S6K1(Thr389): no. 9205; 4EBP1: no. 9452;
p-4EBP1(Thr37/46): no. 9459; p-4EBP1(S65): no. 9451;
ULK1: no. 8054; p-ULK1(Ser757): no. 6888; LC3B: no.
2775; Sqstm1/p62: no. 5114 (Cell Signaling Technology,
Beverly, MA) and REDD1: no. 10638–1-AP (ProteinTech,
Manchester, UK)]. All antisera were diluted 1/1000 in
TBS-Tween-20 (0.05%). After three washing steps of
10 min each, blots were probed with a horseradish
peroxidase-conjugated secondary antibody (Vector Labora-
tories, Burlingame, CA) and visualized with chemilumines-
cence (Supersignal West Pico or Femto Chemiluminescent
Substrate; Pierce Biotechnology) in a LAS-3000 Lumines-
cent Image analyzer (Fujifilm, Tokyo, Japan). Bands were
quantified using the Quantity One software (Bio-Rad, ver-
sion 4.5.0). All data were corrected for equal protein load-
ing as determined after Ponceau S staining.

Statistical analyses
Data are shown as means ± SE. Comparisons were com-
puted using SPSS version 22.0. For assessment of signifi-
cance between groups and genotypes an independent

Table 1 Sequences of primers used for RT-qPCR to assess expression of the indicated genes

Gene Forward primer (5′ to 3′) Reverse primer (5′ to 3′)

Cyclophilin A TTCCTCCTTTCACAGAATTATTCCA CCGCCAGTGCCATTATGG

Beta-2-microglobulin CTTTCTGGTGCTTGTCTCACTGA GTATGTTCGGCTTCCCATTCTC

GAPDH CAACTCACTCAAGATTGTCAGCAA TGGCAGTGATGGCATGGA

RPLP0 GGACCCGAGAAGACCTCCTT GCACATCACTCAGAATTTCAATGG

GUSB CATTAGCAAGCTGGTCCAGAGT GACAAAGTAACCCTTGGGATACAT

MuRF1 CTTCCTCTCAAGTGCCAAGCA GTGTTCTAAGTCCAGAGTAAAGTAGTCCAT

Atrogin-1 CAGCAGCTGAATAGCATCCAGAT TCTGCATGATGTTCAGTTGTAAGC

LC3B GAGCAGCACCCCACCAAGAT CGTGGTCAGGCACCAGGAA

p62/SQSTM1 GAATGTGGGGGAGAGTGTGG TCTTCTGTGCCTGTGCTGGA

REDD1 TCGGCGCTTCACTACTGACC CCTAACACCCACCCCATTCC

FoXO1 AAGAGCGTGCCCTACTTCAAGGATA CCATGGACGCAGCTCTTCTC

IL-6 GTATGAACAACGATGATGCACTTG GAAGACCAGAGGAAATTTTCAATAGG

TNF-α CAGCGCTGAGGTCAATCTGCC TGCCCGGACTCCGCAA

CXCL1 TCGTCTTTCATATTGTATGGTCAACACG TGCCCTACCAACTAGACACAAAATGTC
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samples T-test was used. Interactions between genotypes
and treatment were assessed using a two-way ANOVA. A
p-value < 0.05 was considered statistically significant.

Results
Pulmonary inflammation-induced muscle atrophy and
subsequent muscle mass recovery require poly-ubiquitin
conjugation
As expected, IT-instillation of LPS evoked pulmonary
inflammation involving inflammatory cell recruitment
(Fig. 1A) and increased expression of pro-inflammatory
cytokines and chemokines (Fig. 1B), was similar in con-
trol and K48R transgenic mice. In addition, alterations
in body weight and food-intake following pulmonary
inflammation did not differ between the genotypes
(Additional file 1A-B). Increased mRNA transcript levels
of the muscle specific E3 ubiquitin ligases Atrogin-1 and
MuRF1 24 h after LPS instillation (Fig. 1C, D) confirmed
intact activation of upstream UPS signaling in UBWT and
K48R mice. After LPS, a rapid decrease in skeletal muscle
mass was observed which again recovered as of 72 h (Fig.
1E). Notably, loss of muscle mass was less pronounced in
K48R mice, but not completely prevented, suggesting add-
itional involvement of processes that determine protein

turnover and muscle mass independently of poly-Ub con-
jugation. Furthermore, muscle mass from the K48R mice
did not recover over this timeframe, indicating that poly-
Ub conjugation is essential for recovery of muscle mass
after inflammation-induced atrophy.

Transient activation of autophagy during muscle atrophy
following pulmonary inflammation
During active autophagy the cytosolic form of LC3 (LC3B-
I) is conjugated to the lipidated form (LC3B-II), resulting in
recruitment to the autophagosomal membrane [23]. In
both UBWT and K48R mouse muscle, the LC3B-II/LC3B-I
ratio was significantly increased up to 48 h post LPS (Fig.
2A, B). This was accompanied by increased mRNA levels
of LC3B after LPS (Fig. 2C), suggesting increased conver-
sion of LC3B-I into LC3B-II, and an increased autophagic
flux. As of 72 h post LPS, the LC3BI/II ratio returned to
control levels. 120 h post LPS a further reduction was ob-
served in K48R mice only, which resulted from increased
(3-fold, p < 0.001) LC3B-I expression, indicating suppres-
sion of the ALP. p62 can facilitate the clearance of ubiquiti-
nated proteins by targeting to the autophagosome [24]. p62
protein abundance was increased 48 and 72 h post LPS
(Fig. 2D, E), and was preceded by increased p62 mRNA

Fig. 1 Pulmonary inflammation-induced muscle atrophy and subsequent muscle mass recovery require poly-ubiquitin conjugation. UBWT and K48R
mice were instilled intratracheally with NaCl or LPS. At 48 h after LPS a) lung sections were stained with H&E to confirm pulmonary inflammation,
or (B) mRNA levels of inflammatory markers IL-6, TNFα and CXCL1 were determined in lung tissue from WT and K48R mice. At 7 (UBWT only), 24
and 120 h after LPS, mRNA abundance of (c) MuRF1 and (d) Atrogin-1 were assessed in gastrocnemius muscle tissue. e) Gastrocnemius wet
weights were measured and expressed as a percentage of their respective IT-NaCl time control to represent the response to pulmonary inflammation.
All data shown represent means ±SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with control (intratracheal NaCl), * above a line refers to a
difference in response between genotypes. # represents a trend
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levels (Fig. 2F) in both UBWT and K48R mice. ULK1 sig-
naling stimulates autophagosome formation, and is inhib-
ited by mTOR via phosphorylation on ser757 [25, 26]. In
both UBWT and K48R mouse muscle, ULK1 ser757 phos-
phorylation was significantly decreased 24 to 48 h post LPS
(Fig. 2G, H), suggesting increased autophagy initiation and
corresponding with the elevated LC3B ratio and p62 levels
during acute loss of muscle mass. 120 h after LPS, ULK1
phosphorylation was increased, particularly in K48R
muscle, in line with the suppressed LC3B-II/I ratio, suggest-
ing inhibition of the ALP. Collectively in both genotypes,
ALP markers suggested activation of autophagy preceding
the maximally observed muscle atrophy. Autophagic activ-
ity in UBWT returned to baseline over time, whereas in
K48R mice the ALP appeared further repressed compared
to wildtype.

Changes in protein synthesis signaling correspond to
muscle mass loss and recovery following pulmonary
inflammation
Next, the phosphorylation status of p70S6, S6 and
4EBP1, which control mRNA translation as rate-limiting

step of protein synthesis, were determined (Fig. 3E).
Although p70S6 phosphorylation did not change be-
tween 7 to 48 h after LPS (Fig. 3A), phosphorylation of
its downstream substrate S6 was significantly decreased
(Fig. 3B). 4EBP1 ser65 and Thr37/46 phosphorylation
comparably decreased (Fig. 3C, D). Muscle mass recov-
ery apparent after 72 h post LPS, was accompanied by
restoration of p70S6 phosphorylation towards control
levels (Fig. 3A). Phosphorylation of 4EBP1 (S65: (1.8-
and 1.6-fold, T37/46 1.5- and 1.7-fold) was significantly
increased 96 h post-LPS in UBWT and K48R mice, re-
spectively, but this was masked in the phosphorylated/
total ratio (Fig. 3C, D) by concomitant increases in total
abundance of these proteins (Fig. 3E). Of note, S6 phos-
phorylation was markedly increased in the K48R mice at
120 h after LPS (Fig. 3E).

Increased REDD1 expression accompanies inhibited
protein synthesis signaling following pulmonary
inflammation
p70S6 and 4EBP1 are controlled by mTORC1 activity,
which in turn is regulated by REDD1 [27]. In line with

Fig. 2 Transient activation of autophagy during muscle atrophy following pulmonary inflammation. UBWT and K48R mice were subjected to the
intratracheal instillation of NaCl or LPS, and gastrocnemius muscle was collected at the indicated time points (hours after instillation). Protein levels of
(b) LC3B-I and LC3B-II, (d, e) p62, and (h) phosphorylated ULK1 (ser757) and total ULK1 were assessed in lysates of gastrocnemius muscle tissue with
western blot analysis. a) Ratio of LC3B-II over LC3B-I. g) Ratio of phosphorylated ULK1 over total ULK1. mRNA transcript levels of (c) LC3B and (f) p62
were determined, normalized to geNorm, and expressed as fold change compared with UBWT intratracheal NaCl. * p < 0.05, ** p < 0.01, *** p < 0.001
compared with control (intratracheal NaCl), * above a line refers to a difference in response between genotypes
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reduced mTORC1 activity, mRNA transcript (Fig. 4D)
and protein (Fig. 4C) abundance of REDD1 was highly
increased acutely after LPS instillation in both UBWT
and K48R muscle, and returned to baseline at 120 h post
LPS. mTOR is also regulated through Akt-mediated
phosphorylation at ser2448 [28], but no changes were
found after LPS instillation (Fig. 4A-B).

Dynamic regulation of FoXO1 activity during muscle
atrophy and recovery following pulmonary inflammation
Akt is not only the upstream effector of mTOR, but also
of FoXO1. Akt ser473 phosphorylation was increased
48 h post LPS (Fig. 5A-B). The expression of Atrogin-1
and MuRF1 is regulated by activation of FoXO family of

transcription factors. Phosphorylation on ser256 by Akt
results in nuclear export and inhibition of transcriptional
activity of FoXO1 [29]. In both UBWT and K48R mouse
muscle, the ratio of phosphorylated to total FoXO1 was
significantly decreased 24 to 48 h post LPS (Fig. 5C).
However, this was the result of strongly increased total
FoXO1 levels (24 h: 3.1- and 2.5-fold, 48 h: 4- and 3.4-
fold), in UBWT and K48R mice, respectively, which over-
whelmed increases in abundance of phosphorylated
FoXO1 (Fig. 5D). 72 h post LPS, total FoXO1 levels
returned to baseline while phosphorylated levels remained
increased. This corresponded with Akt phosphorylation
and initiation of muscle mass recovery. FoXO1 mRNA
levels were increased acutely after LPS, again returning to

Fig. 3 Changes in protein synthesis signaling correspond to muscle mass loss and recovery following pulmonary inflammation. UBWT and K48R mice
were subjected to the intratracheal instillation of NaCl or LPS, and gastrocnemius muscle was collected at the indicated time points (hours after
instillation). Protein levels of phosphorylated p70S6 (Thr389), total p70S6, phosphorylated S6 (ser235/236), total S6, phosphorylated 4EBP1 (ser65
and Thr37/46) and total 4EBP1 were assessed in lysates of gastrocnemius muscle tissue with western blot analysis. (e) Representative western
blots of the indicated proteins. Ratios of (a) phosphorylated p70S6 over total p70S6, (b) phosphorylated S6 over total S6, (c) phosphorylated
4EBP1 (ser65) over total 4EBP1 and (d) phosphorylated 4EBP1 (Thr37/46) over total 4EBP1. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with
control (intratracheal NaCl), * above a line refers to a difference in response between genotypes
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Fig. 4 Increased REDD1 expression accompanies inhibited protein synthesis signaling following pulmonary inflammation. UBWT and K48R mice were
subjected to the intratracheal instillation of NaCl or LPS, and gastrocnemius muscle was collected at the indicated time points (hours after
instillation). Protein levels of phosphorylated mTOR (ser2448), total mTOR or (c) REDD1 were assessed in lysates of gastrocnemius muscle tissue
with western blot analysis. a) Ratio of phosphorylated mTOR over total mTOR. b) Representative western blots of the indicated proteins. d) mRNA
transcript levels of REDD1 were determined, normalized to geNorm, and expressed as fold change compared with UBWT intratracheal NaCl. *** p
< 0.001 compared with control (intratracheal NaCl)

Fig. 5 Dynamic regulation of FoXO1 activity during muscle atrophy and recovery following pulmonary inflammation. UBWT and K48R mice were
subjected to the intratracheal instillation of NaCl or LPS, and gastrocnemius muscle was collected at the indicated time points (hours after
instillation). Protein levels of phosphorylated Akt (ser473), total Akt, phosphorylated FoXO1 (ser256) and total FoXO1 were assessed in lysates of
gastrocnemius muscle tissue with western blot analysis. b, d) Representative western blots of the indicated proteins. Ratios of (a) phosphorylated
Akt over total Akt and (c) phosphorylated FoXO1 over total FoXO1. e) mRNA transcript levels of FoXO1 were determined, normalized to geNorm,
and expressed as fold change compared with UBWT intratracheal NaCl. * p < 0.05, ** p < 0.01 compared with control (intratracheal NaCl), * above
a line refers to a difference in response between genotypes
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baseline after 120 h (fig. 5E). Combined, these data imply
rapid de-repression of FoXO1 activity and subsequent in-
creases in its expression in acute atrophying muscle,
followed by Akt-mediated inhibitory phosphorylation of
FoXO1 during muscle mass recovery.

Discussion
Therapeutic strategies to prevent ICU-acquired or
COPD exacerbation-associated muscle wasting are cur-
rently lacking, and restoration of lost muscle mass and
function following recovery from critical illness or
COPD exacerbation is challenging and often incomplete
[30, 31]. Pulmonary inflammation often accompanies
these conditions and is sufficient to induce muscle atro-
phy, but the intracellular mechanisms governing the net
loss of muscle protein have not completely been identi-
fied. Although individual E3 ligases of the UPS have
been implicated previously [7, 8], using a comprehensive
approach employing K48R transgenic mice to inhibit
poly-ubiquitin conjugation, we now demonstrate partial
dependency of pulmonary inflammation-driven muscle
atrophy on UPS-mediated proteolysis. The Ub K48R
substitution interferes with assembly of ubiquitin chains
with the topology required for proteasomal targeting
[32], but not with upstream activation of the UPS pro-
teolytic program. Accordingly, the induction of Atrogin-
1 and MuRF1 expression is similar to UBWT mice.
Moreover, as the Ub K48R substitution does not affect
ALP- and protein synthesis signaling during muscle loss,
we conclude that muscle atrophy observed following
pulmonary inflammation is in part dependent on UPS-
mediated proteolysis. This is in line with other studies
demonstrating partial prevention of atrophy in limb
muscle [33] and respiratory muscle [34], and demon-
strates a similar reliance on UPS-mediated atrophy of
muscles of varying fiber type composition. The residual
muscle mass loss in K48R mice observed up to 72 h
post-LPS implies a contribution of increased autophagy
and reduced protein synthesis signaling to muscle atro-
phy following pulmonary inflammation.
The increased expression levels and post-translational

alterations of proximal (LC3B, p62) and distal (ULK1)
ALP constituents early after induction of pulmonary in-
flammation, correspond with rapidly developing loss of
muscle mass, in line with other reports demonstrating
activation of the autophagy machinery in acute muscle
atrophy [35]. ULK1 is an upstream regulator of autoph-
agy, and its activity corresponds inversely with its phos-
phorylation on serine 757 catalyzed by mTORC1 [25].
The rapid reduction in serine 757 ULK1 phosphorylation
levels is accompanied by increases in LC3B-II/-I ratio,
implying decreased mTORC1 activity in the initiation of
autophagy. In line with this notion, other downstream
targets of mTOR signaling, i.e. 4EBP1 and S6, also

display reduced phosphorylation levels reflective of de-
creased mTORC1 activity in the initial phases of muscle
atrophy. These findings correspond with studies showing
that inhibition of mTOR is sufficient to initiate autoph-
agy in skeletal muscle [25]. mTORC1 activity in skeletal
muscle is subject to regulation by REDD1, which stimu-
lates the inhibitory actions of TSC2 on mTORC1 [27].
As mRNA and protein expression levels of REDD1 are
rapidly increased after induction of pulmonary inflam-
mation, REDD1-mediated mTORC1 complex inhibition
may represent the first step in activation of the ALP. In
line with this notion, it has previously been shown that
induction of autophagy in skeletal muscle in response to
systemic inflammation requires REDD1 expression [36,
37]. Another important group of upstream regulators of
autophagy are the FoXOs which are required to sustain
autophagic flux by upregulating autophagy-related gene
transcription like p62 and LC3 [38, 39]. The decreased
phosphorylated over total FoXO1 protein abundance,
suggesting increased FoXO activity, accompany elevated
LC3B and p62 mRNA levels during muscle atrophy fol-
lowing pulmonary inflammation, in support of FoXO as
a transcriptional regulator of these genes [39, 40]. Com-
bined, these data suggest involvement of autophagy-
mediated degradation in pulmonary inflammation-induced
muscle atrophy through mTOR inhibition and FoXO1 acti-
vation, in addition to UPS-mediated proteolysis.
Others have postulated that muscle atrophy after acute

inflammation is not only the result of increased prote-
olysis, but also of reduced protein synthesis [41–43]. In
this study, levels of phosphorylated 4EBP1 and S6 de-
crease early after LPS, indicating reduced cap-dependent
mRNA translation during muscle atrophy. This rate lim-
iting step of protein synthesis is controlled by mTORC1
signaling [44]. As these changes are not accompanied by
altered levels of phosphorylated mTOR (S2448) or TSC2
(T1462) (data not shown), this indicates that reduced
mTORC1 activity suggested by the decreased p-4EBP1
and p-S6 levels, is not a consequence of alterations in
Akt signaling [28, 45, 46]. Instead, the reduction of these
proximal markers of protein synthesis more likely reflects
REDD1-mediated inhibition of mTORC1, in line with pre-
viously reported inhibition of mTORC1 activity and pro-
tein synthesis in inflammation-induced atrophy [37].
Combined, these data suggest a contribution of reduced
protein synthesis signaling in pulmonary inflammation-
induced muscle atrophy in addition to UPS- and ALP-
mediated proteolysis.

UPS and ALP inversely correlate with protein synthesis
signaling during loss and recovery of muscle mass
Indicative of coordinated activation of the UPS and the
ALP following pulmonary inflammation, increased levels
of the E3 ligases MuRF1 and Atrogin-1 correspond with
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increased levels of LC3B-II and decreased phosphoryl-
ation of ULK1. Moreover, protein synthesis signaling is
decreased. This shift in protein turnover regulation in
favor of proteolysis likely drives the observed maximal
muscle mass decreases after 48 h. The increased p-
FoXO1/total-FoXO1 ratio 72 h following induction of
inflammation marks attenuation of the protein break-
down machinery. Indeed both transcripts encoding UPS
(MuRF1, Atrogin-1) and ALP (LC3B, p62), which are
under transcriptional control of FoXO [39, 40], return to
baseline. Conversely, protein synthesis signaling restores
or even increases 72 h after LPS. These dynamics in pro-
teolysis and protein synthesis signaling represent a shift
in favor of synthesis at the later time points, which cor-
responds with the recovery of muscle mass. This con-
firms the notion that UPS- and ALP-related proteolysis
and protein synthesis signaling correlate inversely during
muscle atrophy and muscle mass recovery following pul-
monary inflammation.

Ub conjugation is required for muscle mass recovery
following pulmonary inflammation
While muscle atrophy is almost completely restored in
the UBWT mice, no muscle mass recovery is observed
in K48R mice within the timeframe assessed in this
study. This is consistent with earlier findings that a func-
tional UPS is necessary for skeletal muscle growth and
remodeling [47], and regeneration [48, 49]. Whereas in
UBWT mice ULK1 Ser757 phosphorylation and the ra-
tio of LC3B-II/I return to baseline levels during muscle
mass recovery, this is not observed in K48R mice. It has
been previously shown that termination of autophagy is
dependent on UPS-mediated turnover of ULK1 [16], and
impaired termination of autophagy affects the amplitude
and duration of muscle atrophy [16]. This suggests that
impaired ALP may contribute to disturbed muscle mass
recovery in K48R mice. Accordingly, inappropriate acti-
vation as well as inhibition of autophagy in skeletal
muscle result in myopathy and muscle atrophy [50].
Conversely, levels of phosphorylated S6 remain upreg-

ulated in K48R mice, which may reflect a futile attempt
of the protein synthesis machinery to compensate for
the inability to regain muscle mass. Although the exact
mechanism for the sustained muscle atrophy remains
unclear, these findings suggest that disturbances of pro-
cesses involved in protein turnover result in impaired
muscle mass recovery following atrophy.

Conclusions
In summary, this study reveals that muscle atrophy in re-
sponse to pulmonary inflammation can be partitioned in
UPS-mediated proteolysis, and a contribution of increased
autophagy and reduced protein synthesis signaling, which
provides leads for the development of future interventions

on separate processes to modulate muscle wasting. As we
also demonstrate that functional Ub conjugation is re-
quired for muscle mass recovery following pulmonary
inflammation-induced muscle atrophy, this illustrates that
the effects of candidate therapeutics should be evaluated
on all aspects of muscle mass plasticity.

Additional file

Additional file 1: Changes in food intake, body- and muscle weight
following pulmonary inflammation. A) Food intake was recorded
throughout the experiment. B) Body weights were measured and weight
change per 24 h timeframes was expressed as a percentage. C)
Gastrocnemius wet weights corrected for starting body weight and (D) the
combined wet weights of the soleus, plantaris and gastrocnemius muscle
(SPG complex) were measured and expressed as a percentage of their
respective IT-NaCl time control to represent the response to pulmonary
inflammation. All data shown represent means ±SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001 compared with control (intratracheal NaCl), * above a line
refers to a difference in response between genotypes. (TIFF 9317 kb)
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