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Abstract

Background: Sarcoidosis is a systemic disease characterized by the formation of immune granulomas in various
organs, mainly the lungs and the lymphatic system. Exaggerated granulomatous reaction might be triggered in
response to unidentified antigens in individuals with genetic susceptibility. The present study aimed to determine
the genetic variants implicated in a familial case of sarcoidosis.

Methods: Sarcoidosis presentation and history, NOD2 profile, NF-κB and cytokine production in blood monocytes/
macrophages were evaluated in individuals from a family with late appearance of sarcoidosis.

Results: In the present study, we report a case of familial sarcoidosis with typical thoracic sarcoidosis and carrying
the NOD2 2722G > C variant. This variant is associated with the presence of three additional SNPs for the IL17RA,
KALRN and EPHA2 genes, which discriminate patients expressing the disease from others. Despite a decrease in NF-
κB activity, IL-8 and TNF-A mRNA levels were increased at baseline and in stimulated conditions.

Conclusions: Combination of polymorphisms in the NOD2, IL17RA, EPHA2 and KALRN genes could play a significant
role in the development of sarcoidosis by maintaining a chronic pro-inflammatory status in macrophages.
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Background
Sarcoidosis is a systemic granulomatous disease of un-
known cause. A genetic predisposition is suggested by fa-
milial histories and the risk for the disease multiplied by 80
in monozygotic twins of index cases [1, 2]. Genome-wide
association studies and candidate gene-driven investigations
identified several genetic risk foci for sarcoidosis, including
butyrophilin-like 2 gene [3–5], Annexin 11 [6], a locus on
chromosome 11q13.1 [7], several loci in the HLA region
[8] and in the IL23/Th17 signalling [9]. NOD2 mutations
have been evidenced in granulomatous diseases, including
Blau syndrome (BS), early onset sarcoidosis (EOS) and
Crohn’s disease (CD). NOD2 is a cytosolic protein involved
in sensing microbial cell wall components and regulating
inflammatory processes by activating NF-κB [10]. A deficit
in sensing bacteria in monocytes/macrophages might result
in an exaggerated inflammatory response by the adaptive

immune system. Thus NOD2 mutations are considered to
play a major role in the pathogenesis of granulomatous dis-
eases [11, 12]. Variants may concern different NOD2 do-
mains, NACHT domain for BS and EOS and LRR domain
for CD [11, 13]. NACHT domain variants enhanced NOD2
activity, whereas LRR domain variants reduced NOD2.
Although scientific evidence was provided indicating that

the NOD2 signalling pathway was involved in sarcoidosis
pathogenesis, selection of patients with confirmed sarcoid-
osis from the Sarcoidosis Genetic Analysis study population
[14] and the ACCESS study [15] with or without joint and
skin involvement showed no evidence of NOD2 mutation
[16]. Up to now, no study has evidenced any NOD2 muta-
tion in sarcoidosis with a late typical presentation. The role
of the NOD2 gene in sarcoidosis was associated with in-
crease susceptibility for developing sarcoidosis [17, 18].
The SARCFAM project is a French national project on

familial sarcoidosis which allowed the recruitment of
more than 180 families with at least two first-degree af-
fected members [19]. Screening of nine sarcoidosis by
WES has provided extensive and complex data which
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are included in a larger program of the SARCFAM pro-
ject. Among this series, a subset of 10 families gathered
more than 3 patients. One of them referred as “X” was
of particular interest due to the identification of NOD2
variants, including the G908R mutation that has been
described in Crohn’s disease. Identification of the NOD2
variant in the LRR domain (G908R in exon 8) was con-
firmed by Sanger sequencing.
In the present study, we report sarcoidosis presenta-

tion and history, NOD2 profile and NF-κB and cytokine
production in blood monocytes in affected patients of
the family X and to compare genetic and NF-κB and
cytokine profiles with members of the family unaffected
by sarcoidosis and safe controls.

Methods
Populations
The study received institutional review board approval
(CPP IRN number 00009118) according to French legis-
lation. Written informed consent for all participants was
obtained for genetic and biological investigations. Three
groups were studied:
Members of family X with confirmed sarcoidosis (n = 4)

(Table 1 and Fig. 1). Sarcoidosis diagnosis was made ac-
cording to sarcoidosis statement [20]. Three of them
could be investigated (IB, IIA and IIB). In them, clinical
presentation was typical, evidence of non caseating
granulomas was obtained and there was no element in
favour of any alternative granulomatous disease. None of
them presented any element in favour of BS, EOS nor
CD. In particular, there was no digestive tract history ex-
cept for one patient with colic polyps who underwent
twice colonoscopy without evidence of macroscopic or
histologic arguments for CD.
Members of family X unaffected by sarcoidosis (n = 2)

(Fig. 1). Two members of the family (IIC and IID), who
were brother or sister of two patients, son or daughter of
one patient and nephew or niece of the fourth patient, with
no history of sarcoidosis were investigated in 2016. For
both, clinical examination, chest X ray and blood biology in-
cluding serum angiotensin converting enzyme were normal.
Control volunteers (n = 4): Four normal volunteers,

aged 69, 65, 48 and 53 with no history of sarcoidosis nor
any known current disease served as normal controls.

Genetic testing
Blood DNAs were obtained from three patients and
tested for NOD2 exon 8, IL17RA exon 11, KALRN exon
1 and EPHA2 exon 17 sequence variants. PCR reaction
was performed as described in the Additional file 1.

Targeted exome sequencing
Genomic DNA was captured using Agilent in-solution
enrichment methodology (SureSelect Human Clinical
Research Exome, Agilent) with the supplied biotinylated
oligonucleotides probes library (Human Clinical Re-
search Exome, Agilent), followed by paired-end 75 bases
massively parallel sequencing on Illumina HiSEQ 4000.
The DNA library was prepared as described in the
Additional file 1.

Screening of SNP variants identified by WES
SNP variants identified in family X upon WES screening
were analyzed for a putative functional effect on the protein
by using the SIFT and Polyphenv2 softwares (see in the
Additional file 1). The minor allele frequencies (MAF) were
evaluated by the ExAC online database (see in the Add-
itional file 1, Bioinformatics and Statistical and functional
evaluation of variants in silico). A MAF less than 0.01 sug-
gest a rare variant and not a common polymorphism.

Peripheral blood mononuclear cells isolation, culture and
stimulations
Twenty mL of total blood sampled in EDTA tubes for
routine hematology analysis were collected. Peripheral
blood mononuclear cells (PBMCs) were isolated and differ-
entiated in macrophages as described in the Additional file 1.
Macrophages were then stimulated with either saline serum
(Ctrl), or 10 μg/mL of N-Acetylmuramyl-L-alanyl-D-isoglu-
tamine hydrate (MDP, muramyl dipeptide) (Sigma-Aldrich
France), or 1 μg/ml Lipopolysaccharides from Escherichia
coli 0111: B4 (LPS) (Sigma-Aldrich) for 1 h for the NF-κB
activation study or 24 h for the transcriptional study.

NF-κB activation
Activation of the different NF-κB family members (p50,
p52, p65, c-Rel and RelB) was assayed using the TransAM®
NF-κB Family kit (Active Motif, Belgium) according to the
manufacturer’s protocol.

Table 1 Clinical characteristics of family X members

Family member Year of birth Sex Age at sarcoidosis
diagnosis

Chest X ray stagea Extra-thoracic
sarcoidosis

Sarcoidosis duration
(years)

Sarcoidosis treatment

IA 1925 M 41 4 no 30 not treated

IB 1932 F 43 1 skin 34 never treated

IIA 1955 M 35 4 PH 28 corticosteroid

IIB 1957 M 51 1 spinal cord 10 corticosteroid/cyclphosphamid

M male, F female; aaccording to (17), PH pulmonary hypertension under specific vasodilatator treatment
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RNA extraction and RT-QPCR
RNA were prepared as described in Additional file 1.
Quantitative PCRs were performed in presence of ABso-
lute QPCR Mix (Thermo Fisher Scientific) with primer
sets specific to TNF-A, IL-8, IL-6, NOD2 and IL17RA
(see in the Additional file 1: Table S1).

Results
Sarcoidosis presentation, outcome and treatment
Sarcoidosis presentation, outcome and treatment are
shown in Table 1. Sarcoidosis was diagnosed in 35, 41,
43 and 51-year-old patients. Typical bilateral hilar
lymphadenopathy was evidenced on thorax imaging in
all four cases with lung infiltration in two cases. Bilateral
upper lobes fibrosis was seen in two cases, associated
with pulmonary hypertension in only one case. Other
manifestations were respectively skin lesions for IB and
spinal cord localization for IIB. In three cases (IB, IIA,
IIB), there was a prolonged course (respectively 35, 27
and 9 years) with no healed case till now. Patient IB with
a well-tolerated chronic sarcoidosis has upper lobes
pulmonary fibrosis with calcification of hilar and medi-
astinal lymph nodes. She received no systemic therapy
for sarcoidosis, except treatment for recurrent infectious
exacerbations. The exact duration of the disease course is

unknown. For IIA, a corticosteroid treatment was given after
20 years due to lung progression and occurrence of lung fi-
brosis. There was a good response with glucocorticoids
which could be tapered until 7 mg/d with no evidence of re-
sidual activity on recent investigations. Eventually, for IIB, be-
cause of spinal cord involvement, a treatment associating
high doses of corticosteroids and cyclophosphamide was
given with a favourable response. Now, treatment consists in
low doses of prednisone without relapse.

NOD2 investigation
The NOD2 variant (SNP - Ggc/Cgc – rs2066845 – pos-
ition chr.16.50756540 – transcript NM_022162) identi-
fied in this family is a missense mutation previously
described in the context of Crohn’s disease. It consists of
a G908R substitution located in exon 8. The minor allele
frequency as suggested by the ExAC database is
0,009917 (http://exac.broadinstitute.org/). In family X,
this variant was found in the three patients with sarcoid-
osis and one among two offsprings free of the disease.
No control had NOD2 mutation. In addition, selective
extraction of rare variants from WES data allowed us to
identify three other single nucleotide variants in the
three patients with sarcoidosis. These SNPs target the
coding regions of the IL17RA, KALRN and EPHA2
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Fig. 1 Pedigree of Family X with cases of pulmonary sarcoidosis. Circles represent females; squares represent males. Slashed symbol indicate
deceased subjects. Individuals with confirmed sarcoidosis are indicated in black symbols. Relatives in grey symbols underwent a workup diagnosis
(clinical examination, blood tests and chest X ray) that allowed to exclude sarcoidosis. The current age is indicated below each symbol. Numbers
beside each symbol correspond to the individuals described in Table 1. The directional arrow indicates the index case. His maternal grand-mother
died in 1958. She was known to have recurrent asthma attacks. No medical file is available for this woman

Besnard et al. Respiratory Research  (2018) 19:44 Page 3 of 11

http://exac.broadinstitute.org/


genes, causing either missense (IL17RA, EPHA2) or non-
sense (KALRN) variants. Data on the various SNPs are
summarized in Table 2. In the series of 9 families
screened by WES and including family X, a total of 7
deleterious and /or rare variants was observed in the
three genes, either EPHA2 (3 variants in 3 families),
KALRN (2 variants in 2 families) and IL17RA (2 variants
in 2 families) (Table 3). The rs139787163 variant of
EPHA2 (p.Ala951Thr) was observed two times despite a
very low MAF value (ExAC: 0.000346).

NFκB activation is reduced in sarcoidosis patients with
NOD2 G208R mutation
Activation of NOD2 promotes its binding to RIP2 kinase,
triggering the complex activation and initiating the activa-
tion of multiple complexes, including MAP kinases and IκB
kinases [21]. This activation allowed the release of active
NF-κB/Rel complexes that translocate to the nucleus where
they induce target gene expression involved in innate and
adaptive immunity, inflammation, stress responses, B-cell
development, and lymphoid organogenesis. In the present
study, activation of different NF-κB family members (p50,
p52, p65, c-Rel and RelB) was assayed in monocytes and
macrophages in basal condition or in response to either
MDP (specific NOD2 activator) or LPS from control

subjects or family members. NF-κB p50 and p65 activations
were increased in response to MDP and LPS stimulation in
both control subjects and family patients, except the patient
IB whose macrophages poorly responded to both treat-
ments (Fig. 2a, b). Similarly, NF-κB p52 activation was less
in macrophages from patient IB (Fig. 2c). No major differ-
ences were observed in NF-κB cRel and RelB activation in
macrophages from control subjects or family members in
stimulated by MDP or LPS (Fig. 2d, e).
To determine whether reduced NF-κB activation in

untreated NOD2 G208R sarcoidosis patient (IB) de-
creases inflammatory cytokines expression, mRNA levels
for IL-8, TNF-A, IL-6 genes were assessed by quantitative
RT-PCR (qRT-PCR) in monocytes and macrophages in
basal condition or in response to either MDP or LPS
from control subjects or family members. Strikingly,
both IL-8 and TNF-A mRNAs were expressed at high
levels in macrophages from patient IB in basal and stim-
ulated conditions compared to other family members
and control subjects (Fig. 3a, b). By contrast, IL-6 mRNA
levels were similar in both groups in each culture condi-
tions (Fig. 3c). In addition, NOD2 mRNA levels were in-
creased in patient IB in basal condition and in response
to MDP (Fig. 3d). By contrast, IL17RA were similar in
both groups in each culture conditions (Fig. 3e).

Table 2 Description of heterozygous variants identified by whole-exome-sequencing in the family X

Gene variant NOD2 2722G > C
exon 8
NM_022162

IL17RA 958 T > C
exon 11
NM_014339.6

KALRN 28C > T
exon 1
NM_007064.3

EPHA2 2875G > A
exon 17
NM_004431.3

Chr. 16 22 3 1

Position 50,756,540 17,586,757 124,303,696 16,451,766

QUAL 2521 3844 4578 10,401

Deph 278 370 528 618

rs ID number rs2066845 rs140221307 rs56407180 rs139787163

Single nucleotide variant missense missense nonsense missense

PolyPhen2 prediction 0.986a 0.972a STOPa 0.828a

SIFT 0.01 0a STOPa 0.05a

EXaC global MAF 0.009917 0.001801 0.002382 0.00346

Protein NOD2 G908R IL17RA W320R – EPHA2 A959T

Prior associations with disease Crohn’s disease, Psoriatic arthritis, Blau syndrome Familial Candidiasis – Age-related cortical cataract

Patient IB Het Het Het Het

Patient IIA Het Het Het Het

Patient IIB Het Het Het Het

Patient IIC Het A A A

Patient IID A A A A

Het heterozygous, A minor allele (C) absent, Chr chromosome, SNP single nucleotide polymorphism; Depth represents the number of reads identifying the SNP
variant. QUAL., a quality parameter measuring the probability p that the observation of the variant is due to chance (for ex: QUAL = n, p = 1/n). It includes the
DEPTH parameter and the coverage of the genomic sequence. The in silico functional evaluation of SNP variants was performed by using bioinformatics softwares
SIFT, PolyPhen-2. The value indicating a putative pathogenic effect are near of 0 for SIFT and near of 1 for Polyphenv2, as indicated by the a. The minor allele
frequency of SNP variants were evaluated by using the ExAC online database (http://exac.broadinstitute.org/). A global MAF including all ethnic origins lower than
0.01 suggest a rare variation and not a common polymorphism
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Discussion
To our knowledge, this is the first time that the NOD2
2722G>C (rs2066845) variant substituting a Glycine to Ar-
ginine at codon 908 in exon 8 in the leucine rich repeat
(LRR) domain of the NOD2 protein is reported in a case of
familial sarcoidosis with late and typical presentation of the
disease. This variant was observed in an unaffected relative,
suggesting that other genetic and/or epigenetic factors may
contribute to the occurrence of the disease. Indeed, WES
analysis discriminated affected versus unaffected individuals

by three putative pathogenic SNP variants in the IL17RA,
KALRN and EPHA2 genes.
NOD2 is essential in regulating both inflammatory

and immunologic homeostasis. In silico pathogenic
evaluation (p) with the SIFT (p = 0.01) and POLY-
PHENv2 (PSIC score difference = 2.407) suggest a strong
disturbing effect on the primary amino acid sequence
raising the question of a significant impact in sarcoidosis
pathogenesis. The role of the G908R mutation of the
NOD2 gene in sarcoidosis is controversial either with

Fig. 2 NF-κB activation is decreased in untreated NOD2 G208R sarcoidosis patient. NFκB activation (p50 (a), p65 (b), p52 (c), RelB (d), cRel (e))
(measured as OD450 nm) was assessed by TransAM NFκB kit (Active Motif) in control (C) and family X (F) monocytes (Mono) or monocytes
derived macrophages (MФ) in basal condition (Ctrl) or treated with MDP or LPS for 1 h
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increase susceptibility for developing sarcoidosis [17, 18]
or a minor role of the 2722G > C variant in the patho-
genesis of sarcoidosis [22–24]. In the present case of fa-
milial sarcoidosis, 3 out of 4 patients with the variant
2722G > C developed sarcoidosis, while the other un-
affected offspring did not carry the variant. Observation
of a family member with NOD2 variant but no sarcoid-
osis is similar to the numerous individuals free of any
disease, particularly of CD despite carrying the same
variant, indicating that gene/environmental interactions
and possibly gene/gene interactions (epistasis) are also
essential [25]. Such association of sarcoidosis with the

NOD2 2722G > C variant is certainly a very rare finding.
It was not observed in Bello’s paper focused on adult pa-
tients with sarcoidosis involving eyes, skin and joints as
in EOS and BS [16]. In our nine other families with at
least 3 members affected, none was associated to any
NOD2 variant. Among our family collection, families
with 3 or more affected members (n = 10) represent
probably a small subset among sarcoidosis families with
probably specific genetic predisposal or shared environ-
mental factors.
It is of particular interest to observe the NOD2 2722G >

C variant associated with a very typical presentation of

Fig. 3 Up-regulation of IL-8 and TNF-A expression in untreated NOD2 G208R sarcoidosis patient. IL-8 (a), TNF-A (b), IL-6 (c), NOD2 (d) and IL17RA
(e) mRNA levels were assessed by RT-qPCR in control (C) and family X (F) monocytes (Mono) or monocytes derived macrophages (MФ) in basal
condition (Ctrl) or treated with MDP or LPS for 24 h
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sarcoidosis, all patients showing bilateral hilar lymphaden-
opathy and lymphatic distribution of lung micronodules
distinct from EOS when lung involvement was present
[26]. By contrast evidence of lung infiltration is very rare
in EOS with a very different radiologic pattern and no
lymphadenopathy [11]. Another question is the impact of
NOD2 variant on the outcome which was characterized
by a very long course in all patients, a condition usual in
CD and perhaps associated to persistent abnormalities of
microbiota induced by the variant. Indeed, deletion of
Nod2 in mice reduced bacterial activity in the gut, pro-
moting an increased susceptibility to colonization by both
the commensal microbiota and pathogenic bacteria, thus
triggering intestinal inflammation [27]. In addition, Nod2
deletion impairs autophagy in macrophages allowing
intracellular survival of bacteria delaying bacterial clear-
ance [28]. In our family, any confusion with CD either as
main diagnosis or as comorbidity was ruled out by the
absence of suggestive history of digestive tract disease
particularly in one patient who had two colonoscopic
examinations.
Both gain of function NOD2 mutant alleles like in BS

and EOS and loss of function NOD2 mutant alleles like in
most common CD and probably in our family with sar-
coidosis might induce autoinflammatory disorders [29,
30]. During sarcoidosis, NF-κB is activated in site of organ
involved [31–33]. In BS and EOS, gain of function NOD2
variants are associated with NF-κB activation. By contrast,
we observed NFκB downregulation in our untreated pa-
tient as in CD patients with the NOD2 2722G > C variant.
These data are supported by in vitro experiments showing
that NFκB activity is reduced at baseline and in response
to MDP in HEK293T cells expressing the NOD2 2722G >
C variant [34–36]. Interestingly, NF-κB activity was upreg-
ulated in response to MDP in family X treated patients as
well as the unaffected carrier of the variant, similarly to
normal controls suggesting that treatments efficient
against sarcoidosis activity may restore NF-κB activity al-
tered by the presence of the NOD2 2722G > C variant. In-
deed, patients treated by glucocorticoids responded well
to the treatment, indicating that they were not refractory
to corticoids [37] by comparison to Crohn disease patients
[38]. Although increased NF-κB activity in patients with
corticoids is obviously in conflict with what could be ex-
pected with anti-inflammatory drugs, previous studies
showed that glucocorticoids could potentially contribute
to pro-inflammatory activation by inducing the expression
of the Macrophage migration inhibitory factor [39]. By
contrast, in response to LPS stimulation, NF-κB activity
was maintained in the untreated patient IB to similar
levels observed in family X treated patients and normal
controls, indicating that stimulation of NF-κB through
NOD2- independent pathways remains possible. NF-κB is
an important transcription factor for genes encoding

cytokines like IL-8 and TNF-A, this last one being a corner
stone in sarcoidosis pathogenesis. In patient IB, despite a
decrease in NF-κB activity, IL-8 and TNF-A mRNA levels
were increased at baseline and in stimulated conditions,
indicating a chronic pro-inflammatory status in macro-
phages. As in Crohn disease patients with the NOD2
2722G > C variant, patient IB led to an apparent paradox:
reduced NF-κB transactivating activity associated with
more inflammation. Recently Strober et al... showed that
in mice, activation of NF-κB in response to ligands to toll-
like receptor 2 (TLR-2) is down-regulated by NOD2 [40].
In the absence of an efficient form of NOD2 the TLR sig-
naling pathway is maintained, leading to increased pro-
duction of inflammatory cytokines and the development
of pathogenesis. Other data suggest that virulence and
pathogens factors may trigger the NOD1/NOD2 signaling
pathway indirectly by activating Rac1 [41]. Rac1 has been
shown to upregulate NF-κB activity in a PAK1 (p21-acti-
vated kinase) dependent manner by stimulating the nu-
clear translocation of p65 subunit of NF-κB [42]. In
addition, Hedl et al showed that acute stimulation of
NOD2 triggered in human macrophages the secretion of
anti-inflammatory cytokines, including IL-10 and IL1ra
[43]. Thus, we could hypothesize that in NOD2 2722G >
C patients, an imbalance occurs in favour of a pro-
inflammatory phenotype.
One of the major issue was to find any genetic data which

might discriminate family X members expressing clinically
the disease from the others. Remarkably, in addition to
NOD2 2722G >C, three single nucleotide variants for the
IL17RA, KALRN and EPHA2 genes were found in the fam-
ily X patients with sarcoidosis. By comparison, as shown in
Table 3, screening of the nine families by WES analysis
showed the presence of single deleterious variants in a total
of 7 families out of 9, one of them (EPHA2 – rs139787163)
being common in two distinct families despite a very low
minor allele frequency (MAF = 0.000346).
The IL17RA 958 T > C variant modifies the amino acid

sequence in the extracellular domain of the IL17RA,
possibly altering its function. IL17RA (interleukin 17A
receptor) is capable to form a heterodimer complex to
bind both interleukin 17A and IL-25. IL17RA plays a
pathogenic role in many inflammatory and autoimmune
diseases, including rheumatoid arthritis, psoriasis,
Candida albicans infection and Crohn disease [44–46].
Activation of IL17RA leads to induction of expression of
inflammatory cytokines such as CXCL1, CXCL8/IL8 and
IL6 through the trans-activation of NF-κB, AP-1 and C/
EBPβ. Involvement of IL17 signalling was shown in
sarcoidosis [47]. Notably, IL-17–producing T cells are
increased in peripheral blood and lungs of subjects with
sarcoidosis compared with controls [48]. In addition, IL-
17A plays a major role in granuloma formation in re-
sponse to mycobacterial infections in mice [49, 50].
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Likewise Th17 cells have been implicated in the develop-
ment of Crohn’s disease [51]. Notably, McGovern et al...
showed that IL17RA genetic variants increased suscepti-
bility to inflammatory bowel disease pathogenesis and
demonstrated the cumulative risk of IL17RA variants
with genes of the IL23/IL17 pathway in the development
of CD [46]. Interestingly, Kurdy et al demonstrated that
IL17 is directly regulated at the transcriptional level by a
complex including Rac1, Tiam1 and RORχt (RAR-re-
lated orphan receptor gamma), the master transcription
and differentiation factor of Th17 cells [52].
The EPHA2 2875G >A variant is located within the con-

served cytoplasmic domain of the receptor. This variant
was associated with age-related cortical cataract [53–56].
Erythropoietin-producing hepatoma (Eph) receptors are a
family of receptor tyrosine kinases that can bind ephrin li-
gands. EphA receptors are expressed on CD4+ and CD8+ T
cells, dendritic cells (DCs), and Langherans cells [57, 58]
and are involved in T cell function [59]. Eph receptors are
involved in axon guidance, vascularization, tissue assembly,
and cell adhesion and migration [60–63]. Khounlothm et
al... showed that EphA receptors play a role in the patho-
genesis of M. tuberculosis infection by reducing the migra-
tion of T cells and DCs to the site of infection, producing
an environment that favours bacterial persistence [64].
Activated EPHA2 interacts with Rho family GEF in endo-
somes and play a role in ephrin-dependant Rac1 activation
[65]. Interestingly, variants for EPH receptor family mem-
bers have been associated with inflammatory bowel
diseases. Hafner et al showed an increased expression of
Eph-B2 that increased epithelial cell mobility in the intes-
tinal epithelium of Morbus Crohn patients [66].
The KALRN 28C > T variant is a non-sense variant

targeting Kalirin, a multidomain guanine nucleotide
exchange factor (GEF) for small GTP-binding proteins
of the Rho family. Multiple kalirin isoforms containing
different combinations of functional domains are pre-
dominantly expressed in brain, except KALRN 9 that is
more widely expressed [67]. Kalirin is known to be in-
volved in active remodeling of synapses and dendritic
maturation in early development [68]. Kalirin was also
shown to play a neuroprotective role during inflamma-
tion of the central nervous system by inhibiting iNOS
activity [69]. In smooth muscle cells, Kalirin interacts
with Rac1, promoting SMC migration and proliferation
[70]. Thus, it appears that both EPHA2 and KALRN are
implicated in dendritic cell maturation and migration.
Dendritic cells have been implicated in sarcoidosis [71].
Mathew et al. showed that myeloids DCs function was
reduced in sarcoidosis patients, possibly contributing to
susceptibility and persistence of the chronic inflamma-
tion [72]. Interestingly in family X, member IIC who car-
ries the NOD2 2722G > C variant only, did not develop
sarcoidosis. These data suggest that the NOD2 2722G >

C variant was not sufficient to trigger pulmonary sar-
coidosis by itself and it is the presence of other variants
(IL17RA 958 T > C, EPHA2 2875G > A and KALRN
28C > T) that contribute to the pathology in patients
with pulmonary sarcoidosis of family X, perhaps by en-
hancing the development and chronicity of pulmonary
sarcoidosis in family X.
Taken together, our data suggest a functional and

pathogenic link between EPHA2, KALRN and IL17RA
in the occurrence of the disease of family X sarcoidosis
patients, acting in addition to the NOD2 functional
defect.

Conclusions
For the first time in the literature, we described the pres-
ence of the NOD2 2722G > C variant in a case of familial
sarcoidosis. Our finding further establishes that the
NOD2 2722G > C variant in combination with variants
for IL17RA, EPHA2 and KALRN genes could play a
significant role in the development of sarcoidosis. Future
functional studies are required to reveal the causal regu-
latory variation of the various loci and the immunoge-
netic basis related to sarcoidosis.
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