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Genes associated with polymorphic @
variants predicting lung function are

differentially expressed during human lung
development
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Abstract

Background: Recent meta-analyses of genome-wide association studies have identified single nucleotide
polymorphisms (SNPs) within/near 54 genes associated with lung function measures. Current understanding of the
contribution of these genes to human lung development is limited. We set out to further define i) the expression
profile of these genes during human lung development using a unique set of resources to examine both mRNA
and protein expression and ii) the link between key polymorphisms and genes using expression quantitative trait
loci (eQTL) approaches.

Methods: The mRNA expression profile of lung function associated genes across pseudoglandular and canalicular
stages of lung development were determined using expression array data of 38 human fetal lungs. eQTLs were
investigated for selected genes using blood cell and lung tissue data. Immunohistochemistry of the top 5
candidates was performed in a panel of 24 fetal lung samples.

Results: Twenty-nine lung function associated genes were differentially expressed during lung development at the
mRNA level. The greatest magnitude of effect was observed for 5 genes; TMEM163, FAM13A and HHIP which had
increasing expression and CDC123 and PTCHT with decreased expression across developmental stages. Focussed
eQTL analyses investigating SNPs in these five loci identified several cis-eQTL's. Protein expression of TMEM163
increased and CDC123 decreased with fetal lung age in agreement with mRNA data. Protein expression in FAM13A,
HHIP and PTCH1 remained relatively constant throughout lung development.

Conclusions: We have identified that > 50 % of lung function associated genes show evidence of differential
expression during lung development and we show that in particular TMEM163 and CDC123 are differentially
expressed at both the mRNA and protein levels. Our data provides a systematic evaluation of lung function
associated genes in this context and offers some insight into the potential role of several of these genes in
contributing to human lung development.
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Background
Determinants of lung function and adult lung diseases,
such as Chronic Obstructive Pulmonary Disease (COPD)
may have early origins [1-4]. Current knowledge of
human lung development is based on evidence provided
by anatomical dissections and histological staging. Histor-
ically, lung development has been divided into 5 stages of
growth due to the presence of select morphological fea-
tures, Embryonic (26 days post conception -5 weeks),
Pseudoglandular (5-16 weeks), Canalicular (16—26 weeks),
Saccular (26 weeks-birth) and Alveolar (birth to 6 months).
Previous work by Kho et al. sought to further our under-
standing of human lung development and consider differ-
ences in expression at the molecular level [5]. The authors
investigated the hypothesis that the temporal changes in
gene expression regulated the morphological transform-
ation of early cells to a fully functional differentiated
organ. Profiling the gene expression signatures in a panel
of human fetal lungs identified differential gene expression
during organ development and revealed the presence of
several molecular stages. The early pseudoglandular stage
was enriched for genes involved in chromosomal organ-
isation processes associated with mitosis. The late pseudo-
glandular stage was enriched for genes related to
surfactant function-gas exchange and immunological-
MHC class 1II attributes providing evidence of at least a
second distinct molecular phase of development [5].
Recently, five Genome-Wide Association Study
(GWAS) meta-analyses have been completed that
identified single nucleotide polymorphisms (SNPs)
within or near 54 genes associated with spirometry
measures including; Forced expiratory volume in 1 s
(FEV,), forced vital capacity (FVC) and the ratio of
FEV,/FVC [6-10]. These measures of lung function
are commonly used to define respiratory diseases such
as COPD. To date, no studies have explored the poten-
tial role of these genes in human lung development by
expression profiling this set of genes in human fetal
lung. We hypothesised that these SNPs identified by
GWAS tag lung function genes which may contribute
to the lung developmental signatures described [5].
This underlying hypothesis is supported by data from
large meta-analyses of these lung function GWAS as
association signals were observed both in childhood
and adult cohorts suggesting early origins of effects
[6]. We therefore set out to identify whether the genes
potentially underlying these associations identified in
lung function GWAS were i) differentially expressed
across stages of human lung development using mRNA
analyses; ii) if we could identify expression quantitative
trait loci (eQTL) in these genomic regions contributing
to the levels of these specific genes underlying mecha-
nisms and (iii) if the alteration in mRNA is translated
to altered protein levels for selected candidates.
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Methods

Selection of genes and gene expression array analysis
We identified genes to study by focussing on studies
using GWAS meta-analysis approaches and taking the
gene(s) in each loci that were reported as the likely can-
didate in these loci by the authors based on available evi-
dence [6-10]. This approach generated a list of 54 genes
for analyses (Additional file 1. Table S1). Publically avail-
able Affymetrix U133 Plus 2 expression array data of 38
fetal lung samples with gestational age 7-22 weeks
(Gene Expression Omnibus (GEO) dataset, GSE14334
[5, 11]) were used to identify differential expression dur-
ing lung development for the 54 genes. A total of 190
probes were interrogated with some genes represented
by a single probe, while others had up to 12 probes
(Additional file 2: Table S2). Briefly, differential gene ex-
pression analysis relative to gestational age was per-
formed using a linear regression model [11]. Multiple
testing was corrected for using the Benjamini and Hoch-
berg method. Adjusted p values of < 0.05 were used to
show a significantly differential gene expression pattern
over the gestational ages studied.

In silico linkage disequilibrium and eQTL analyses

The top 5 differentially expressed genes were taken forward
for in silico investigation. We focussed our analyses to the
pivotal SNPs reported in the original manuscript and all
other SNPs in linkage disequilibrium with these SNP (1* >
0.8), identified using Haploreg version 2 which is data based
on 1000 Genomes Phase I individuals (db SNP 137). These
SNPs were subsequently assessed for cis- and trans-eQTL’s
in (i) blood using the online blood eQTL browser (http://
genenetwork.nl/bloodeqtlbrowser/) detected at a false dis-
covery rate (FDR) of 5 % [12] and in (ii) 1111 lung tissue re-
sections from a study by Hao et al. [13] at a FDR of 10 %.

Immunohistochemistry of selected genes

The top 5 differentially expressed genes were taken for-
ward for immunohistochemical protein analysis using 24
formalin-fixed paraffin-embedded fetal lung samples
(19 days—19 weeks gestation). Samples collected for im-
munohistochemical staining were consented for in ac-
cordance with national bio banking procedures and the
UK human tissue act (2004). The human embryonic and
fetal material was provided by the Joint MRC/Wellcome
Trust (grant # 099175/Z/12/Z) Human Developmental
Biology Resource (www.hdbr.org). Samples were collected
at diverse stages of development, specifically 19, 21, 22
and 23 days and 9, 10, 11, 12, 13, 14, 15, 16, 17 and
19 weeks post-conception. For all samples, 4 pm whole
tissue sections on glass slides were de-paraffinised in
Histo-clear (National Diagnostics, Dublin, Ireland) and
hydrated using decreasing concentrations of ethanol.
Antigen retrieval was performed in a steamer for 20 min
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in sodium citrate buffer (pH 6.0), followed by an endogen-
ous peroxidise block for 5 min (Dako, Cambs, UK). Sec-
tions were incubated for 1 h at room temperature with
primary antibodies for CDC123 (1 in 500, HPA037830,
Sigma, Dorset, UK), TMEM163 (1 in 100, HPA007224,
Sigma, Dorset, UK), HHIP (1 in 100, H00064399-M01,
Novus Biologicals Europe, Cambridge, UK), PTCH1 (1 in
100, 21130002, Novus Biologicals Europe, Cambridge,
UK) and FAM13A (1 in 500, HPA038109, Sigma, Dorset,
UK). Isotype controls were included where sections were
treated with normal rabbit or mouse IgG as a matched
isotype control (Invitrogen/Life Technologies, Paisley,
UK). The Dako Chemate Envision Detection Kit (Dako)
with DAB chromogen was used for detection. Sections
were subsequently counterstained with Mayer’s Haema-
toxylin (Sigma- Aldrich, Dorset, UK), dehydrated and a
coverslip mounted using Vectamount (Vector Laborator-
ies, Peterborough, UK). Antibodies were chosen due to
their specific staining patterns in a large bank of human
tissues in the protein atlas (www.proteinatlas.org). Normal
control human lung was used as a positive control for
CDC123 and TMEM163 staining, Tonsil for HHIP and
PTCHI1 and Bronchus for FAM13A (Additional file 3: Fig-
ure S1A, C, E, G, [, respectively). Control tissues were pro-
vided by the Nottingham Health Science Biobank
(Nottingham, UK) under ethical approval (08/H0407/1).
Isotype controls were also performed (Additional file 3:
Figure S1B, D, F, H, J). Results were visualised using an
Olympus BX14 light microscope.

Results

Lung function genes are expressed in human fetal lung
and show differential expression

To identify whether the 54 lung function genes (Additional
file 1: Table S1) were expressed during normal human lung
development, we utilised the gene expression array
data of 38 lung samples across the Pseudoglandular
(gestational age, 7-16 weeks) and Canalicular (17-26
weeks) stages. All 54 genes were identified as
expressed in the fetal lung (average probe expressions
from 3.08 to 10.66) (Additional file 2: Table S2) and
29/54 genes were found to have some evidence of dif-
ferentially expressed probes across the Pseudoglandu-
lar and Canalicular stages of development (Additional
file 4: Table S3).

Identification of genes with greatest magnitude of
differential expression

Significant probes in lung function associated genes
from the expression profiles of 38 fetal lung samples (ad-
justed p value < 0.05) were ordered by Beta coefficient to
highlight the greatest magnitude of difference in expres-
sion (mean change in gene expression per day) across
the developmental stages (Tables 1 and 2).
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Table 1 Top differentially expressed gene probes showing
increase in expression with increasing fetal lung age

Gene Locus Probe Beta coefficient
TMEM163 2p21.3 223503_at 0.0328382
TMEM163 2p21.3 1552626_a_at 0.0219712
FAM13A 4q22.1 232628_at 0.0154821
AGER 6p21.32 210081_at 0.0150551
HHIP 4q31.21 1556037_s_at 0.0138319
Cl0orf11 10g22.2 240772_at 0.0134878
HHIP 4q31.21 237466_s_at 0.0119547
FAM13A 4q22.1 243020_at 0.0117218
NPNT 4924 225911_at 0.0113676
PDE4D 5q12.1 236610_at 0.0104328

All probes in adjusted p value of <0.05. Probe = Affymetrix U133 Plus 2 array
probe ID. Beta coefficient corresponds to the mean change in gene expression
per day during the studied period (7-22 weeks of gestational age)

Identification of genes for further study

Genes with at least 2 of the most significantly differen-
tially expressed probes, a consistent direction of effect
and the majority of tested probes showing this effect
were taken forward for further analysis. These included
Hedgehog interacting protein (HHIP), Transmembrane
protein 163 (TMEM163), Family with sequence similar-
ity 13, member A (FAMI13A), Patchedl (PTCHI) and
Cell division cycle 123 (CDC123). HHIP, TMEM163 and
FAMI13A showed an increased mRNA expression with
fetal lung age (Table 1), whilst PTCHI and CDCI23
showed a significant decrease in expression (Table 2).
For visualisation, the most significant probe results for
each of these selected genes were plotted (Figs. 1 and 2,
Additional file 5: Figure S2, Additional file 6: Figure S3
and Additional file 7: Figure S4). Expression intensities
were plotted against gestational age of the developing
lung samples.

Table 2 Top differentially expressed gene probes showing
decrease in expression with increasing fetal lung age

Gene Locus Probe Beta coefficient
PRDMT1 1Mp11.2 229687_s_at —-0.0145780
PTCHI 9g22.32 209815_at —0.0123042
GSTCD 4q24 235387_at —-0.0115404
PTCHI1 9qg22.32 209816_at —-0.0109530
MTHFDI1L 6025.1 225520_at —-0.0103665
CDC123 10p13 201725_at —-0.0096350
CDC123 10p13 223100_s_at —-0.0090160
WWox 16g23.1 223868_s_at —-0.0082566
BCL2 1892133 207004 _at —-0.0078140
PRDMT11 11p11.2 229688_at —-0.0076778

All probes in adjusted p value of <0.05. Probe = Affymetrix U133 Plus 2 array
probe ID. Beta coefficient corresponds to the mean change in gene expression
per day during the studied period (7-22 weeks of gestational age)
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Fig. 1 TMEM163 mRNA expression in human lung across Pseudoglandular and Canalicular stages of development. Expression of TMEM163 gene
probe 230135_at showed an increase in mMRNA expression with increasing fetal lung age. Affymetrix U133 Plus 2 expression array probe data of

38 fetal lung samples with gestational age 7-22 weeks

eQTL analyses of SNPs associated with lung function
measures in the 5 gene loci identified for further study
Nine SNPs within our 5 gene regions of interest have
previously been associated with lung function at genome
wide significance levels (P < 107%) (Table 3).

To investigate whether lung function associated SNPs
within the top 5 differentially expressed genes during lung
development had evidence of regulated expression, in silico
analyses were performed to identify (i) SNPs in Linkage
Disequilibrium (LD) with the SNPs of interest (R*>0.8)
and (ii) expression quantitative trait loci (eQTL) for the
SNP of interest and those in LD. Apart from HHIP SNP

rs1032295, all lung function associated SNPs had SNPs in
LD (Additional file 8: Table S4). eQTL were identified for
SNPs in LD with lung function associated SNPs in PTCH],
TMEMI163 and FAMI3A using the blood cell dataset
(Additional file 8: Table S4). 12 cis-eQTLs were identified
for SNPs in LD with rs16909898 and rs10512249 (PTCHI)
which potentially regulate the expression levels of PTCH1
mRNA. Additionally 2 trans-eQTLs were identified for lung
function associated SNP rs16909898 and rs10512249
(PTCH1I), both regulating the expression of NEFH (Neuro-
filament, Heavy Polypeptide, chromosome 22). 3 cis-eQTLs
were identified for SNPs in LD with TMEMI163 SNP

105 1.0
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Fig. 2 PTCHT mRNA expression in human lung across Pseudoglandular and Canalicular stages of development. Expression of PTCHT gene probe
202973_x_at showed a decrease in mRNA expression with increasing fetal lung age. Affymetrix U133 Plus 2 expression array probe data of 38
fetal lung samples with gestational age 7-22 weeks
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Table 3 SNPs within 5 top differentially expressed genes associated with lung function

Gene Associated SNP Locus Lung function measure Coded Allele Direction of effect Reference
CDC123 157068966 10p13 FEV, T + Soler-Artigas et al. [9]
FEV,/FVC T +
PTCHI rs16909898 9q22.32 FEV,/FVC A + Hancock et al. [7]
rs10512249 FEV,/FVC A -
TMEM163 rs1942055 2p21.3 FvC G - Loth et al. [10]
FAM13A 152869967 4q22.1 FEV,/FVC T + Hancock et al. [7]
rs6830970 FEV,/FVC A +
HHIP rs1980057 4g31.21 FEV,/FVC T + Hancock et al. [7]
rs1032295 FEV:/FVC T -
1512504628 FEV, T - Repapi et al. [6]
FEV,/FVC T -

rs1942055, regulating the expression of either MGATS
(encoding a member of the glycosyltransferase family) or
CCNT2 (encoding Cyclin T2). eQTL were only identified
for SNPs in LD with HHIP using the human lung dataset
(Additional file 9: Table S5). Both rs1980057 and
rs12504628 shared 2 SNPs in LD (rs12509311 and
rs13141641) and were cis-eQTLs for HHIP (Additional file
9: Table S5). eQTLs in both Blood and Lung cohorts studied
were not identified for SNPs in LD with CDCI23 SNP
1s7068966.

Analyses of differential protein expression across lung
developmental stages

Protein expression was assessed for TMEMI163,
CDC123, HHIP, PTCH1 and FAMI13A using immuno-
histochemistry in 24 formalin fixed paraffin embedded
fetal lung samples. We found some variability in the
levels of HHIP, PTCH1 and FAMI3A expression be-
tween lung samples however; consistent effects were
seen for TMEM163 and CDC123. Gene expression array
probes for TMEM163 showed the greatest magnitude of
effect across the pseudoglandular and canalicular stages
of lung development (Table 1 and Fig. 1). In the immu-
nohistochemical assessment, TMEM163 protein was ei-
ther not present or at very low levels in the embryonic
fetal lung samples, 4/13 pseudoglandular stage lungs had
strong immunopositivity, whilst 2/4 canalicular stage
lungs had strong/moderate positive protein expression
(Fig. 3). Whilst the earliest 12 fetal lungs (7 embryonic
and 5 pseudoglandular) were negative for TMEM163, of
the latest 12 (8 pseudoglandular and 4 canalicular), half
were strongly immunopositive. CDC123 protein expres-
sion was found to decrease between Pseudoglandular and
Canalicular stages of lung development (Fig. 4). 4/7 fetal
lungs at the embryonic stage were immunopositive for
CDC123, 11/13 lung samples at the Pseudoglandular stage
of development had strong/moderate immunopositivity

for CDC123 whilst 2/4 lung samples at the Canalicular
stage had low CDC123 expression. Overall, CDC123 de-
creased in expression from the pseudoglandular to cana-
licular stages. More variable protein expression was
observed for PTCH1, FAM13A and HHIP (Additional file
10: Figures S5, Additional file 11: Figure S6 and Additional
file 12: Figure S7, respectively). Whilst PTCH1 mRNA ex-
pression was found to decrease with increasing fetal age,
the immunohistochemical analyses showed that, apart
from the 3 earliest embryonic lungs, the majority of fetal
lungs had strong or moderate staining for the PTCHI1
protein (Additional file 10: Figure S5). Few fetal lung sam-
ples showed the presence of FAM13A protein expression;
the majority of samples had low level expression or were
negative (Additional file 11: Figure S6). HHIP had variable
protein expression throughout lung development, with ei-
ther negative or moderate staining identified (Additional
file 12: Figure S7).

Discussion

Recent meta-analyses of genome-wide association stud-
ies have identified genetic associations which contribute
to determination of lung function. We hypothesised that
the genes underlying these associations may contribute
to lung development potentially through differential ex-
pression. To specifically test this hypothesis we expres-
sion profiled lung function associated gene mRNA levels
in human fetal lung samples and used eQTL analyses to
link associated SNPs to the genes of interest, followed by
expression profiling at the protein level in human fetal
tissue. We found that all 54 genes evaluated had measur-
able mRNA expression in human fetal lung and 29/54
genes showed evidence of differential expression across
the Pseudoglandular and Canalicular stages of lung de-
velopment. We identified cis-eQTLs in Blood for SNPs
in LD with lung function associated SNPs in PTCHI,
TMEM163 and FAMI13A and cis-eQTLs in HHIP in the
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Fig. 3 Immunohistochemistry for TMEM163 in 24 fetal lung samples. Protein expression increases across Pseudoglandular and Canalicular stages
of human fetal lung development. a-g embryonic stage, h-t Pseudoglandular stage and u-x Canalicular stage. An isotype control (not shown)
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lung. Although no cis-eQTL were identified for SNPs in
LD with CDCI23 or the sentinel SNP associated with
lung function and CDCI123, we still sought to explore
the protein expression of this highly differentially
expressed candidate. The rationale for this inclusion was
that while eQTL analyses can be useful for functional
translation of SNP effects these analyses are tissue, cell
and context specific [14]. Therefore based on our ana-
lyses of blood and lung eQTL data we cannot exclude
that eQTL mechanisms may exist for CDC123. Overall,
these data provided evidence that the associated SNPs in

the relevant loci showed some evidence of regulating the
genes that were differentially expressed in our initial
analyses and selected for further study.

Exploring the top 5 candidates further (based on mag-
nitude of effect and reproducibility across probes), we
found that TMEM163 protein expression generally in-
creased with fetal age and CDCI123 protein expression
decreased in agreement with the mRNA data. Of the 5
candidates taken forward for the immunohistochemical
study in fetal lungs we found both CDC123 expression
(decreased) and TMEM163 (increased) provided the
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Fig. 4 Immunohistochemistry for CDC123 in 24 fetal lung samples. Protein expression decreases across Pseudoglandular and Canalicular stages of
human fetal lung development. a—g embryonic stage, h-t Pseudoglandular stage and u-x Canalicular stage. An isotype control (not shown) gave
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greatest supporting evidence at the protein level, whilst
the mRNA and protein level data for PTCH1, FAM13A
and HHIP poorly correlated.

In our first set of analyses we identified that 29/54
(>53 %) genes identified in lung function associated loci
in GWAS were differentially expressed across human
lung development. This is nearly double the percentage
of probes differentially expressed during the analysed
period of lung development (28 %, see [11]). This en-
richment is striking and adds supporting evidence that
genetic determinants of lung function may have early or-
igins for a large proportion of loci. While differential ex-
pression is not conclusive evidence of a significant
biological role, it is also important to note that many of
the lung function genes have prior evidence for a role in
lung development from both mouse and human studies;
e.g., HHIP, PTCHI [15, 16].

Interestingly, these genes were in our 5 top candidates
and are part of the Sonic hedgehog (SHH) signalling
pathway. PTCHI encodes the receptor potentiating sig-
nalling, whilst expression of HHIP represses the tran-
scription of HH target genes. We found expression of
PTCHI mRNA and protein expression was generally
high throughout lung development, with probe expres-
sion intensities >9 and strong immunopositivity in the
majority of fetal lungs which is consistent with other
studies in human fetal lung [15]. High protein levels of
PTCH1 have been seen in nearly all tissues in adulthood
including pneumocytes, macrophages and epithelium of
the lung (www.proteinatlas.org). Thus, the evidence sug-
gests that PTCHI1 not only has a role in lung develop-
ment but may also play an important role in
determining lung function later in adult life [17]. The
second SHH pathway candidate investigated was HHIP,
an important morphogen in a variety of developmental
processes during embryonic development and SNPs near
this gene have previously been associated with risk of
COPD [18, 19]. In 2013, S. Collins et al, summarised
that polymorphisms in HHIP affect fetal, childhood and
adult lung function [20]. HHIP is known to have a role
in lung development through fibroblast growth factor 10
(FGF10) and its control of lung branching [21].

Of the most robust findings; i.e., where mRNA differen-
tial expression was supported by differential protein ex-
pression in the same direction; CDC123 expression
(decreased) and TMEM163 (increased) warrant further
study. CDC123 is thought to be required for translation
initiation and thus could facilitate the biogenesis of the
eukaryotic initiation factor 2 (eIF2) and is also potentially
involved in protein modifications [22, 23]. At present,
there is evidence that TMEM163 (SV13) is a zinc finger
binding protein involved in vesicular transport [24] and
more recent work has shown TMEM163’s modulation of
cellular zinc levels alongside TRPMLI [25].
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A separate candidate was FAMI13A, which has previ-
ously been associated with other lung conditions, e.g.,
idiopathic pulmonary fibrosis and COPD. It has been
hypothesised that FAM13A has a role in Rho GTPase sig-
nalling pathways [26] and most recently Jin et al. has iden-
tified the regulation of nuclear—cytoplasmic shuttling of
FAMI13A by B56-containing PP2As and Akt [27]. Add-
itionally, they identified that FAM13A had the ability to
activate the Wnt pathway. However, on production of
FAM13A-/- mutant mice, they were found to be viable
and healthy, showing FAM13A was not essential for em-
bryonic development and physiological functions.

Working with fetal tissues has both strengths and limi-
tations. Key strengths of the current study are the
unique use of human fetal samples across gestational
ages for both mRNA and protein analyses with associ-
ated translational potential. However, it was not possible
to use the same sample for both mRNA and protein ana-
lyses which introduces sample variation potentially con-
founding correlations between mRNA and protein
expression. Correlation between mRNA and protein
throughout lung development may not be present due to
the complexities of post-transcriptional regulation.
Other limitations of the study were the availability of
only a small number of samples for immunohistochem-
istry at the Canalicular stage of lung development and
that the protein analyses were based on immunohisto-
chemistry rather than a more quantitative method e.g.,
Western blotting, prohibiting quantitative or semi-
quantitative analyses.

Conclusion

This is the first study to comprehensively investigate the
mRNA expression of the genes closest to association signals
seen from GWAS of lung function during human lung de-
velopment with focussed analyses for 5 candidates at both
the RNA and protein level. The data presented demonstrate
that >50 % of these genes show some evidence of differen-
tial expression during normal human lung development.
We have provided evidence that TMEM163 (a transmem-
brane protein) and CDC123 (a cell cycle control protein)
are differentially expressed at both the mRNA and protein
level during lung development. These candidates now war-
rant further investigation as they may play an important
role in determining lung function later in adult life.

Additional files

Additional file 1: Table S1. SNPs within/near 54 previously identified
genes associated with lung function measures FEV;, FVC and FEV;/FVC.
(XLSX 21 kb)

Additional file 2: Table S2. Expression array probes and results
annotated to 54 genes associated with lung function. Probe D = Affymetrix
U133 Plus 2 array probe ID, LogFC = log fold change, AveExpr = average
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expression throughout development, t = t-statistic describing differential
expression, adj.P.Value = Adjusted p value controlling for false discovery rate.
Beta coefficient corresponds to the mean change in gene expression per
day during the studied period (7-22 weeks of gestational age). (XLSX 37 kb)

Additional file 3: Figure S1. Positive and isotype control
immunohistochemical staining for CDC123, TMEM163, HHIP, PTCH1 and
FAM13A proteins. Lung tissue was immunopositive for CDC123 (A) and
TMEM163 (C), Tonsil tissue was immunopositive for HHIP (E) and PTCH1
(G) and Bronchus was immunopositive for FAM13A (1). All isotype
controls were negative (B, D, F, H and J). JPG 19349 kb)

Additional file 4: Table S3. Lung function associated genes with
significantly different expression during lung development. Affymetrix
U133 Plus 2 array probe ID. Beta coefficient corresponds to the mean
change in gene expression per day during the studied period (7-22
weeks of gestational age). (DOCX 22 kb)

Additional file 5: Figures S2. FAM13A mRNA expression in human
lung across Pseudoglandular and Canalicular stages of development.
Expression of FAM13A gene probe 201725_at showed an increase in
mMRNA expression with increasing fetal lung age. JPG 43 kb)

Additional file 6: Figures S3. HHIP mRNA expression in human lung
across Pseudoglandular and Canalicular stages of development.
Expression of HHIP gene probe 209815_at showed an increase in mRNA
expression with increasing fetal lung age. (JPG 43 kb)

Additional file 7: Figures S4. CDC123 mRNA expression in human
lung across Pseudoglandular and Canalicular stages of development.
Expression of CDC123 gene probe 223503_at showed a decrease in
mMRNA expression with increasing fetal lung age. JPG 43 kb)

Additional file 8: Table S4. Evidence of regulated expression (by LD and
Blood eQTL) in 5 top differentially expressed genes associated with lung
function. SNP = single nucleotide polymorphism, LD = linkage disequilibrium,
Chr = chromosome, FDR = false discovery rate, eQTL = expression quantitative
loci. (XLSX 28 kb)

Additional file 9: Table S5. Evidence of regulated expression (by LD
and Lung eQTL) in 5 top differentially expressed genes associated with
lung function. (XLSX 33 kb)

Additional file 10: Figures S5. Immunohistochemistry for PTCH1 in 24
fetal lung samples. The majority of fetal lungs showed strong or
moderate immunopositivity for the PTCH1 protein. (A-G) embryonic
stage, (H-T) Pseudoglandular stage and (U-X) Canalicular stage. An
isotype control (not shown) gave no background staining. x40
Magnification. (TIF 3594 kb)

Additional file 11: Figures S6. Immunohistochemistry for FAM13A in 24
fetal lung samples. Fetal lung samples showed either low level or negative
protein expression for FAM13A. (A-G) embryonic stage, (H-T)
Pseudoglandular stage and (U-X) Canalicular stage. An isotype control (not
shown) gave no background staining. x40 Magnification. (TIF 3390 kb)

Additional file 12: Figures S7. Immunohistochemistry for HHIP in 24
fetal lung samples. HHIP protein expression was either not present or
moderate throughout lung development. (A-G) embryonic stage, (H-T)
Pseudoglandular stage and (U-X) Canalicular stage. An isotype control (not

shown) gave no background staining. x40 Magnification. (TIF 3261 kb)
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