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Abstract

Chronic rhinosinusitis with nasal polyps (CRSWNP) and asthma frequently coexist and are always present in patients
with aspirin exacerbated respiratory disease (AERD). Although the pathogenic mechanisms of this condition are still
unknown, AERD may be due, at least in part, to an imbalance in eicosanoid metabolism (increased production of
cysteinyl leukotrienes (CysLTs) and reduced biosynthesis of prostaglandin (PG) E,), possibly increasing and perpetuating
the process of inflammation. PGE, results from the metabolism of arachidonic acid (AA) by cyclooxygenase (COX)
enzymes, and seems to play a central role in homeostasis maintenance and inflammatory response modulation in
airways. Therefore, the abnormal regulation of PGE, could contribute to the exacerbated processes observed in AERD.
PGE, exerts its actions through four G-protein-coupled receptors designated E-prostanoid (EP) receptors EP1, EP2, EP3,
and EP4. Altered PGE, production as well as differential EP receptor expression has been reported in both upper

receptors in inflammatory airway diseases.

Prostaglandin E; receptors

and lower airways of patients with AERD. Since the heterogeneity of these receptors is the key for the multiple
biological effects of PGE, this review focuses on the studies available to elucidate the importance of these
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Introduction

The purpose of this review is to offer a global overview of
the significant literature available about prostaglandin (PG)
E, receptors in asthma, chronic rhinosinusitis (CRS) and
nasal polyposis, with and without aspirin hypersensitivity.

Asthma

Pathophysiologically, asthma is a multifactorial and com-
plex chronic inflammatory disorder of the lung and is
characterized by epithelial disruption, airway smooth
muscle hypertrophy and hyperplasia, increased mucus
secretion, basement thickening, increased cytokine pro-
duction and chronic infiltration of inflammatory cells
[1,2]. Depending on the severity of the disorder, it
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manifests clinically with repeated, variable, and episodic
attacks of cough, wheezing and breathlessness [3,4]. The
most effective drugs used in asthma control are inhaled
corticosteroids. Although recommended and clinically
effective in most asthma patients, airway remodelling
changes can be resistant to the conventional pharmaco-
logical approach [5]. Various factors can trigger and/or de-
velop asthma attacks: allergens, exercise, cold exposure,
chemical sensitizers, air pollutants, and respiratory viral
infections [3]. Conventionally, classification into atopic
and nonatopic asthma is based on the presence or absence
of clinical symptoms precipitated by one or more aller-
gens. The presence of allergen-specific antibodies can be
identified by skin prick testing or by measuring the level
of specific immunoglobulin (Ig) E in serum [6,7].

Airway inflammation in asthma is associated with a
massive influx of inflammatory and immune cells within
the airways, including eosinophils, T helper (Th) 2 lym-
phocytes, mast cells, neutrophils and macrophages. Local
overproduction of Th2 cytokines such as interleukin (IL)-
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4, IL-5, IL-9 and IL-13 by Th2 cells plays an important
role in its pathophysiology [6]. IL-4 promotes Th2 cell dif-
ferentiation, induces IgE production and increases IgE re-
ceptors; IL-5 is responsible for promoting eosinophil
development, differentiation, recruitment, activation and
survival; finally, IL-13 mediates allergen-induced airway
hyperresponsiveness [8].

Chronic rhinosinusitis and nasal polyposis

According to the European Position Paper on Rhinosinusi-
tis (EPOS) [9] rhinosinusitis is defined as an inflammatory
process of the nose and the paranasal sinuses characterized
by two or more symptoms: nasal blockage/obstruction/
congestion or nasal discharge, as well as facial pain/pres-
sure or reduction/loss of smell [9]. This disorder may be
classified into two forms, according to the duration of the
symptoms, as acute or chronic [9-11]. In fact, the chronic
form that persists beyond 12 weeks without complete reso-
lution is associated with a lower quality of life and consti-
tutes one of the most common health care problems [12].
CRS is subdivided itself into CRS with or without nasal
polyps (NPs). Chronic rhinosinusitis with nasal polyps
(CRSwNP) is a clinical phenotype found in up to 4% of the
population [13]. The condition consists of loose connective
tissue, oedema, inflammatory cells, and some glands and
capillaries leading to nasal obstruction, secretion, loss of
smell and headache [14]. Although the eosinophils are the
most common cells in NPs, other cell types are also
present, such as neutrophils, mast cells, plasma cells, lym-
phocytes, monocytes and fibroblasts [15,16].

Aspirin exacerbated respiratory disease

Aspirin exacerbated respiratory disease (AERD) is a clin-
ical syndrome characterized by hypersensitivity to as-
pirin and other non-steroidal anti-inflammatory drugs
(NSAIDs), bronchial asthma and CRS with recurrent
NPs [17,18]. AERD affects 10-20% of the asthmatic pa-
tient population and 8-26% of those diagnosed with
CRSwNP [19]. The ingestion of aspirin or other NSAIDs
in these patients provokes bronchoconstriction and ex-
acerbates bronchospasms with attacks of asthma and
rhinitis [20]. Effectively the characteristic symptoms of
this disorder include moderate to severe asthma, massive
eosinophilic infiltration and high prevalence of CRS as-
sociated with nasal polyposis [21].

The pathogenic mechanism underlying this disorder is
believed to involve, at least in part, alterations in the ei-
cosanoid metabolism and altered eicosanoid receptor ex-
pression [22-24]. However, and despite all the efforts,
the pathogenicity of AERD is still not fully understood.

Arachidonic acid metabolism
Arachidonic acid (AA) is a 20-carbon polyunsaturated
fatty acid and is the main precursor of eicosanoids,
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mediating important functions in homeostasis, inflam-
mation and immunoregulation [25]. Under normal con-
ditions AA is not freely available and its concentration
within the cell is very low. The availability of free AA is
essential for the biosynthesis of eicosanoids. Upon acti-
vation of the cell and by the action of various phospholi-
pases (preferentially cytosolic phospholipase A,) AA is
released from the membrane phospholipids [26]. There-
fore, once released, AA is rapidly metabolized through
three enzymatic pathways namely cyclooxygenase (COX),
lipoxygenase (LO), and cytochrome oxidases (hydrolase,
epoxygenase) and one non-enzymatic pathway [27].

Lipoxygenase pathway

AA, which is esterified on plasma membrane phospho-
lipids, is released and converted into leukotriene (LT) A4
through 5-LO activity (Figure 1). LTA, is subsequently
converted by LTA, hydrolase into LTB, and by LTC,
synthase, which conjugates reduced glutathione into
LTC,. This is metabolized into LTD,, which is then me-
tabolized into LTE,. LTC,, LTD, and LTE, are designated
as cysteinyl leukotrienes (CysLTs). LTs are synthesized
upon cellular activation and the intracellular expression
and distribution of 5-LO varies considering the cell type.
In the airways, 5-LO is present in several types of leuko-
cytes and becomes activated during allergic inflammation
[8]. CysLTs activate three receptors with differential select-
ivity (CysLT;, CysLT, and GPR17) and the stimulation of
these receptors, principally CysLT;, account for most of
its effects [21]. This receptor is expressed in a large variety
of cells which include monocytes, macrophages, eosino-
phils, basophils, mast cells, neutrophils, T cells, B lympho-
cytes, pluripotent hematopoietic cells, interstitial cells
of the nasal mucosa (NM), airway smooth muscle cells,
bronchial fibroblasts and vascular endothelial cells [28]
and its activation contributes to most of the effects of
CysLTs that are relevant to the pathophysiological changes
observed in patients with asthma [8].

Cyclooxygenase pathway

AA can be metabolized through the COX pathway by
the action of the COX enzymes (Figure 1). COX is a bi-
functional enzyme with two active sites, one with COX
activity that catalyzes the reduction of AA to form PGG,
and the other with peroxidase activity involved in the re-
duction of peroxidase group in PGG, to hydroxyl group
forming PGH,. These enzymes catalyze the reactions re-
sponsible for the production of several bioactive prosta-
noids, such as PGs, prostacyclins and thromboxane [29].
Studies show the presence of two isoforms of COX en-
zymes, namely COX-1 and COX-2. COX-1, the dominant
source of prostanoids that serves a number of physiologic
“housekeeping” functions, presents a uniform expression
in almost all tissue and is generally considered constitutive
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Figure 1 Cyclooxygenase and 5-lipoxygenase pathways with special reference to aspirin exacerbated respiratory disease. Simplified
pictogram of biosynthetic pathways of prostaglandin (PG) E, and cysteinyl leukotrienes (CysLTs). Arachidonic acid (AA) is metabolized by the
cyclooxygenase (COX) or 5-lipoxygenase (5-LO) pathways. COX enzymes generate PGH, which through PGE, synthase is converted into PGE,.
PGE, couples to four subtypes of G-protein-coupled membrane receptors denominated E-prostanoid (EP) receptors. The activation of EP2 and
EP4 receptors generates cyclic adenosine monophosphate (cCAMP). This mediator negatively regulates the 5-LO pathway by activating protein
kinase A (PKA). AA is also metabolized by the 5-LO pathway to generate leukotriene (LT) A4. LTA, is subsequently metabolized by LTC, synthase,
which conjugates reduced glutathione into LTC,4. LTC, is metabolized into LTD,, which is then metabolized into LTE,. LTC,, LTD, and LTE, are
designated as CysLTs. CysLTs bind to CysLT;, CysLT, and GPR17 receptors. In aspirin exacerbated respiratory disease (AERD) the inhibition of COX
pathway accounts for a reduced production of cAMP since the production of PGE; is diminished. This is a simplified pictogram where some
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[30]. COX-2 is described, in diverse studies, as highly in-
duced and only expressed in response to certain inflam-
matory stimuli [31-35]. Furthermore, COX-2 is the more
important source of prostanoid formation in inflammatory
processes and proliferative diseases [36]. Both isoforms
are located in the endoplasmatic reticulum and nuclear
envelope, COX-2 is more highly concentrated in the nu-
clear envelope [37]. PGE, is one of the most abundant
prostanoids produced in the body [36]. Montuschi and
co-workers [38] evaluated the effects of COX inhibition
on exhaled eicosanoids in patients with chronic obstruct-
ive pulmonary disease. The authors found that in exhaled
breath condensate, PGE, is primarily derived from COX-1
activity. PGE, exhibits pleiotropic and contrasting effects
in different cell types and organs. According to Vancheri et
al. [39] the lung is considered a privileged site for the ac-
tion of PGE,. Although in this organ PGE, can exert anti-
inflammatory, anti-fibrotic and immune restrictive actions,
it can also mediate pro-inflammatory responses [39,40].

Prostaglandin E; receptors
The activity of PGE, is mediated by a group of
rhodopsin-type G-protein-coupled membrane receptors

(GPCRs) denominated E-prostanoid (EP) receptors [41].
There are four GPCR subtypes: EP1, EP2, EP3 and EP4.
The physiological and contrasting effects of PGE, de-
pend on the expression or the co-expression of more
than one receptor or isoform [42]. Additionally, each re-
ceptor may be differentially expressed in tissues. EP re-
ceptors differ in terms of intracellular signalling [43,44].
These receptors could be classified according to their
intracellular signalling and second messenger [45]. The
EP1 receptor signals via Ca®* mobilization with slight
phosphatidylinositol activity [46,47]. Distribution of this
receptor in human tissues and cells is restricted and has
been demonstrated in the myometrium, pulmonary veins,
mast cells, colonic longitudinal muscle and keratinocytes.
EP1 exerts mostly constrictive functions, however and
compared with other prostanoid receptors, it seems to be
less studied [47]. EP2 and EP4 receptors increase intracel-
lular cyclic adenosine monophosphate (cAMP) through
activation of adenyl cyclase [39,48]. Functional studies
have demonstrated that the EP2 receptor is widely distrib-
uted [49] and it seems to be involved in processes of relax-
ation such as bronchodilation [50] and anti-inflammation
[51]. On the other hand, EP4 is also widely distributed
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[44]. In a direct comparison with EP2 receptor subtype
signalling, the EP4 receptor demonstrated a less efficient
functional coupling to cAMP [52,53]. Effectively, studies
have reported several cAMP-independent signalling path-
ways for EP4 receptor activation [54—59]. EP4 mediates
vasorelaxation of pulmonary arterial veins and also pro-
motes anti-inflammatory effects [60]. Consistent with its
bronchoprotective action, PGE, inhibited proliferation
and migration of bronchial smooth muscle cells through
the action of the EP4 receptor [61]. Studies have revealed
that the EP3 receptor shows a wide distribution in almost
all tissues and consists of multiple isoforms generated by
numerous alternative splicing of the C-terminal [62—-64].
Signalling through this receptor reduces the levels of
cAMP and increases intracellular Ca®* [44]. EP3 exerts
mainly contractile functions such as the constriction of
human pulmonary artery in the lung [65]. Moreover, this
receptor has been implicated in inflammation, pain and
cough [47,66].

In summary, EP2 and EP4 receptor signalling pro-
motes the accumulation of cAMP which is normally re-
lated to inhibition of cell functions. On the other hand,
EP1 and EP3 receptors that increase intracellular cal-
cium could be associated with cellular activation.

Arachidonic acid metabolism in aspirin exacerbated
respiratory disease

The pathogenesis of AERD is not fully understood but
several studies have reported that the pathogenic mecha-
nisms of this condition may be due, at least in part, to
marked imbalance in eicosanoid metabolism possibly in-
creasing and perpetuating the process of inflammation
[20,22,67]. Aspirin and other NSAIDs block the COX
pathway by acetylation of the COX enzyme and conse-
quently inhibit conversion of AA to PG. The depend-
ency on COX products to modulate and maintain
homeostasis over 5-LO activity is a unique feature of
AERD [68]. Effectively in this disorder the inhibition of
COX-1 results in the overproduction of CysLTs. CysLTs
are potent bronchoconstrictors that contribute to the
pathophysiological changes observed in patients with
asthma. CysLTs, by increasing pulmonary microvascular
permeability and mucus hypersecretion can contribute
to bronchial obstruction in asthmatic patients [69-72].
Diamant et al. [73] reported that the inhalation of
CysLTs increases eosinophilia in sputum of asthmatic
patients and induces the recruitment of eosinophils into
the airway mucosa. Indeed, CysLTs might participate in
the process of airway remodeling, including eosinophilic
airway inflammation, airway smooth muscle cell hyper-
plasia, mucus gland hyperplasia, mucus hypersecretion,
and fibrous collagen depositions [69,70]. Several studies
have described the biological effects and the contribu-
tion of these lipid mediators in AERD. After challenging

Page 4 of 9

AERD patients with oral, intravenous and intranasal as-
pirin treatments, the levels of CysLTs are significantly in-
creased [74,75]. Moreover, patients with AERD excrete
higher levels of LTE, in their urine when compared with
asthmatic patients without aspirin intolerance [76,77].
Pérez-Novo et al. [78] reported that the nasal tissue of
patients with CRSwWNP presents elevated levels of
CysLTs when compared with NM from aspirin-tolerant
(AT) asthmatic patients and this increased production
is associated with the elevated expression of LTC,
synthase, the terminal enzyme in the production of
CysLTs. In summary, the overproduction of CysLTs re-
ported in AERD seems to play an important role in
the pathogenesis of the disease, since the levels of this
mediator are comparatively reduced in asthmatic pa-
tients without aspirin intolerance.

PGE, formed from COX-dependent conversion of AA
have demonstrated inhibitory effects on CysLTs produc-
tion. PGE, administration blocks bronchoconstriction and
inhibits the increase in urinary LTE, that occur with as-
pirin challenge in subjects with AERD [79,80]. Pharmaco-
logical studies suggest that most urinary PGE, metabolites
in AT asthmatic patients and healthy subjects derive from
COX-2 [81]. Several studies have demonstrated that NP
tissue from subjects with or without aspirin sensitivity
shows impaired expression of COX-2 [82,83] and hyper-
methylation of the PGE, synthase (PTGES) gene in pa-
tients with AERD when compared with polyps from AT
patients [84]. Moreover, experiments in vitro have shown
a reduced production of PGE, in epithelial cells from NPs
[85], bronchial fibroblasts [86], and peripheral blood leu-
kocytes from patients with AERD [87]. The combination
of a reduced expression of COX-2 in inflammatory condi-
tions in subjects with AERD with hypermethylation of the
PTGES gene reported could be responsible for the low
production of PGE, observed in these subjects. Thereby,
in patients with AERD, when COX-1 is inhibited by as-
pirin or other NSAIDs, the diminished availability of PGE,
will contribute to the exacerbations of the characteristic
symptoms of this pathology.

Prostaglandin E; receptors in asthma and chronic
rhinosinusitis with nasal polyps

Few studies have been performed to elucidate the im-
portance of this receptor family in upper and lower re-
spiratory airway diseases. The literature mainly describes
the expression and cellular distribution of these recep-
tors at different levels of the airways, using for that pur-
pose diverse type of samples, such as biopsies, cultured
cells or peripheral blood and different techniques.

Asthma
Additional file 1: Table S1 shows the main publications
on EP receptors in asthma [see Additional file 1: Table



Machado-Carvalho et al. Respiratory Research 2014, 15:100
http://respiratory-research.com/content/15/1/100

S1]. Ying and co-workers [88] used immunocytochem-
istry to compare the expression and cellular distribution
of the EP receptors in induced sputum cells from asth-
matic patients and control subjects. They reported that
sputum cells showed immunoreactivity for all receptors
in both patients with asthma and control subjects. How-
ever, in patients with asthma, they found a high immu-
noreactivity for EP2 and EP4, but not EP1 and EP3
receptors on macrophages when compared with control
subjects. The investigators concluded that the pattern of
EP receptor expression is particularly increased in airway
macrophages of patients with asthma.

In a study performed with bronchial biopsies [89] from
both AERD and AT asthmatic patients and control sub-
jects, the authors reported that, compared with AT, pa-
tients with AERD have increased bronchial mucosal
neutrophil and eosinophil numbers but reduced percent-
ages of T cells, macrophages, mast cells and neutrophils
expressing EP2. In contrast, quantitative analysis of EP
receptor mRNA expression in peripheral blood mono-
nuclear cells isolated from these patients showed no sig-
nificant differences between the two groups.

Chronic rhinosinusitis and nasal polyps

In Additional file 2: Table S2 we highlight the studies
that have been performed to elucidate the importance of
the EP receptors on the upper airways [see Additional
file 2: Table S2]. Pérez-Novo et al. [90] studied the pos-
sible link between the expression of prostanoid receptors
and the eosinophilic inflammation characteristic of para-
nasal sinus diseases by means of real-time PCR. The re-
sults of this study showed a high mRNA expression of
EP2 and EP4 receptors in nasal tissue from both CRS
without NP (CRSsNP) and CRSwWNP patients when com-
pared with control subjects. On the other hand, EP1 and
EP3 receptors seem to be downregulated in nasal tissue
from CRSwWNP when compared with CRSsNP patients
and control subjects.

Ying and co-workers [91], in a study based on immu-
nohistochemistry, analysed the expression pattern of EP
receptors in nasal biopsies from CRSwNP patients with
AERD and AT and control subjects. The extensive ana-
lysis showed that, globally, mucosal expression of EP1
and EP2, but not EP3 and EP4 was significantly elevated
in nasal biopsies from both patients with AERD and AT
patients when compared with nasal biopsies extracted
from control subjects. The researchers attribute the re-
sults principally to the high percentage of epithelial cells
and goblet cells expressing these receptors. In inflamma-
tory cells, the findings reported were different. They
showed that the percentages of neutrophils, mast cells,
eosinophils and T cells expressing EP2, but not EPI,
EP3, or EP4, were significantly reduced in AERD pa-
tients when compared with AT patients.
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Effectively, EP2 receptor downregulation seems to be
common in both upper and lower airways of patients
with AERD. Adamusiak and collaborators [92] described
that, in NPs from AERD patients, the density of cells ex-
pressing the EP2 receptor was significantly lower when
compared with NP from AT patients.

Using the Western blot technique, Roca-Ferrer et al.
[83], using fibroblast cell cultures isolated from NP of
both AERD and AT patients, described that there were
low levels of EP2 protein receptor expression under in-
flammatory conditions when compared with fibroblasts
isolated from NM of control subjects.

Apart from these expression studies, various polymor-
phisms in EP2 gene (PTGER2) were described [93,94]
and they could possibly be related to AERD. In an exten-
sive candidate gene analysis study to identify susceptibil-
ities to AERD in the Japanese population, Jinnai and co-
workers [93] showed the association of AERD with a
functional single-nucleotide polymorphism in PTGER2
that decreases the transcription level of the receptor
in vitro.

As previously described, the ability of PGE, to induce
or suppress various mechanisms involved in inflamma-
tory processes indicates the complex activities of its
receptor. The activation of EP2 and EP4 (Figure 1) initi-
ates the production of cAMP, a secondary messenger
that acts by activating protein kinase A (PKA). Once ac-
tivated, PKA has the capacity to regulate 5-LO [95,96]
by phosphorylation of serine-523 in 5-LO, suppressing
its function. Effectively, Luo and co-workers [96] de-
scribed that the mutation of serine-523 on human 5-LO
prevents phosphorylation by PKA and promotes the ab-
normal synthesis of LTs. The dysfunctional signalling
through cAMP and PKA contributes to a variety of dis-
eases, including those characterized by chronic inflam-
mation. In 1983, Ham and colleagues [97] showed for
the first time that PGE, inhibited LT biosynthesis in ac-
tivated neutrophils, and the inhibition was mediated by
an increment of cAMP levels. Indeed, the mechanisms
by which the enhancement of cAMP (by PGE, or other
cAMP-elevating agents) are able to down-regulate LT
biosynthesis involve the inhibition of the translocation of
5-LO to the nuclear envelope in human polymorpho-
nuclear leukocytes [80]. The mechanisms and receptors
by which PGE, modulates the activation of human mast
cells have also been assessed [95]. The investigators de-
scribed that PGE, can attenuate through EP2 receptors
the generation of CysLTs in activated mast cells. The ef-
fect of low levels of EP2 on the downstream signalling
pathway as well as the polymorphic variants of its gene
are still unclear and further studies are needed to deter-
mine the functional repercussion of these alterations.
Nevertheless, considering the regulatory effect of PGE,
on 5-LO through EP2 receptors these alterations could
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contribute, at least in part, to the exacerbation of the in-
flammatory processes demonstrated in patients with
AERD.

Targeting prostaglandin E; receptors
All the available information about the role of EP receptor
subtypes in inflammatory airway diseases or in a totally
different disorder comes partly from genetic ablation of
prostanoid receptors or from studies performed with se-
lective EP receptor agonists or antagonists. The latter
strategy includes the development of small-molecule li-
gands that target a specific EP receptor and whose purpose
is receptor inhibition or activation. All EP receptors are ac-
tivated by their natural agonist PGE, or by a number of
PGE, analogues named agonists and inhibited by antago-
nists. Over the years several studies have been performed
to develop these compounds, which are used to find a pos-
sible therapeutic approach to treat numerous diseases [47].
As described previously, the EP2 receptor exerts many
inhibitory functions. PGE, has been considered to be a
bronchodilator and anti-inflammatory natural substance
with potential for treating asthma and other respiratory
diseases. The use of developed selective agonists im-
proved this viewpoint. Effectively, the bronchodilator ef-
fect of PGE, is mediated by the EP2 receptor, which
promotes airway relaxation and inhibits IgE-dependent
mast cell activation [98]. Recent studies have also shown
that the EP4 receptor mediates bronchodilation support-
ing the idea that targeting this receptor may be a novel
therapeutic approach for obstructive airway diseases
[99]. Patients with AERD characteristically showed a
critical deficiency in PGE,/EP2 signalling. Considering
the protective and beneficial effects of the PGE,/EP2
axis in airways, the use of specific commercially devel-
oped agonists could correct this deficit and ameliorate
the inflammation scenario in these patients. The poten-
tial use of inhibitors of the EP3 receptor in the treatment
of chronic cough has also been recently proposed [66].

Conclusions

Differential regulation and expression patterns of PGE,
receptors were observed in each of the chronic inflam-
matory airway diseases presented in this review. Al-
though these alterations may worsen the already
diminished levels of PGE,, additional studies are neces-
sary to reveal further information about the role of these
receptors in asthma and CRS with or without NPs or as-
pirin hypersensitivity. Moreover, EP receptors represent
potential targets for therapeutic approaches. The use of
PGE, analogues and synthetic drugs, which can select-
ively and specifically agonize or antagonize signalling
from EP receptor subtypes, has proved very useful for a
deeper understanding of the pathologic mechanisms
where PGE, and its receptors are involved.
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Additional file 1: Table S1. Prostaglandin E, receptor expression in
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Additional file 2: Table S2. Prostaglandin E, receptor expression in
upper airways.
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