
Malavige et al. Journal of Biomedical Science           (2022) 29:48  
https://doi.org/10.1186/s12929-022-00833-y

REVIEW

Dengue and COVID‑19: two sides 
of the same coin
Gathsaurie Neelika Malavige1,2*   , Chandima Jeewandara1 and Graham S. Ogg1,2 

Abstract 

Background:  Many countries in Asia and Latin America are currently facing a double burden of outbreaks due to 
dengue and COVID-19. Here we discuss the similarities and differences between the two infections so that lessons 
learnt so far from studying both infections will be helpful in further understanding their immunopathogenesis and to 
develop therapeutic interventions.

Main body:  Although the entry routes of the SARS-CoV-2 and the dengue virus (DENV) are different, both infections 
result in a systemic infection, with some similar clinical presentations such as fever, headache, myalgia and gastroin-
testinal symptoms. However, while dengue is usually associated with a tendency to bleed, development of micro and 
macrothrombi is a hallmark of severe COVID-19. Apart from the initial similarities in the clinical presentation, there are 
further similarities between such as risk factors for development of severe illness, cytokine storms, endothelial dys-
function and multi-organ failure. Both infections are characterised by a delayed and impaired type I IFN response and 
a proinflammatory immune response. Furthermore, while high levels of potent neutralising antibodies are associated 
with protection, poorly neutralising and cross-reactive antibodies have been proposed to lead to immunopathology 
by different mechanisms, associated with an exaggerated plasmablast response. The virus specific T cell responses are 
also shown to be delayed in those who develop severe illness, while varying degrees of endothelial dysfunction leads 
to increased vascular permeability and coagulation abnormalities.

Conclusion:  While there are many similarities between dengue and SARS-CoV-2 infection, there are also key differ-
ences especially in long-term disease sequelae. Therefore, it would be important to study the parallels between the 
immunopathogenesis of both infections for development of more effective vaccines and therapeutic interventions.
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Background
Although SARS-CoV-2 is reported to have infected over 
500 million individuals with at least 6.2 million individu-
als succumbing to COVID-19 by April 2022 [90], the true 
direct and indirect death toll due to COVID-19 is esti-
mated to be much higher [126]. Despite the availability 
of several safe and effective vaccines for COVID-19, the 
emergence of SARS-CoV-2 variants that evade immunity 
has posed challenges in controlling outbreaks [33]. Due 
to the unprecedented cooperation between scientists, 
sharing of data and availability of funding, by early 2022 
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ten vaccines had received emergency use licensing by the 
WHO for the prevention of COVID-19 [128]. This con-
trasts with many other neglected tropical infections such 
as dengue, despite causing deaths in 0.53 per 100,000 
population in 2017 [139].

Although there are reports of epidemics caused by 
infection with the dengue virus (DENV) in the 1780s, 
epidemics resulting in dengue haemorrhagic fever (DHF) 
or dengue shock syndrome (DSS), which are severe forms 
of dengue infection, was initially reported in the 1950s 
in South East Asia [69]. However, dengue infections 
have gradually increased over time due to many factors 
such as climate change resulting in increase in tempera-
tures, urbanization, increase mobility and overcrowding 
[108]. Although there is no specific treatment for den-
gue, intense monitoring to detect vascular leak and other 
supportive management has reduced case fatality rates 
(CFRs) to < 0.3% in most countries [19, 83], although in 
some countries such as in India the CFRs are estimated 
to be 2.6% [95]. The CFRs in patients with severe den-
gue was shown to be around 5.9% for younger children 
while it was as high as 32.6% in patients ≥ 60 years of age 
in Brazil [79]. Therefore, it is evident that dengue is an 
important cause of morbidity and mortality in countries 
in the tropical and subtropical regions.

While SARS-CoV-2 infects individuals via the respira-
tory route, the DENV infects individuals following a bite 
of an infected mosquito of the Aedes species. However, 
it is well established that COVID-19 is not a mere res-
piratory infection but is a systemic illness. Furthermore, 
many of the initial clinical symptoms such as fever, myal-
gia, joint pain, headache, lethargy, abdominal pain, diar-
rhoea, vomiting and sometimes sore throat is frequently 
seen in both infections, making it difficult to clinically 
differentiate dengue from COVID-19 during early illness 

[86, 129]. Therefore, many countries that experienced 
regular outbreaks due to dengue are now faced with the 
double burden of dengue and COVID-19 [47, 52]. Apart 
from the initial similarities in the clinical presentation, 
there are many similarities between these two infec-
tions such as certain risk factors for severe illness, immu-
nopathogenesis, antibody and T cell responses, cytokine 
storms, endothelial dysfunction and multi-organ failure. 
However, there are certain differences such as haemor-
rhage in dengue compared to thrombosis occurring in 
COVID-19. In this review, we discuss the similarities and 
differences between the two infections so that lessons 
learnt so far from studying both infections will be helpful 
in further understanding their immunopathogenesis and 
to develop therapeutic targets.

Risk factors for severe illness in dengue and COVID‑19
While dengue was predominantly a childhood infec-
tion many years ago, there has been a gradual shift in the 
age of infection in many countries [63, 83, 115]. There-
fore, currently more severe forms of dengue (DHF/DSS) 
are predominantly seen in the older population  in some 
countries, where CFRs tend to be higher than in younger 
individuals [79, 83]. However, some studies have shown 
that CFRs are higher in children, and these differences 
possibly reflect the differences in disease epidemiology 
in different countries [119]. Men were significantly more 
likely to have severe illness in COVID-19, whereas no 
such associations have been seen with dengue [39, 60]. 
The presence of metabolic disease, diabetes, hyperten-
sion, chronic kidney disease and obesity have shown to be 
independently associated with the development of more 
severe illness [55, 72, 102, 110] (Fig.  1). Similarly, mor-
tality rates are higher in elderly individuals and in those 
with comorbidities when infected with SARS-CoV-2 and 

Fig. 1  Risk factors for severe dengue and COVID-19. The common changes are highlighted in the middle box, while those specific to dengue 
(green box) and COVID-19 (blue box) are shown separately
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influenza. However, in contrast to COVID-19, influenza 
and many other respiratory infections also cause severe 
disease in younger children [27, 95]. There are other 
differences in risk factors for COVID-19 compared to 
dengue. For instance, while those who were immuno-
suppressed or those with malignancies were significantly 
more likely to develop severe COVID-19, whereas  such 
individuals are not at higher risk of severe dengue [39].

COVID-19 or dengue in pregnancy are also asso-
ciated with a higher risk of severe disease and higher 
mortality rates [29, 101]. Maternal death was 450 times 
higher in pregnant women with DHF compared to den-
gue in non-pregnant females [101] and dengue in preg-
nancy was associated with a high incidence of acute 
renal and liver failure, acute respiratory distress and an 
increased need for ventilatory support [15]. Dengue in 
pregnancy was associated with a higher incidence in 
preterm delivery, still birth and low birth weight neo-
nates, similar to COVID-19 in pregnancy, while both 
infections were not associated with congenital abnor-
malities of the fetus [100, 124].

Although mechanisms underlying the increased risk 
of severe dengue and COVID-19 in the elderly, those 
with comorbidities and in pregnant women are not 
entirely clear, it could be due to multiple causes such 
as immunosenescence, an aberrant immune response, 
pre-existing endothelial dysfunction worsening dis-
ease outcome and many other factors [49]. It would 
be important to further investigate the mechanisms by 
which these vulnerable groups are more prone to severe 
illness to provide better preventive methods and treat-
ment modalities.

Interestingly, there has been there are geographi-
cal differences in mortality and morbidity due to both 
dengue and COVID-19. For instance, while the inci-
dence of dengue is similar in many Asian countries and 
South America, the age standardized death rates and 
DALYs are significantly lower in South America [139]. 
Although the reasons for these differences in mortality 
and morbidity is not known, it could be due to the dif-
ferences in the DENV that circulate in different regions, 
vector competence in transmission, force of infection 
and age of population affected. Similarly, the hospitaliza-
tions and mortality rates due to COVID-19 have shown 
to vary widely between many countries, which could be 
attributed to differences in COVID-19 vaccination rates, 
circulating variants, age of population and reporting of 
COVID-19 deaths [21]. Therefore, although many Asian 
and African countries have reported lower mortality 
rates than Europe and Northern America, despite lower 
vaccination coverage, this is possibly due to inaccurate 
reporting as many of these countries have reported high 
levels of excess mortality [21]. However, some countries 

in Asia (e.g. Sri Lanka) reported lower mortality rates 
during the omicron wave compared to Europe and North 
America, with lower excess mortality rates than these 
countries, despite significantly lower vaccine cover-
age [21, 46]. Therefore, it would be important to further 
investigate the reasons for differences in mortality rates 
in different populations in different geographical regions 
for both infections.

Infection characteristics due to dengue and COVID‑19
Infections with the DENV occurs following feeding by 
an infected mosquito of the Aedes species, where the 
virus infects many innate immune cells and keratino-
cytes. The time from onset of infection to onset of symp-
toms (incubation period) for the four DENVs has shown 
to a mean of 5.9  days [35, 96]. Controlled human chal-
lenge models have shown that the duration of viraemia 
was a mean of 6.8 days, with those who were challenged 
with a high dose of virus having a longer viraemia than 
those challenged with a lower dose [35]. Although many 
different cells have shown to be permissive to infection 
by the DENV in cell culture [97], autopsy studies have 
shown that apart from immune cells such as monocytes, 
dendritic cells, mast cells, the DENV readily infected 
hepatocytes, kuffer cells, alveolar macrophages, and mac-
rophage like cells in the lymph nodes and spleen [7, 11]. 
Although some autopsy studies have shown the presence 
of viral antigens in neurons, kidney cells and endothelial 
cells, evidence of viral replication within these cells have 
not been demonstrated [7, 11].

SARS-CoV-2 virus initiates infection by entering cells 
expressing ACE2, and engagement of the receptor bind-
ing domain (RBD) of the virus with ACE2 exposed the 
cleavage site in S2, which is subsequently cleaved by 
TMPRSS2 [53]. Following infection of the ciliated cells 
in the nasal epithelium and type II alveolar cells, the 
incubation period has shown to be on average 6.38 days, 
ranging from 2.33 to 17.6  days before patients show 
symptoms, based on a meta-analysis [34]. However, the 
incubation period of omicron BA.1 and BA.2 sub-lin-
eages  was shown to be shorter than delta and previous 
variants, which could have contributed to their higher 
transmissibility [91, 123]. ACE2 is expressed on many 
cells in addition to the ciliated cells in the nasal epithe-
lium and type II alveolar cells in the lungs, which are ini-
tially infected with the virus. Due to the wide expression 
of ACE2, the SARS-CoV-2 virus has shown to infect the 
enterocytes, cells in the kidney, heart muscle and testis 
[53]. The increased susceptibility to severe disease has 
been attributed to different levels of expression of ACE2 
in those with comorbidities [53]. Neuronal cells have 
been infected in vitro and in animal models, and cerebral 
atrophy and tissue damage in cortical areas of the brain 
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has been observed in SARS-CoV-2 infected individuals, 
suggesting that the virus may directly infect the brain 
[31, 107]. However, similar to the observations in dengue, 
although endothelium dysfunction plays a significant 
role in the pathogenesis of COVID-19, there is limited 
evidence that the virus infects the endothelium in acute 
SARS-CoV-2 infection [110].

In summary, both the DENV and SARS-CoV-2 infects 
many type of immune cells and many organs in the body, 
leading the a widespread infection. While evidence of 
active replication of the SARS-CoV-2 of the myocardium, 
kidney, spleen and intestines have been demonstrated, 
such evidence of active replication within these organs is 
not seen in dengue, due to the smaller number of studies 
which has explored this.

Innate immune responses and cytokine storms in dengue 
and COVID‑19
Although SARS-CoV-2 initiates infection by infecting 
many different types of cells in the respiratory epithelium, 
it is known to cause a systemic infection in some individ-
uals infecting the gastrointestinal tract, heart, brain and 
many other organs [114]. The DENV is also known to 
infect monocytes, dendritic cells, hepatocytes, keratino-
cytes and many other cells, while monocytes were shown 
to be the cell most susceptible to the virus [84]. A dys-
functional immune response by monocytes and other 
innate immune cells resulting in a delayed interferon 
response, an increase in proinflammatory cytokines and 
chemokines such as IL-1-β, TNF-α, CXCL-10, IL-10, 
IL-18, IL-8 with an increase in many inflammatory lipid 
mediators is seen in patients who progress to develop 
severe forms of dengue (DHF) [57, 61, 84]. An impaired 
and delayed IFN response has shown to associate with a 
prolonged viraemia and progression to severe disease in 
COVID-19, and the high levels of IFNs later in the disease 
were seen to worsen the immunopathology (Fig. 1) [102]. 
Many DENV proteins inhibit type I IFN production by 
inhibiting Tyk2 activation and STAT1 phosphorylation, 
downregulation of STAT2 phosphorylation and by inhib-
iting STAT2 phosphorylation [17]. In vitro, treatment of 
HepG2 cells with IFNα and IFNβ prior to infection with 
the DENV was shown to significantly reduce viral loads 
in these cells [25]. Therefore, type I interferons appear to 
play an important role in inhibition of DENV replication 
and in fact, those who proceeded to develop severe den-
gue were shown to have reduced levels of plasma IFNα 
and IFNβ [120]. As seen in dengue, type I IFN responses 
were shown to be impaired in those who progress to 
develop severe COVID-19 [72, 102]. Many SARS-CoV-2 
structural and non-structural proteins inhibited the type 
I IFN response by Tyk2 activation, STAT1 and STAT2 

phosphorylation and inhibition of IFN signaling [36, 38, 
67]. Apart from the SARS-CoV-2 evading immunity by 
blocking type I IFN production, patients who progress to 
develop severe COVID-19 have shown to have autoan-
tibodies against IFNα and other type I IFNs [9]. Neu-
tralizing autoantibodies to IFNs, had not been detected 
in individuals with mild or asymptomatic COVID-19, 
highlighting the importance of type I IFNs in protection 
against severe COVID-19[9]. Therefore, an impaired and 
delayed type I IFN response leads to severe dengue and 
COVID-19.

Similar to dengue, those who proceed to develop severe 
COVID-19 have high levels of many proinflammatory 
cytokines such as IL-6, IL-1β, IL-10, CXCL-10, MCP-1 
and the cytokine storm is shown to associate with both 
severe dengue and COVID-19 (Fig.  2) [137]. Although 
similar types of cytokines and chemokines are elevated 
in both dengue and COVID-19, there are many differ-
ences in the relative changes of these mediators [23]. 
For instance, IL-6 levels were shown to correlate with 
clinical disease severity in COVID-19 and IL-6 receptor 
antagonists were shown to improve outcomes includ-
ing survival in critically ill patients [50, 140]. Although 
IL-6 levels were high in patients with dengue who pro-
ceeded to develop DHF, IL-6 levels were several fold 
lower in the critical phase in patients with dengue com-
pared to COVID-19 (Fig.  1) [23]. High levels of IL-10 
levels in early illness in patients with COVID-19 were 
shown to associate with poorer disease outcomes and 
was shown to be a predictor of severe disease along with 
IL-6 [45, 141]. IL-10, which is a potent immunosuppres-
sive cytokine has also shown to act as a proinflamma-
tory cytokine, when elevated with other cytokines [51]. 
IL-10 is thought to contribute to disease pathogenesis in 
COVID-19 by either due to its action as an immunostim-
ulatory molecule or because of inability to suppress the 
hyperinflammation state [51]. However, dengue patients 
who proceeded to develop DHF had several fold higher 
levels of IL-10 (mean levels 1331  pg/ml) when com-
pared to those who developed severe COVID-19 (mean 
57.3  pg/ml) [23]. In dengue, IL-10 levels in early illness 
were an important predictor of developing severe disease 
[23]. IL-10 was shown to suppress DENV specific T cell 
responses, which could contribute to disease pathogen-
esis [82].

Changes in haematological parameters in dengue 
and COVID‑19
The viraemic/febrile phase of dengue is characterized by 
a leucopenia with a slight decline in platelet counts [127]. 
Marked leucopenia with a drastic reduction in platelet 
counts is seen in those who progress to develop DHF, 
with a rise in the haematocrit due to fluid leakage [127]. 
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Leucopenia is considered a warning sign of development 
of severe dengue and lymphopenia has shown to corre-
late with clinical disease severity [54, 127]. The lympho-
penia in dengue is predominantly due to reduction in 
T cells due to apoptosis, although a reduction in B cells 
was also seen (Fig.  2) [81]. Although the mechanisms 
of T cell apoptosis are not clear, serum IL-10 correlated 
with T cell apoptosis, while inversely correlating with T 
cell numbers [81]. Lymphopenia is also seen in COVID-
19 and is shown to correlate with clinical disease sever-
ity [20]. While lymphopenia is mainly due to reduction 
in CD8+ T cells, reduction in all types of lymphocytes 
(CD4+ T cells, B cells and natural killer cells), is seen in 
patients with severe COVID-19 (Fig. 2) [20]. In contrast 
to dengue, severe COVID-19 is associated with a marked 
increase in neutrophils in the nasopharynx, lung and in 
blood, which are highly activated and show an imma-
ture phenotype [105]. Neutrophils have been shown to 
contribute to disease pathogenesis in part by release of 
neutrophil extracellular traps (NET), which was a result 
of NLRP3 activation [8]. Although an increase in neu-
trophils is not observed in dengue, NLRP3 activation in 
many types of cells has been observed with an increase 
in NET components in the serum of patients with DHF, 
suggesting that activation of neutrophils is likely to play a 
role in severe dengue [48, 62, 99].

Antibody responses in patients with dengue and COVID‑19
High levels of neutralizing antibodies (Nabs) follow-
ing vaccination has shown to prevent infection with the 
SARS-CoV-2 to a certain degree and associate with pro-
tection [66]. DENV serotype specific Nabs have shown 
to protect against re-infection with the same serotype, 
while higher levels have also shown to offer protection 
against symptomatic disease for infection with other 
serotypes [65]. However, the Nabs antibodies and anti-
bodies directed against the envelope and NS1 protein in 
dengue can also associate with disease pathogenesis as 
shown  in some studies [24, 55]. The risk of developing 
DHF is substantially higher in a secondary dengue infec-
tion, in which the individual is infected with a different 
DENV serotype than the earlier infecting serotype [37]. 
This increase in disease severity is thought to be due to 
antibody dependent enhancement (ADE), where poorly 
neutralizing, highly cross-reactive antibodies enhance 
DENV infection in FcγR-expressing cells [64, 113]. Inter-
nalization of these antigen–antibody complexes further 
leads to disease pathogenesis by inducing IL-10 produc-
tion by monocytes [118] and DENV-specific afucosylated 
IgG1 subclass of antibodies further enhanced infection 
by binding to the activating FcγRIIIA type Fc receptors 
[122]. Antibodies to NS1, which is a secretory protein of 
DENV has shown to be protective in some mouse stud-
ies [10], while other studies show that NS1 antibody lev-
els are elevated in those who develop DHF [55], and that 
these contribute to vascular leak by cross-reacting with 

Fig. 2  Changes in the innate immune responses, cytokines and chemokines and haematological parameters in patients with severe dengue and 
COVID-19. The common changes are highlighted in the middle box, while those specific to dengue (green box) and COVID-19 (blue box) are shown 
separately
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endothelial cells and inducing apoptosis [75] and by acti-
vating complement [6] (Fig.  3). However, as most indi-
viduals develop asymptomatic or mild dengue despite the 
presence of antibodies to the previous DENV serotypes, 
the type, quality and quantity of DENV specific antibod-
ies that associate with protection is not known.

ADE has been widely discussed in SARS-CoV-2 infec-
tion and shown to occur in vitro through multiple mech-
anisms such as C1q mediated ADE in Vero E6 cells [98], 
in FcγRIIB expressing B cells [121] and through FcγRIIA 
and FcγRIIIA receptors in monocytes [80]. However, the 
clinical significance of ADE in SARS-CoV-2 infection is 
not known. Although Nabs have shown to be protective 
in SARS-CoV-2 infection, high levels of virus specific 
Nabs antibodies and receptor binding domain specific 
antibodies during early illness have been associated with 
a worse disease outcome in some studies (Fig. 3) [59, 78, 
138]. The extent to which the antibody levels are second-
ary to high levels of viral replication is not fully resolved. 
Nabs measured by the surrogate Nabs test (sVNT) 
showed that in fact, the antibody responses were high-
est and appeared earlier in those who succumbed to their 
illness [59]. However, other studies have shown that the 
presence of highly potent Nabs during early illness was 
associated with early virus clearance and improved sur-
vival [27, 41]. However, unlike in dengue, where infection 
with a different DENV serotype is a risk factor for severe 
disease, possibly due to ADE, this has not been seen with 
SARS-CoV-2 infection. Although there are several differ-
ent SARS-CoV-2 variants of concern, and many individu-
als have been infected with a different variant than the 

one that cause the initial infection, this has not shown to 
predispose to severe clinical disease [4]. In fact, immune 
responses generated by natural infection were shown to 
be longer lasting that those induced by vaccination, and 
prior natural infection was shown to protect against 
development of severe clinical disease [4].

A high frequency of activated plasmablasts is seen in 
patients with severe COVID-19 [12], which is also a fea-
ture of severe dengue [40, 132, 136]. Nabs in COVID-19 
were shown to be generated by extrafollicular B cells, 
which correlated with disease severity [135]. Therefore, 
while high antibody titre may be secondary to high lev-
els of viral replication, it is also possible that antibodies 
that are generated by an extrafollicular B cell response 
are less potent and therefore, instead of neutralizing 
the virus efficiently, they may lead to disease pathogen-
esis by multiple mechanisms [135]. Extrafollicular B cell 
responses are also seen in systemic lupus erythematosus 
and such responses have shown to generate autoreactive 
antibodies, which is also a feature in COVID-19 [22, 134]. 
Although the presence of extrafollicular B cell responses 
have not been studies in dengue infection, poorly neu-
tralizing Nabs have shown to associate with severe dis-
ease [24]. Furthermore, a high prevalence of antinuclear 
antibodies have been detected in the convalescent phase 
of patients with acute dengue [43]. Therefore, in both 
COVID-19 and in dengue, while certain types of virus 
specific antibodies may appear to contribute to disease 
pathogenesis by many different mechanisms, highly 
potent Nabs appear to be protective. In order to develop 
safer and effective vaccines, it would be important to 

Fig. 3  Antibody and B cell responses in patients with severe dengue and severe COVID-19. The common changes are highlighted in the middle 
box, while those specific to dengue (green box) and COVID-19 (blue box) are shown separately



Page 7 of 14Malavige et al. Journal of Biomedical Science           (2022) 29:48 	

further study the type, quantity and quality of antibody 
responses that associate with protection, including the 
type and mechanisms of antibodies that lead to disease 
pathogenesis.

T cell responses in dengue and COVID‑19
For many years DENV specific cross-reactive T cells 
were thought to be involved in disease pathogenesis 
[5, 30, 93]. Although patients with more severe forms 
of dengue had a higher magnitude of cross-reactive T 
cells, these were only detected during the convales-
cence period, and were either not detected or were seen 
in very low frequency in the critical phase [32]. Recent 
studies have highlighted the importance of DENV 
specific T cells in reducing disease severity and have 
shown that early appearance of virus specific T cells 
correlated with resolution of viraemia and with less 
severe disease (Fig. 4) [130]. Those with HLA types that 
were associated with more severe dengue had a lower 
frequency of DENV specific T cell responses, whereas 
T cell responses specific for the HLA alleles associated 
with protection were significantly higher dengue infec-
tions [125]. Furthermore, it was shown that the pres-
ence of multiple cytokine producing polyfunctional T 
cells was associated with milder dengue [131].

Acute SARS-CoV-2 infection is associated with a var-
ied magnitude and functionality of the T cell response. 
Those who had severe disease had a preferential loss of 
CD8+ T cells compared to CD4+ T cells, a T cell pheno-
type characterized by activated CD4+ and CD8+ T cells, 

and CD8+ T cell displaying T cell exhaustion markers 
such as PD-1, CTLA-4, LAG3 and TIM-3, and a reduced 
frequency of follicular helper T cells (Fig. 4) [26, 70, 88]. 
Several negative T cell regulatory molecules such as 
CTLA-4, LAG3 and PD-1 have shown to be upregulated 
in patients with dengue [3, 18]. In both infections, CD8+ 
T cells of those with severe illness had a reduced cytokine 
production upon stimulation with mitogens and with 
peptides [18, 82, 142]. As patients with severe COVID-19 
had either an unresponsive or suboptimal virus-specific 
T cells or an exaggerated T cell response, it would be 
important to understand the T cell responses that associ-
ate with protection for better vaccine design.

SARS-CoV-2 virus specific cross-reactive T cells 
have shown to be present in unexposed donors and are 
thought to be due to the presence of cross-reactive T cell 
responses for other seasonal human coronaviruses [87]. 
In SARS-CoV-2 infection, the presence of IL-2 produc-
ing cross-reactive T cells was shown to be protective in 
house-hold contacts and was associated with a negative 
PCR [68]. Furthermore, the presence of these immuno-
dominant CD4+ T cell epitopes that cross react with 
SARS-CoV-2 and other human coronaviruses have 
shown to decline with age, which has been suggested as a 
contributory factor for severe disease in the elderly [77]. 
Although omicron and its emerging sub-lineages com-
pletely escaped antibody mediated immunity induced by 
two doses of many of the COVID-19 vaccines, they were 
still shown to be protected by severe disease and hospi-
talization due to the presence of robust T cell responses 

Fig. 4  T cell responses in patients with severe dengue and severe COVID-19. The common changes are highlighted in the middle box, while those 
specific to dengue (green box) and COVID-19 (blue box) are shown separately
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[94]. Previous infection and many of the COVID-19 vac-
cines, were shown to induce a high magnitude of T cell 
responses with a broad recognition of T cell epitopes of 
many of the viral proteins [94]. T cells have shown to play 
an important role in viral clearance especially in the con-
text of low antibody levels in non-human primates [89]. 
Therefore, although the emergence of sub-lineages of 
omicron such as BA.4 and BA.5 are shown to be more 
immune evasive than  all existing variants, as a result of 
further mutations in the Nab binding sites. However, due 
to the breadth of the T cell response induced following 
natural infection and vaccination, infection with these 
variants is likely to associate with a relative reduction in 
clinical disease severity, despite infection, as evidenced 
with the global decline in COVID-19 mortality rates [16].

Although many studies have been carried out in under-
standing the T cell responses in SARS-CoV-2 infection, 
the significance of DENV-specific cross-reactive mem-
ory T cell responses subsequent clinical disease severity 
when infected with the DENV has not been extensively 
studied. However, those with varying severity of past 
dengue, were shown to have varied frequencies of T cells 
and T cell functionality [56], possibly related to the tim-
ing of the previous infection and the number of previous 
DENV infections.

Endothelial dysfunction in dengue and COVID‑19
Endothelial dysfunction leading to vascular leak in the 
hallmark of DHF, which occurs due to viral factors, 
cytokines and inflammatory mediators [85]. The vascular 
leak phase which lasts for 24 to 48  h in dengue, occurs 
around 3 to 5  days since the onset of illness, and this 
leads to pleural effusion, ascites and shock [85]. The den-
gue NS1 protein, which is a secretory protein has shown 
to contribute to endothelial dysfunction by disrupting the 
endothelial glycocalyx layer [104]. Many inflammatory 
lipid mediators such as platelet activating factor (PAF), 
vascular endothelial growth factor (VEGF), angiopoie-
tin-2 (Ang-2) has shown to cause endothelial dysfunction 
and phospholipase A2 enzymes that generate PAF were 
shown to be elevated during early illness in dengue [57, 
58, 85]. Dengue NS1 was also shown to induce phospho-
lipase A2 enzymes, inflammatory cytokines and prosta-
glandins, further contributing to endothelial dysfunction 
[112].

Endothelial dysfunction is also a feature of severe 
COVID-19 with high levels of VEGF, Ang-2, osteopontin, 
although the vascular leak is not as prominent as seen in 
dengue [106]. In comparison to those who died of acute 
respiratory distress syndrome (ARDS) in influenza infec-
tion, those who died of COVID-19 had severe endothelial 
injury with membrane disruption along with the pres-
ence of virus within the endothelial cells [1, 14]. Autopsy 

studies have shown the presence of venous and arterial 
platelet–fibrin microthrombi in many organs in many 
patients with COVID-19, which is thought to occur due 
to endothelial activation [1]. Many factors are thought to 
contribute to the endothelial dysfunction and occurrence 
of a prothrombotic state, such as direct infection of the 
endothelium with SARS-CoV-2 causing endothelial dam-
age, inflammatory cytokines such as IL-6, hyperplasia of 
the endothelium due to lung tissue ischaemia and activa-
tion of neutrophils and monocytes along with platelets 
facilitating microthrombi formation [14, 106].

The coagulopathy in COVID-19 is associated with 
high levels of d-dimer, fibrinogen and von Willebrand 
factor, with modest reductions in platelet counts and 
slightly prolonged or normal prothrombin and activated 
partial thromboplastin times (APPT) [14, 116]. In con-
trast to COVID-19, dengue is associated with a bleed-
ing tendency, with marked reductions in platelet counts, 
with prolonged prothrombin and APPT in patients with 
severe disease [2, 127]. However, those with DSS and 
severe COVID-19 had elevated levels of thrombomod-
ulin, plasminogen activator inhibitor type 1 and von 
Willebrand factor antigen suggesting that like COVID-
19, activation of procoagulant mechanisms also occur in 
severe dengue [28, 44, 106, 133]. Therefore, although the 
extent of endothelial dysfunction in both infections is a 
marker of clinical disease severity, the pathogenesis of 
endothelial dysfunction and the coagulation disturbances 
that occur as a result of this appear to be different.

Long term sequel of dengue and COVID‑19
Many individuals report fatigue following dengue infec-
tions with 32% reporting fatigue at 2 months post-infec-
tion [111]. A smaller study showed that approximately 
50% of individuals who had symptomatic dengue have 
persistent symptoms such as muscle and joint pain, 
headache and insomnia, 2 years post-infection, although 
there was no control group included in this study [42]. 
The persistence of symptoms was associated with poly-
morphisms of the FcγRIIa gene, presence of anti-nuclear 
antibodies and immune complexes [42]. An increased 
incidence of several different types of autoimmune dis-
ease such as Reiter’s syndrome, myasthenia gravis, 
autoimmune encephalomyelitis and systemic vasculitis 
have been reported following dengue [73]. In Mexico, 
the annual burden due to persistent symptoms follow-
ing dengue has shown to cost US$ 22.6  million annu-
ally [117]. However, the proportion of individuals who 
develop chronic fatigue and the pathogenesis of these 
long-term complications in dengue has not been studied.

The long-term sequelae of COVID-19 is well recog-
nized and the term ‘long COVID (post-acute sequel of 
COVID-19)’ is commonly used to describe the symptoms 
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that occur following COVID-19. Although long COVID 
is more frequent following severe illness, it has also 
been reported in those with mild illness with chronic 
fatigue, persistent lung symptoms, olfactory symptoms, 
neurological, gastrointestinal symptoms and endocrine 
abnormalities being described, lasting for months post-
infection [13, 92]. 52% of young adults with mild illness 
(home isolated) reported symptoms of fatigue, dysp-
noea, cognitive dysfunctions and loss of taste and smell, 
at 6 months post-infection [13]. Abnormal lung function 
with fibrosis and structural changes, myocarditis, throm-
boembolism, chronic kidney disease, skin disease and 
structural changes in the brain [31, 92, 109]. Although the 
pathogenesis of long COVID appears to be multifactorial, 
persistence of the virus, alteration of immune homeo-
stasis leading to persistent activation of the immune 
system, alternation of immunometabolic pathways and 
autoimmunity have been proposed as possible mecha-
nisms [92, 103]. Although myocarditis (11.3%) [74], 
acute liver failure (0.31%) [71] and acute renal failure (2 
to 5% of patients with severe dengue) [76] is reported to 
occur in dengue, long term organ dysfunction has not 
been reported in those who recover. Therefore, although 
chronic fatigue, the presence of certain autoantibod-
ies and an increased risk of autoimmune diseases have 
been reported following dengue, dengue does not appear 
to associate with the occurrence of severe disabling and 
serious long-term sequelae seen following SARS-CoV-2 
infection.

Conclusions
The concurrent occurrence of dengue and COVID-19 
outbreaks in many Asian and Latin American countries 
are likely to cause a significant burden to the health care 
systems of these resource poor countries. Since the ini-
tial clinical presentations of these two infections are 
quite similar, it would be a challenge to clinically differ-
entiate these two infections. In addition, there are many 
similarities in the immunopathogenesis between dengue 
and SARS-CoV-2 infection with a dysfunctional immune 
response leading to a cytokine storm and immunopatho-
genesis, delayed virus specific T cell responses failing to 
clear the virus, extra follicular B cell responses and exag-
gerated plasmablast responses associating with severe 
disease and endothelial dysfunction. However, while 
dengue is usually associated with a tendency to bleed, 
development of micro and macrothrombi is a hallmark of 
severe COVID-19. Apart from the differences in coagu-
lation abnormalities and the differences in the cytokine 
storms and mediators that cause endothelial dysfunction, 
there are also many differences especially in long-term 
disease sequelae. Although both infections occur due to 
very different routes (respiratory infection vs mosquito 

borne infection), it would be important to study the par-
allels between the immunopathogenesis of both infec-
tions for development of more effective vaccines and to 
develop therapeutic interventions.
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