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Abstract 

A short open reading frame (sORFs) constitutes ≤ 300 bases, encoding a microprotein or sORF-encoded protein 
(SEP) which comprises ≤ 100 amino acids. Traditionally dismissed by genome annotation pipelines as meaningless 
noise, sORFs were found to possess coding potential with ribosome profiling (RIBO-Seq), which unveiled sORF-based 
transcripts at various genome locations. Nonetheless, the existence of corresponding microproteins that are stable 
and functional was little substantiated by experimental evidence initially. With recent advancements in multi-omics, 
the identification, validation, and functional characterisation of sORFs and microproteins have become feasible. In this 
review, we discuss the history and development of an emerging research field of sORFs and microproteins. In par‑
ticular, we focus on an array of bioinformatics and OMICS approaches used for predicting, sequencing, validating, and 
characterizing these recently discovered entities. These strategies include RIBO-Seq which detects sORF transcripts via 
ribosome footprints, and mass spectrometry (MS)-based proteomics for sequencing the resultant microproteins. Sub‑
sequently, our discussion extends to the functional characterisation of microproteins by incorporating CRISPR/Cas9 
screen and protein–protein interaction (PPI) studies. Our review discusses not only detection methodologies, but we 
also highlight on the challenges and potential solutions in identifying and validating sORFs and their microproteins. 
The novelty of this review lies within its validation for the functional role of microproteins, which could contribute 
towards the future landscape of microproteomics.
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Background
Spurred by the first draft of the human genome in 2001, 
the number of annotated human genes increased drasti-
cally in the next decade, with ~ 20,000 papers published 
annually on the protein-coding genes [1, 2]. By decoding 
the bulk of human DNA, the Human Genome Project 
(HGP) had empowered genomic research and extended 

its impacts to many other species including mouse, rat, 
fruit-fly and even to plants such as Arabidopsis thaliana.

Genome annotation refers to the procedure whereby 
the locations, coding regions and functions of genes 
are determined within a sequenced genome. This pro-
cess is typically performed by automated bioinfor-
matic pipelines based on (i) the innate characteristics 
and features of genomic sequences, as well as (ii) the 
sequence homology conserved through evolution [3, 
4]. These two principles tie together the possibility 
of genes acquiring evolutionary selective advantages, 
thus producing proteins with functionalities essential 
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for survival. Via this process, putative protein-coding 
genes can be predicted ab  initio. This kickstarted the 
search for protein-coding genes, plateauing in the mid-
2000s at ~ 20,000 protein-coding genes for the human 
genome [2]. However, this number may be underes-
timated due to an arbitrary limitation of a 300-base 
(100-codon) cut-off for transcripts. Such restrictions 
are imposed on ORF-prediction algorithms by the 
Functional ANnoTation Of the Mammalian Genome 
(FANTOM) consortium to minimize false positive pre-
dictions, especially the mis-classification of non-cod-
ing RNAs as mRNAs [5–8].

In the past two decades, the scientific commu-
nity had nonetheless found mounting experimental 
evidence for open reading frames (ORFs) compris-
ing < 100 codons. These so-called short ORFs (sORFs) 
or small ORFs (smORFs) can encode functional and 
stable sORF-encoded protein (SEPs) or microproteins. 
The first revelation of a functional microprotein came 
from the discovery of a novel helix-loop-helix protein 
in 1990 by Benezra et  al., known as the “Id” protein. 
Id functions by inhibiting the trans-activation of MCK 
gene at the MyoD consensus binding site in myoblasts 
during muscle differentiation [9]. Whereas for plants, 
the first discovered microproteins are the LITTLE 
ZIPPER (ZPR) proteins. Being functional analogues to 
“Id” proteins, ZPR proteins control stem cell mainte-
nance during plant development [10].

Several recently identified microproteins have been 
associated with diseases. For example, a 54-amino acid 
mitochondrial microprotein known as PIGBOS was 
believed to play a role in stress signalling. PIGBOS is 
localised in the mitochondrial membrane and medi-
ates signalling events leading to the unfolded protein 
response (UPR) [11]. This microprotein interacts with 
CLCC1, an endoplasmic reticulum (ER) protein, form-
ing a connection between the mitochondria and the ER 
[12]. PIGBOS’s role in stress signalling may indicate a 
new direction in research concerning high ER stress, 
including cancer. Another microprotein that is linked 
to cancer is CYREN, which inhibits non-homologous 
end joining (NHEJ) repair during S and G2 phases [13]. 
CYREN ensures accurate homologous recombination, 
and its dysfunction may destabilise DNA integrity.

In accordance with advances in OMICS research and 
bioinformatics, functional and stable microproteins 
have increasingly been identified and characterized. 
We therefore dedicate this review to discuss the cur-
rent developments in microproteome research, fol-
lowed by state-of-the-art strategies that are used to 
identify and validate them at different biomolecular 
levels.

Short open reading frames (sORFs)
Conventionally, an ORF is defined as a stretch of consec-
utive and non-overlapping nucleotide triplets (codons) 
that can be translated into proteins, whereby it should 
also initiate with an in-frame start codon (AUG), and ter-
minate with one of the three stop codons (UAA, UAG, 
UGA). In a theoretical manner, Olexiouk et  al. (2018) 
estimated that the probability of randomly generating a 
start codon within the nucleotide space is 1 out of 64, and 
that the chances of finding a stop codon within the next 
99 codons is ~ 99%; discounting splice variants, reading 
frames and GC-rich regions, strandedness and nucleo-
tide biases [14]. Consequently, this means that ~ 1.5% 
of the genome may encode ORFs < 100 codons [14, 15]. 
Naturally, this results in an unreasonably large number of 
putative sORFs, whose chances of being transcribed and 
translated into functional polypeptides seem far-fetched. 
Hence, a 300-nucleotides cut-off was introduced, as most 
of these sORFs were deemed meaningless and random 
[16, 17].

Another contributing factor for this cut-off is that 
existing algorithms are so far not ideal for annotating the 
sORFs. This is due to the propensity of short sequences 
to score low in evolutionary conservation, an indicator 
for functionality [18]. Combined with the technical dif-
ficulties in delineating sORFs from chance in-frame start 
and stop codons and to isolate sORF-translated micro-
proteins, these sORFs were either considered noise, 
occurring by chance, non-coding or unlikely to be trans-
lated [19–21]. As such, these sORFs and the resulting 
microproteins were traditionally ignored by the scientific 
community.

Ever since its discovery, sORFs, along with its short 
lengths, were considered unorthodox, as it could be initi-
ated with AUG as well as non-AUG codons [22–24]. As 
unconventional ORFs, the definition of sORFs overlaps 
with another distinctive class of ORFs, known as alter-
native ORFs (altORFs) (Fig.  1). The altORFs yield tran-
scripts that initiate only with AUG codons and are at 
least 30 codons, but without an upper length limit [16]. 
AltORFs were also found to encode proteins, an example 
being AltMRVI1 from the 3’ UTR of MRVI1 interacting 
with BRCA1 in the nucleus [25]. The overlapping defini-
tions of these unconventional ORFs were consequently 
represented in protein databases, where there is apparent 
annotation of sORFs under altORFs prior to sole focus of 
research on sORFs.

The localities and regulatory functions of sORFs
The 300-base cut-off raises a paradox by contradicting 
the initial aims of HGP to resolve all ambiguities in the 
human genome [1]. Post cut-off, there is now a limitation 
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concerning the sORFs and their translated products [4, 
20]. There is indefiniteness when it comes to discuss-
ing sORFs, and whether they exist putatively or due to 
random sequence matching to other ORFs. This subse-
quently leads to obscurity in the methods used for deter-
mining microproteins.

In continuance from a bulk of research on protein-
coding genes, there was simultaneously an exponential 
increase in non-protein coding elements discovered [2]. 
By scanning these non-coding regions, researchers have 
found embedded sORFs that scatter in different genomic 
locations [26]. The different localities of sORFs are shown 
in Fig.  2. These locations include the upstream (uORF) 
and downstream open reading frames (dORF) within 
the 5’ and 3’ untranslated regions (UTRs) of a gene, 
even overlapping with the main ORF if the sORF is out 
of frame [27–31]. Examples of small uORFs include two 
uORFs in MDM2, where the translation products repress 
the main ORF encoding MDM2 [28]. Other essential 
genes involved in the developmental process such as 
POU5F3 (Oct4), Smad7 and Nanog also encode multi-
ple small uORFs, as discovered in zebrafish and human 
[28, 30]. Whereas, the expression of dORFs was found to 
enhance the translation of canonical ORFs, where thou-
sands of dORFs have been found translated in human 
cells and zebrafish embryos [31]. Furthermore, an exam-
ple of an overlapping sORF is uORF2 in the ATF4 gene, 
whereby it represses the transcription of ATF4 under 
normal conditions [27, 29].This suggests the regulatory 
role of sORF in post-transcriptional control and transla-
tional efficiency [20, 32, 33].

In addition, sORFs are found among pseudogenes and 
intergenic regions too, with the latter being more difficult 
to identify due to the high false-negative rates of existing 
gene finding algorithms [32, 34]. As examples, Kalyana-
Sundaram et al. (2012) reported the expression of cancer-
specific pseudogenes, such as KLKP1 which encodes a 
54-amino acid microprotein in LNCaP, a prostate cancer 
cell line [35]. Meanwhile, Hanada et al. (2007) discovered 
that 4282 sORFs are located in the intergenic regions, out 
of 7159 sORFs in Arabidopsis thaliana [36]. Apart from 
genomic DNA, sORFs are encoded by mitochondrial 
DNA (mtDNA), where the microprotein products have 
been shown to play roles in muscle and fat metabolism 
[37]. Besides, sORFs are found embedded in various RNA 
transcripts previously believed to be non-coding, such as 
pri-microRNA, circRNA, lincRNA and lncRNA [8, 20, 
26, 38–49].

The emergence of new transcripts from genomic 
regions previously considered non-coding has presented 
sORFs as a new source of protein-coding genes, consist-
ent with the depiction of an evolutionary mechanism for 
generating novel polypeptides. With evolutionary con-
servation, the continuous expression of certain sORFs 
may provide selective advantages, hence withstanding 
time and becoming de novo protein-coding genes [8].

Strategies to detect sORFs with bioinformatics 
prediction
The need to re-evaluate the coding potentials of sORFs 
was raised as these minute ORFs were found to be capa-
ble of being transcribed and possibly translated. Several 

Fig. 1  A comparison between sORF and altORF transcripts in terms of length and initiation codons. A sORF transcript structure with AUG or 
non-AUG initiation codons, characterised by its short length of 100 codons after post-transcriptional modifications. B altORF transcript structure 
described with AUG initiation codon, longer than 30 codons and without an upper limit on length, differing from sORFs
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methods based on computational analysis, next-gener-
ation sequencing (NGS) and mass spectrometry (MS) 
have been employed to predict the coding potentials, 
sequences, and identify these sORFs or their products. 
These measures confirm that such sORFs contain actual 
coding sequences (CDSs) and produce functional poly-
peptides; as some bona fide lncRNAs were found to not 
encode for microproteins, such as XIST, HOTAIR and 
NEAT1 [50]. To begin with, one must understand the 
difficulties in detecting microproteins, whereby their 

smaller sizes (< 100 amino acids; < 20 kDa) necessitates 
the adaptation of existing laboratory techniques.

Bioinformatic predictions of sORFs proved valuable 
since it does not cost nearly as much as experimental 
validations. To differentiate expressed elements based 
on functionality, several aspects are considered i.e., (i) 
the conservation of a particular sequence through evo-
lution, and (ii) sequence similarity. Sequence conserva-
tion weighs in evolutionary selection, indicating that 
the sequence remains functionally useful throughout 

Fig. 2  Localities of sORFs in the genome and transcripts. Genomic locations of sORFs include in the 3’ UTR (uORF), 5’ UTR (dORF), overlapping within 
the main ORF, intergenic regions and pseudogenes. sORF-containing long intergenic non-coding RNA (lincRNA) are also localised in the nucleus. 
In the mitochondria, sORFs are found in the mitochondrial DNA (mtDNA). In the cytoplasm, sORFs are scattered across different RNA transcripts i.e., 
circular RNA (circRNA), long non-coding RNA (lncRNA), and pri-microRNA
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phylogenetic trees [3, 51]. Whereas sequence similarity 
denotes similar protein motifs or domains aligned over 
previously identified protein sequences so as to derive 
coding potentials and potential protein functionalities [4, 
17].

Initially, the detection of sORFs was limited by the con-
servativeness of gene finder algorithms, as only few bio-
informatic tools were specifically designed specifically 
for sORFs. One pioneering sORF prediction tool is sORF 
finder, which applies coding index (CI) based on nucleo-
tide composition bias in predicting CDSs [52]. This tool 
successfully enabled the identification of 2376 putative 

sORFs in the intergenic regions of Arabidopsis thali-
ana [36]. From this set of sORFs, Hanada et  al. (2013) 
conducted a follow-up study and reported the overex-
pression of 473 sORFs that were associated with plant 
morphogenesis [53]. Since then, the training datasets 
used for such tools have become much larger, realizing 
higher prediction qualities. Experimental validations of 
sORFs are now used for homology searches, for ab initio 
training and for machine learning purposes in the devel-
opment of better sORF prediction tools [4, 21]. Table  1 
provides a list of sORF prediction tools that are applica-
ble to multiple species, and their web addresses. It should 

Table 1  sORF prediction tools

This table shows prediction tools that can be used for putative sORF detection based on sequence homology and similarity in all genomes. CNIT and CPPred utilises a 
positive set of normal-sized proteins and may not be optimised for sORF and microprotein detection. CPPre-sORF is an improved version of CPPred for sORF detection. 
MiPepid, sORF Finder, miPFinder and smORFunction are designed especially for sORF detection, identification, and function prediction. PhastCons, PhyloCSF, SPADA 
and uPEPperoni utilise conservation analyses for prediction, with the latter designed spefically for sORFs in the upstream region. DeepCPP is based on a deep learning 
method to evaluate RNA coding potential and demonstrated high performance in sORF data

Prediction tool References Website Description

Coding Non-Coding Identifying Tool (CNIT) [126] http://​cnit.​nonco​de.​org/​CNIT/ Distinguishes between coding and non-
coding regions based on intrinsic sequence 
compositions

Coding Region Identification Tool Invoking 
Comparative Analysis (CRITICA)

[127] http://​rdpwww.​life.​uiuc.​edu/ Analyses nucleotide sequence composition 
and conservation at the amino acid level

Coding Potential Calculator (CPC)/CPC2 [128, 129] http://​cpc.​cbi.​pku.​edu.​cn
http://​cpc2.​gao-​lab.​org/

Assess protein-coding potential based on 
important features (ORF size, coverage, integ‑
rity); CPC2 improves run speed and accuracy

Coding Potential Predictor (CPPred) [130] http://​www.​rnabi​nding.​com/​CPPred/ Predicts the coding potential of RNA tran‑
script

CPPred-sORF [131] http://​www.​rnabi​nding.​com/​CPPred-​sORF/ Addition of 2 new features from CCPred i.e., 
GCcount, mRNN-11codons and CUG, GUG 
start codons

MicroPeptide Tool (MiPepid) [21] https://​github.​com/​MindAI/​MiPep​id Identifies coding sORFs based on existing 
microproteins subpopulation set

sORF Finder [52] http://​evolv​er.​psc.​riken.​jp/ Identifies sORF with high coding potential 
based on nucleotide composition bias and 
potential functional constraint at the amino 
acid level

smORFunction [132] https://​www.​cuilab.​cn/​smorf​uncti​on/​home Provides function prediction of sORFs/micro‑
proteins

miPFinder [133] https://​github.​com/​DaStr​aub/​miPFi​nder Identifies and evaluates microproteins func‑
tionality using information on size, domain, 
protein interactions and evolutionary origin

PhastCons [134] http://​compg​en.​cshl.​edu/​phast/ Based on conservation scoring and identifica‑
tion of conserved elements

PhyloCSF [135] http://​compb​io.​mit.​edu/​Phylo​CSF Determines a conserved protein-coding 
region based on formal statistical comparison 
of phylogenetic codon models

uPEPperoni [136] http://​upep-​scmb.​biosci.​uq.​edu.​au/ Specifically for 5’UTR sORFs, based on con‑
servation

AnABLAST [34] http://​www.​bioin​focabd.​upo.​es/​ab/ Identifies putative protein-coding regions in 
DNA regardless of ORF length and reading 
frame shifts

Small Peptide Alignment Discovery Applica‑
tion (SPADA)

[137] https://​github.​com/​orion​zhou/​SPADA Homology-based gene prediction pro‑
gramme

Deep Neural Network for coding potential 
prediction (DeepCPP)

[138] https://​github.​com/​yuuuu​zhang/​DeepC​PP Effective on RNA coding potential prediction, 
spefically sORF mRNA prediction

http://cnit.noncode.org/CNIT/
http://rdpwww.life.uiuc.edu/
http://cpc.cbi.pku.edu.cn
http://cpc2.gao-lab.org/
http://www.rnabinding.com/CPPred/
http://www.rnabinding.com/CPPred-sORF/
https://github.com/MindAI/MiPepid
http://evolver.psc.riken.jp/
https://www.cuilab.cn/smorfunction/home
https://github.com/DaStraub/miPFinder
http://compgen.cshl.edu/phast/
http://compbio.mit.edu/PhyloCSF
http://upep-scmb.biosci.uq.edu.au/
http://www.bioinfocabd.upo.es/ab/
https://github.com/orionzhou/SPADA
https://github.com/yuuuuzhang/DeepCPP
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be noted that since microproteins are distinct from nor-
mal-sized proteins in terms of biophysical properties, 
some of these tools may not be optimised for the detec-
tion of sORFs.

Ribosome profiling (RIBO‑Seq)
Although the coding potentials of sORFs can be pre-
dicted via computational tools, this does not provide suf-
ficient evidence that these sORFs were transcribed and 
translated. Particularly, many recently discovered puta-
tive sORFs were not considered de novo protein-coding 
genes due to their low levels of evolutionary conservation 
(e.g., PhyloCSF signals) since these newly found ORFs 
are evolutionarily very young [54]. The lack of evolution-
ary constraint renders these sORFs impossible to iden-
tify without supporting experimental techniques such as 
ribosome profiling (RIBO-seq) [54, 55].

Translatomics, the measurement of cellular transla-
tional activity, provides not only a snapshot of the trans-
lation process, but also on how translation regulates 
proteome composition. Translatomics experiments were 

enabled by ribosome profiling or RIBO-Seq, an NGS-
based tool developed by Ingolia et al. (2009) for measur-
ing ribosome-protected mRNA fragments (Fig.  3) [56]. 
RIBO-Seq has been applied to identify novel sORFs to 
explore the protein-coding potentials of RNAs in various 
models, including mouse embryonic stem cells, budding 
yeast and Drosophila [56–58].

On average, a ribosome can bind and protect 31 nucle-
otides of mRNA during translation, forming a ribosome 
footprint. Isolating and identifying ribosome footprints 
help unveil the translation of polypeptides by systemati-
cally recording the exact positions at which translation 
is halted, after the addition of a chosen protein synthe-
sis inhibitor. Through ribosome footprinting, novel and 
translatable sORFs can be detected and annotated to 
their respective genomic coding regions [59, 60]. Treat-
ment with translation inhibitors such as harringtonine or 
lactimidomycin prior to deep sequencing stalls actively 
translating ribosomes at the sites of translation initiation 
[20, 59]. With RIBO-Seq, not only can the translation 
start sites be identified, but also affinity-based isolation of 

Fig. 3  Ribosome profiling process where ribosome footprints are obtained for deep sequencing. Isolation of ribosome-bound mRNAs is conducted 
through treatment of non-specific nucleases such as RNase I or micrococcal nuclease). Ribosome footprints (showing positioning between start 
and stop codon of gene) are then used for library generation and deep sequencing. Identification of novel small peptides made possible by 
isolation of actively translated regions of the transcript, which is directly mapped back to genomic coding regions
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translating ribosomes is possible, to avoid co-purification 
of other ribonucleoproteins with the ribosomes [61–63]. 
Moreover, conventional RIBO-Seq can be modified into 
Poly-RIBO-Seq (isolation of polysomes), where multiple 
clusters of ribosomes on a transcript are isolated, pro-
viding a more concrete proof of active translation and 
thereby reducing the number of false positives. Aspden 
et al. (2014) utilised Poly-RIBO-Seq and reported identi-
fication of two types of sORF in Drosophila in a genome-
wide assessment of sORF translation, i.e. (i) longer sORFs 
(~ 80 amino acids) with resemblance to canonical pro-
teins and (ii) less conserved shorter sORFs (~ 20 amino 
acids) without functional characterisation from existing 
bioinformatic pipelines [44].

The most widely used information from ribosome 
footprints is the 3-nucleotide periodicity, where the 
codon-wise ribosome movement enables detection of 
frameshift events and overlapping ORF translations [64, 
65]. Besides, the rate of synthesis for a particular peptide 
could be deduced based on the density of protected frag-
ments obtained. The empirical measurement of protein 
identity is possible by determining the position of the 
said footprints [60]. A key advantage of applying RIBO-
Seq in the identification of microproteins is the ability to 
identify sORFs with both AUG and non-AUG initiation 
codons [22]. Several studies have discovered and con-
firmed that half of translated sORFs are initiated with a 
non-AUG codon [23, 24].

Nevertheless, RIBO-Seq must be seen in the light of 
some limitations. These include experimentally induced 
distortions due to the need for rapid inhibition of ribo-
somes to reflect a particular physiological state, thus 
leading to possible inaccuracies in data collection [59]. 
Inferring protein synthesis rates from RIBO-Seq builds 
on the assumption that all ribosomes complete the 
translation process. However, it would be inaccurate to 
assume so, since regulated translation pausing and abor-
tion can occur in different physiological conditions, such 
as starvation [66]. Besides, the transcript capture process 
by ribosomes can be non-specific and transient whereby 
no functional polypeptides are produced [67, 68]. The 
ability of RIBO-Seq to identify protein-coding capacity 
is limited, as a seminal paper from Guttman et al. raised 
the idea that ribosome occupancy alone is not a reliable 
indicator of classifying a transcript as coding or non-
coding. Possible explanations include protection of RNA 
molecule by non-ribosomal RNA–protein complexes, 
or some of the observed fragments were not from 80S 
ribosomal footprints [69]. On top of that, some micro-
proteins derived from overlapping ORFs or alternatively 
spliced transcripts may also avoid detection by RIBO-Seq 
[70]. Consequently, RIBO-Seq, as useful as it is in provid-
ing information on the translation of sORF-containing 

transcripts, requires another complementary method 
for further confirming the completed products of sORF 
translation.

Mass spectrometry‑based approaches
RIBO-Seq alone does not provide sufficient evidence for 
the expression of sORF at the protein level although it 
does demonstrate the translatability of a selected sORF 
[32, 44, 71–74]. Whereas MS-based proteomics remains 
indispensable in proteomics for sequencing and quan-
tifying proteins and peptides. Thus, MS strategy can be 
incorporated in sORF research because such procedure 
directly analyses the pool of microproteins. Notwith-
standing, MS-based profiling of the microproteome 
requires prior optimisation and modification mainly due 
to the low abundance and small sizes of microproteins. 
Notably, a key procedure is to reduce sample complex-
ity using pre-fractionation/enrichment approaches, as 
shown in Fig. 4.

Size exclusion approaches have been widely employed 
in peptidomics studies to filter for low-molecular-weight 
peptides from total lysate [75, 76]. For instance, molecu-
lar weight cut off (MWCO) filters are commonly used to 
retain high molecular weight proteins on the filter, result-
ing in the enrichment of microproteins in the filtrate. 
However, Ma et  al. (2016) had reported that alternative 
enrichment procedures such as acid precipitation and 
C8 reverse phase solid phase extraction (SPE) cartridges 
could result in higher enrichment of microproteins, and 
therefore a combination of both enrichment procedures 
was recommended to maximize the recovery of micro-
proteins [75]. Another pre-fractionation measure is 
electrostatic repulsion-hydrophilic interaction chroma-
tography (ERLIC), that allows charge-driven, orthogonal 
fractionation of peptides prior to LC–MS/MS [70]. In 
addition to ERLIC, pre-fractionation with high resolu-
tion isoelectric focusing (Hi-RIEF) has also been shown 
to improve the detectability of microproteins by MS in a 
highly reproducible manner [77].

To assign peptide sequences with high confidence, 
high quality MS/MS spectra are crucial, with two main 
aspects to consider i.e., high sequence coverage and low 
background noise. To obtain high sequence coverage, Ma 
et  al. (2016) compared MS/MS of microprotein-derived 
peptides between Collision Induced Dissociation (CID) 
and High-energy Collisional Dissociation (HCD) on 
Fusion Tribrid MS and Q-Exactive MS [75]. They found 
that the latter yielded improvements in peptide sequence 
coverage and lower background noise [75]. Apart from 
the direct identification and quantification of trans-
lated microproteins, MS-based approaches help deci-
pher post-translational modifications (PTMs), such as 
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phosphorylation of microproteins to infer insights in bio-
logical functions and signalling pathways [78–80].

Nonetheless, there are several challenges associated 
with MS-based microproteomics. First, the small size of 
microproteins render them under-detected by MS due 
to the low number of tryptic peptides generated [70]. 
Besides, smaller peptides tend to contain fewer arginine 
and lysine residues, resulting in non-cleavage or reduced 
tryptic cleavages. A solution is to replace or to combine 

trypsin with other proteolytic enzymes, such as Glu-C, 
Lys-C, Lys-N, Asp-N, Arg-C and chymotrypsin [81–83]. 
Not to mention, sequential digestion incorporating pro-
teases with complementary cleavage specificities is ben-
eficial for enhancing microprotein identification [84, 85]. 
Still, microproteins usually lack stable secondary struc-
tures, leading to rapid degradation during extraction [86].

Data-dependent acquisition (DDA), the most widely-
adopted MS acquisition methods in microproteomics, 

Fig. 4  Mass-spectrometry based approaches to isolate microproteins. Sample preparation prior to LC–MS/MS analysis to isolate microprotein 
species < 30 kDa in size includes size exclusion approaches. Molecular weight cut off filters (MWCOs) can sieve for microproteins depending on the 
type of filter used i.e., 10 kDa or 30 kDa. Acid precipitation is a common enrichment step for to precipitate larger proteins. Solid phase extraction 
(SPE) enrichment occurs via reverse-phase C8 cartridges and elutes microproteins of interest. Further methods in reducing sample complexities 
include electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and high-resolution isoelectric focusing (Hi-RIEF). ERLIC separates 
based on charged analytes and utilises SAX resin for strong anion exchange, whereas Hi-RIEF seperates peptides based on their isoelectric points 
(pI) on a pH gradient gel. Post-fractionation accuracy is dependent on high sequence coverage and low background noise in mass spectra. This can 
be achieved with using High-energy Collision Induced Dissociation (HCD) on Fusion Tribrid MS or Q-Exactive MS
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is prone to under-sampling as MS is limited by sam-
ple complexity and sequencing speed [51, 87, 88]. Fur-
thermore, DDA-based detection of microproteins is 
“amplification-free” and thus limited by the sensitivity 
and dynamic range of the MS [89]. This leads to a long-
standing preferential detection of higher abundance 
proteins and proteins containing peptides with higher 
ionisation efficiencies. Conventional bottom-up/shot-
gun proteomics using DDA is biased towards the detec-
tion of proteins with > 10  kDa, which represents more 
than 90% of the annotated proteome [89]. In addition to 
this, conventional MS studies using DDA report statisti-
cally significant under-representation of experimentally 
identified small proteins without the inclusion of enrich-
ment procedures for microproteins [89]. The challenge 
with bottom-up proteomics for microprotein detection 
lies in several aspects, i.e., (i) during experimental sam-
ple preparation, where the lack of necessary cleavage 
sites in microproteins restricts its digestion; (ii) the need 
for alternative proteases, due to lack of generating MS-
detectable peptides; (iii) under-representation of sORFs 
in conventional databases, where most gene algorithms 
apply a length restriction threshold to avoid annotating 
spurious sORFs; and (iv) in orthodox peptide spectrum 
matching (PSM) requiring detected microproteins to be 
matched against two unique peptides for higher confi-
dence in protein identification, whereby microproteins 
are often only identified by only a single peptide owing 
to their small sizes [6, 90–93]. This results in an elevated 
false discovery rate (FDR) in protein identification [92, 
93]. Hence, conventional MS should be modified to 
allow for a more reliable and efficient discovery of small 
proteins.

In lieu of DDA-based MS detection, targeted prot-
eomics is a promising candidate for a higher confidence 
identification of microproteins. Selected reaction moni-
toring (SRM) and data-independent acquisition (DIA) 
can be used to monitor changes in microprotein expres-
sion across different biological samples [87]. In particular, 
DIA is able to validate, quantify and provide a more com-
plete picture of the microprotein expression as compared 
to DDA [94, 95]. However, these approaches require spe-
cific a priori knowledge of known targets and thus are 
not suitable for microprotein discovery.

The sequence of a microprotein may closely resem-
ble or overlap with that of motifs derived from larger 
proteins. In the context of MS-based microprotein 
discovery, this overlap in the form of shared peptides 
presents an impediment in protein inference when dif-
ferentiating between a microprotein and other homolo-
gous sequences. In another aspect, microproteins tend 
to score low in conservation due to their short lengths, 
which in turn, leads to a high rate of false positives in 

computational methods [17, 19]. This misalignment of 
information may also be present in reference protein 
databases. Consequently, these limitations in MS meth-
ods call for an integrated strategy i.e., the proteogenom-
ics approach.

Proteogenomics approach
Proteogenomics is a comprehensive approach where MS 
data is coupled to genomic, transcriptomic or transla-
tomic data from the same source, providing an alterna-
tive for further validation of low-abundant microproteins 
[96, 97]. Recent developments in both proteomic and 
deep sequencing have rapidly established proteogenom-
ics as a reliable technique for studying unexplored or 
partially sequenced genomes [98–100]. As microproteins 
fulfil both the criteria of being low-abundant and a rela-
tively new and uncharacterised class of proteins, applying 
proteogenomics techniques is a reasonable and coherent 
measure.

This approach involves generating a customised pro-
tein sequence database from genomic and transcriptomic 
sequences to be matched against MS spectra. By compil-
ing predicted, novel peptide sequences and their variants, 
proteogenomics also refines protein sequence databases. 
Several proteogenomic studies had mapped MS spec-
tra to RNA-seq data for detecting unannotated sORFs 
[76, 101, 102]. However, this strategy often suffers from 
reduced sensitivity and reliability because of the inflated 
search space. This is because a bloated protein database 
that is in silico translated from RNA-Seq data also comes 
with increased false positive peptide-spectral matches 
[70]. Proposed measures to remedy this problem includes 
incorporating (i) protein fractionation, (ii) in silico filters 
and (iii) RIBO-Seq data instead of RNA-Seq data, so that 
higher sORF-specificity and selectivity can be achieved 
[103, 104].

Microprotein databases
Until now, the number of sORFs and microproteins 
which they encode have been accumulating. In Table  2, 
we compiled several publicly available repositories spe-
cialized for sORFs. Incorporating a computational pipe-
line to corroborate with experimental data obtained 
would boost the credibility when characterising anno-
tated and unannotated small peptides. A substantial 
number of studies have integrated this combinatorial 
approach in identify microproteins, proving its advantage 
when addressing the technical issues on validating coding 
sORFs [51, 71, 73, 102, 105, 106].

A few of the databases mentioned in Table 2 are spe-
cifically tailored for storing sORF information, such 
as sORFs.org, SmProt, ARA-PEPs, PsORF and Meta-
mORF. However, between these databases, PsORF and 
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ARA-PEPs are resources specially for plants, with the 
latter storing sORF data exclusively for Arabidopsis thali-
ana [107, 108]. For databases with higher coverage over 
sORFs datasets in multiple organisms, sORFs.org and 
SmProt are more suitable since they store sORF data 
over a range of organisms, such as human, mouse, rat, 
zebrafish, nematode and fruit fly [14, 109]. In addition 
to that, SmProt also saves sORF data from bacteria and 
yeast [109]. For detailed query, sORFs.org incorporates 
a Biomart function, where one can tailor the search for 
microproteins by customising their queries according to 
species, chromosome number, start codons and sORFs 
attributes [14]. On the other hand, MetamORF is more 
limited in the sense that it only contains sORF data from 
Homo sapiens and Mus musculus, but its data has been 
experimentally and computationally verified, where one 
can browse the database according to gene locus, ORF, 
and transcript [110]. For OpenProt, since it is a large 
database, sORFs are stored under the heading of altORFs, 
where there is annotation of sORFs within ncRNA and 
pseudogene transcripts, hence some data downloaded 
from OpenProt in FASTA files may contain sequences 
longer than 100 codons [111, 112]. Finally, nORFs.org 
compiled data from sORFs.org and OpenProt, whilst also 
incorporating genomic information from OpenCB. This 

allows for nORFs.org to complement information from 
both databases and incorporate OpenCB variants in its 
database [113]. Choosing which database to use when 
annotating experimental microproteins is highly depend-
ent on the sample used, as well as the variety of informa-
tion and query method that is provided by each database.

Validation of microproteins and their biological 
functions
Whilst the aforementioned methods are efficient at 
detecting microproteins, a validation step is required to 
elucidate the exact biological functions of these iden-
tified microproteins. However, since it is unnecessar-
ily complicated to validate all possible microproteins, a 
rational step is to narrow down these sORF candidates 
into a simplified list [96]. One strategy is to analyse dif-
ferential expression data of the transcripts or proteins. 
As an example, Cao et al. (2020) investigated 16 poten-
tial microproteins from leukaemia cell lines K562 and 
MOLT4; and found that 4 out of 16 of these micropro-
teins were differentially expressed, demonstrating their 
potential roles in leukaemia [24]. Another approach is 
to focus on specific genomic regions which are likely 
to possess high coding potentials, and thus capable of 
coding for microproteins of interest. As demonstrated 

Table 2  Online repositories tailored for sORF identification

This table shows the databases available publicly for sORF identification. sORFs.org and OpenProt evaluate protein sequence identity based on BLASTp score, whereas 
SmProt provides a BLAST alignment search for manual evaluation of protein sequence identity. OpenProt annotates sORFs but under the label of altORFs that are 
longer than 30 codons and originating from ncRNAs, pseudogenes or has multiple ORFs per transcript, hence the limits set during search identification should be 
noted. ARA-PEPs were developed specifically from A. thaliana sORF experimental data, and PsORF aimed to store a more complete record of plant sORF. A large bulk 
of both MetamORF and nORFs.org data was obtained from sORFs.org and OpenProt. nORFs.org provides additional protein sequence viewer, OpenCB variants and 
customises annotation metrics functions

Database References Website Type Description

sORFs.org [14] http://​www.​sorfs.​org sORF repository Obtains experimental data from RIBO-seq with 
conservation analyses and rescanning MS data 
from PRIDE for updated small peptide validation

SmProt [109] http://​bioin​fo.​ibp.​ac.​cn/​SmProt/ sORF repository Database on small proteins specifically from 
lncRNA, obtains data from RIBO-seq, literature 
mining and MS data, integrates conservation 
analyses

OpenProt [111, 112] https://​www.​openp​rot.​org/ altORF resource Contains information on protein isoforms and 
altORFs with experimental evidence, intergrates 
RIBO-seq, MS, conservation analyses and func‑
tional domains

ARA-PEPs [108] http://​www.​biw.​kuleu​ven.​be/​CSB/​ARA-​PEPs sORF repository Repository of putative sORF-encoded peptides 
specifically in Arabidopsis thaliana, data 
obtained from in-house Tiling arrays and RNA-
seq data

PsORF [107] http://​psorf.​whu.​edu.​cn/ sORF repository Database of sORF across different plant species, 
incorporating genomic, transcriptomic, RIBO-
Seq and MS data

MetamORF [110] http://​metam​orf.​hb.​univ-​amu.​fr/ sORF repository A repository of unique sORFs in H. sapiens and 
M. musculus genomes by experimental and 
computational methods

nORFs.org [113] https://​norfs.​org/ novel ORF (nORF) repository Provides aggregated information from data‑
bases such as sORFs.org, OpenProt and OpenCB

http://www.sorfs.org
http://bioinfo.ibp.ac.cn/SmProt/
https://www.openprot.org/
http://www.biw.kuleuven.be/CSB/ARA-PEPs
http://psorf.whu.edu.cn/
http://metamorf.hb.univ-amu.fr/
https://norfs.org/
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by Lee, Kim and Cohen (2016) and H. Lu et al. (2019), 
a study was conducted on a selected mtDNA genomic 
region which encodes MOTS-c, a microprotein which 
plays a role in muscle and fat metabolism [37, 114].

To explore the biological roles of microproteins, one 
must first understand their modes of actions. Micro-
proteins exert their cellular functions either by forming 
a complex with larger canonical proteins, or by acting 
autonomously [10, 96]. Slavoff et  al. (2013) proposed 
that microproteins need to exist at biologically relevant 
concentrations to exert their physiological function 
[23]. Thus, by logic, genome-wide CRISPR/Cas9-based 
screens would be advantageous in detecting the extent 
to which these microproteins have an influence on the 
phenotype [45, 73, 115–118]. For direct observation 
of the targeted microprotein, loss-of-function (e.g., 
knockdown, knockout) or gain-of-function (e.g., over-
expression or activation) assays can be performed and 
the function of the microprotein can be deduced based 
on the resulting phenotype. The scale of how altered 
the phenotype is from the wildtype can infer insights 
on how influential the microprotein is in that process, 
and at which concentrations they produce significant 
effects.

To elaborate, Stein et al. (2018) validated the function 
of a 56-amino-acid microprotein mitoregulin (Mtln) 
in supporting mitochondrial super-complexes and res-
piratory efficiency [116]. They reported disturbances in 
mitochondrial respiratory super-complex formation, 
reduced fatty acid oxidation, TCA cycle enzymes and 
calcium ion retention capacity in Mtln-knockout mice 
models, whereas Mtln overexpression in HeLa cells led 
to increased mitochondrial respiratory and calcium ion 
buffering capacities, whilst decreasing generation of reac-
tive oxygen species [116]. Another study came from in-
vivo work by Matsumoto, Clohessy and Pandolfi (2017) 
[115]. They uncovered a novel microprotein SPAR that 
played a role in regulation of mTORC1 recruitment that 
resulted in reduced muscle regeneration, through Spar-
deficient mice models [115]. In addition, Lu et al. (2019) 
reported functional characterisation of lncRNA-encoded 
microprotein UBAP1-AST6 in A549 lung cancer cell 
line by overexpression and knockout models, where the 
prior significantly promoted cell proliferation and clono-
genic property [102]. Nonetheless, since microproteins 
may reside in lncRNA instead of mRNA, this presents an 
obstacle when applying CRISPR/Cas9 editing, as CRISPR 
targeting disrupts the expression of both lncRNA and 
mRNA, impeding clear interpretation of genome edit-
ing data. One solution would be to selectively block the 
expression of microprotein by mutating or knocking in 
the start codon, while allowing lncRNA expression at the 
same time [86, 118].

On the contrary, another application for CRISPR/
Cas9 is to knock-in an epitope sequence into the native 
sORF sequence so that the expression and localiza-
tion of said sORF sequence can be monitored by corre-
sponding antibodies that bind to the epitope tags. [96]. 
Choices of epitopes include FLAG, APEX or fluorescent 
proteins and split-fluorescent proteins, among many oth-
ers, depending on which characteristic of the micropro-
tein that is being scrutinised [24, 45, 119–121]. Apart 
from assessing the expression levels of tagged proteins, 
antibody capture of epitope tags can be applied to har-
vest bona-fide prey proteins that interact in a specific 
manner with the epitope-tagged baits. This form of pro-
tein–protein interaction (PPI) assay is named co-immu-
noprecipitation (coIP) or affinity purification (AP) [120]. 
CoIP can be applied to functionally validate micropro-
teins, based on the understanding that like most proteins, 
microproteins exert their functions via the formation of 
microprotein-protein assemblies. Thus, by co-purifying 
and identifying bona-fide protein binding partners, the 
functions of these microproteins can subsequently be 
elucidated based on the functions or the pathways of the 
co-purified partners, akin to guilt-by-association. The 
working principles and the different MS-based strate-
gies for elucidating PPIs have recently been reviewed 
in detail by Low et al. so it will not be discussed further 
here [122]. In the context of microproteins, Rodrigues 
et al. (2018) performed coIP with FLAG-GFP transgenic 
plants and confirmed microprotein miP1a is a part of a 
DNA binding complex in FT promoter, regulating the 
floral transition in Arabidopsis [123]. In another study, 
the interaction between HA-tagged micropeptide myor-
egulin (MLN) and membrane pumps SERCA1, SERCA2a 
and SERCA2b on sarcoplasmic reticulum (SR) was visu-
alised through coIP of its stable complex, thus proving 
MLN’s role in regulating muscle performance by imped-
ing uptake of calcium ions into the SR [45]. Furthermore, 
the cytoprotective property of mitochondrial-derived 
peptide humanin (HN) was demonstrated through coIP 
of HN-GFP with pro-apoptotic protein BimEL, lead-
ing to the conclusion that HN has the capacity to inhibit 
BimEL-induced activation of Bak and thus inhibiting 
apoptosis [124]. These studies show the usefulness of 
coIP in validating microprotein functions, based on the 
logic of guilt-by-association.

Conclusions
In the last two decades, sORFs and microproteins rep-
resent an expanding landscape, with multiple tech-
nological innovations advancing the speed of their 
discovery and annotations. Exploration of this part of 
the genome that was disregarded have yielded results 
in terms of sORF transcription and microprotein 
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functionality. The current measures in identification 
and validation were successful in unveiling the micro-
proteome, yet progress must be made to address the 
caveats of these techniques. Functional characterisa-
tion of existing microproteins remains to be improved, 
and the investigation for small peptides in new sam-
ple types. There has been some exploration into the 
potential of microproteins as therapeutic targets. For 
instance, Ontak (denileukin) was developed as toxins, 
targeted for tumour-specific microproteins in the treat-
ment for T cell lymphoma [125]. However, through 
exhaustive literature mining, it appears that this field 
is not yet extensively studied, thus providing a lead on 
where future research could perhaps focus on. Previ-
ously neglected in the genome, further progress in this 
field would shed light on sORF and microproteins, with 
the opportunity to raise new knowledge on a hidden 
sub-proteome and its role in biological function.
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