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Abstract

Long non-coding RNAs (IncRNAs) have gained increasing attention as they exhibit highly tissue- and cell-type
specific expression patterns. LncRNAs are highly expressed in the central nervous system and their roles in the brain
have been studied intensively in recent years, but their roles in the spinal motor neurons (MNs) are largely
unexplored. Spinal MN development is controlled by precise expression of a gene regulatory network mediated
spatiotemporally by transcription factors, representing an elegant paradigm for deciphering the roles of INCRNAs
during development. Moreover, many MN-related neurodegenerative diseases, such as amyotrophic lateral sclerosis
(ALS) and spinal muscular atrophy (SMA), are associated with RNA metabolism, yet the link between MN-related
diseases and IncRNAs remains obscure. In this review, we summarize IncRNAs known to be involved in MN
development and disease, and discuss their potential future therapeutic applications.

Keywords: Long non-coding RNA, Motor neuron, Spinal muscular atrophy, Amyotrophic lateral sclerosis

Introduction

Next-generation RNA sequencing technology has revealed
thousands of novel transcripts that possess no potential
protein-coding elements. These RNAs are typically anno-
tated as non-coding RNAs (ncRNAs) in the Human Gen-
ome Project and ENCODE Project [31, 59, 147]. Although
most of the human genome is transcribed at certain stages
during embryonic development, growth, or disease progres-
sion, ncRNAs were classically considered transcriptional
noise or junk RNA due to their low expression levels relative
to canonical mRNAs that generate proteins [19, 60]. How-
ever, emerging and accumulating biochemical and genetic
evidences have gradually revealed their important regulatory
roles in development and disease contexts [11, 109]. In
principle, regulatory ncRNAs can be further divided into
two groups depending on their lengths. Small RNAs are de-
fined as being shorter than 200 nucleotides (nt), which in-
clude well-known small RNAs such as microRNA (miRNA,
22-25 nt), Piwi interacting RNA (piRNA, 21-35 nt), small
nucleolar RNA (snoRNA, 60-170 nt), and transfer RNA
(tRNA, 70-100 nt). NcRNAs longer than 200 nt are termed
as long non-coding RNAs (IncRNAs) that comprise about
10~30% of transcripts in both human (GENCODE 32) and
mouse (GENCODE M23) genomes, suggesting that they
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may play largely unexplored roles in mammal physiology.
LncRNAs can be classified further according to their gen-
omic location. They can be transcribed from introns (in-
tronic IncRNA), coding exons, 3' or 5' untranslated regions
(3" or 5" UTRs), or even in an antisense direction overlap-
ping with their own transcripts (natural antisense transcript,
NAT) [64, 130]. In regulatory regions, upstream of pro-
moters (promoter upstream transcript, PROMPT) [106], en-
hancers (eRNA) [76], intergenic regions (lincRNA) [114]
and telomeres [81] can be other sources of IncRNAs. Many
hallmarks of IncRNA processing are similar to those of
mRNAs in post-transcription, such as nascent IncRNAs be-
ing 5'-capped, 3'-polyadenylated or alternatively spliced [19].
LncRNA production is less efficient than for mRNAs and
their half-lives appear to be shorter [98]. Unlike mRNA that
is directly transported to the cytoplasm for translation, many
IncRNAs tend to be located in the nucleus rather than in
the cytosol, as revealed by experimental approaches such as
fluorescent in situ hybridization [20, 67]. However, upon ex-
port to cytoplasm, some IncRNAs bind to ribosomes where
they can be translated into functional peptides under spe-
cific cell contexts [20, 58]. For instance, myoregulin is
encoded by a putative IncRNA and binds to sarco/endoplas-
mic reticulum Ca**-ATPase (SRCA) to regulate Ca®* import
in the sarcoplasmic reticulum [6]. Nevertheless, it remains
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to be established if other ribosome-associated IncRNAs gen-
erate functional peptides.

General function of IncRNAs

A broad spectrum of evidence demonstrates the multifaceted
roles of IncRNAs in regulating cellular processes. In the nu-
cleus, IncRNAs participate in nearly all levels of gene regula-
tion, from maintaining nuclear architecture to transcription
per se. To establish nuclear architecture, Functional inter-
genic repeating RNA element (Firre) escapes from the X
chromosome inactivation (XCI) and bridges multi-
chromosomes, partly via association with heterogeneous
nuclear ribonucleoprotein U (hnRNPU) (Figure 1a) [54].
CCCTC-binding factor (CTCF)-mediated chromosome
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looping can also be accomplished by IncRNAs. For ex-
ample, colorectal cancer associated transcript 1 long iso-
form (CCATI-L) facilitates promoter-enhancer looping at
the MYC locus by interacting with CTCF, leading to stabi-
lized MYC expression and tumorigenesis (Figure 1b)
[153]. In addition, CTCF binds to many X chromosome-
derived IncRNAs such as X-inactivation intergenic tran-
scription element (Xite), X-inactive specific transcript (Xist)
and the reverse transcript of Xist (Tsix) to establish three-
dimensional organization of the X chromosome during
XCI [69]. In addition to maintaining nuclear architecture,
IncRNAs may also serve as building blocks of nuclear
compartments. For example, nuclear enriched abundant
transcript 1 (NEATI) is the core element of paraspeckles
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Fig. 1 Summary (with examples) of the multifaceted roles of INcRNAs in the cell. a The X chromosome-derived IncRNA Firre associates with
HNRNPU to establish inter-chromosome architecture. b CCATI-L generated from upstream of MYC loci promotes MYC expression via CTCF-
mediated looping. ¢ Paraspeckle formation is regulated by interactions between NEATT_2 and RBPs. d X chromosome inactivation is
accomplished by coordination between Xist-PRC2-mediated deposition of H3K27me3 and Xist-SMRT/SHARP/HDAC-mediated deacetylation of
H3ac. e Facilitation of RNA splicing by Pnky/PTBP1 and Malat1/RBPs complexes. f BACET-AS associates with BACET mRNA via the open reading
frame to stabilize BACET mRNA. g H19 IncRNA sequesters fet-7 miRNA to prevent Jet-7-mediated gene suppression. h Antisense Uchl1 promotes
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that participate in various biological processes such as nu-
clear retention of adenosine-to-inosine-edited mRNAs to re-
strict their cytoplasmic localization and viral infection
response. However, the exact function of paraspeckles has
yet to be fully deciphered (Figure 1c) [26, 30, 57]. LncRNAs
can also function as a scaffolding component, bridging epi-
genetic modifiers to coordinate gene expression (e.g. activa-
tion or repression). For instance, Xist interacts with
polycomb repressive complex 2 (PRC2) and the silencing
mediator for retinoid and thyroid hormone receptor
(SMRT)/histone deacetylase 1 (HDAC1)-associated repressor
protein (SHARP) to deposit a methyl group on lysine residue
27 of histone H3 (H3K27) and to deacetylate histones, re-
spectively, leading to transcriptional repression of the X
chromosome (Figure 1d) [87]. Similarly, Hox antisense inter-
genic RNA (Hotair) bridges the PRC2 complex and lysine-
specific histone demethylase 1A (LSD1, a H3K4me2
demethylase) to synergistically suppress gene expression
[118, 140]. In contrast, HOXA transcript at the distal tip
(HOTTIP) interacts with the tryptophan-aspartic acid repeat
domain 5 - mixed-lineage leukemia 1 (WDR5-MLL1) com-
plex to maintain the active state of the 5' HOXA locus via de-
position of histone 3 lysine 4 tri-methylation (H3K4me3)
[149]. LncRNAs also regulate the splicing process by associ-
ating with splicing complexes. A neural-specific IncRNA,
Pnky, associates with the splicing regulator polypyrimidine
tract-binding protein 1 (PTBP1) to regulate splicing of a sub-
set of neural genes [112]. Moreover, interaction between Me-
tastasis-associated lung adenocarcinoma  transcript 1
(Malatl) and splicing factors such as serine/arginine rich
splicing factor 1 (SRSF1) is required for alternative splicing
of certain mRNAs (Figure 1e) [139].

Apart from nucleus, IncRNAs in the cytoplasm are
typically involved in mRNA biogenesis. For example, in Alz-
heimer’s disease (AD), f-secretase-1 antisense RNA (BACEI-
AS) derived within an important AD-associated enzyme,
BACEI, elevates BACE1 protein levels by stabilizing its
mRNA through a post-translational feed-forward loop [44].
Mechanistically, BACEI-AS masks the miRNA-485-5p bind-
ing site at the open reading frame of BACEI mRNA to main-
tain BACEI mRNA stability (Figure 1f) [45]. H19, a known
imprinting gene expressed as a IncRNA from the maternal
allele, promotes myogenesis by sequestering lethal-7 (let-7)
miRNAs that, in turn, prevents let-7-mediated gene repres-
sion (Figure 1g) [62]. LncRNAs not only regulate transcrip-
tion but also affect translation. Human /lincRNA-p21
(Trp53corl) disrupts translation of CTNNBI and JUNB via
base-pairing at multiple sites of the 5" and 3' UTR and coding
regions, resulting in recruitment of the translational repres-
sors RCK and fragile X mental retardation protein (FMRP)
to suppress translation (Figure 1h, right) [158]. In contrast,
an antisense RNA generated from ubiquitin carboxyterminal
hydrolase L1 (AS Uchll) promotes translational expression
of Uchll protein via its embedded short interspersed nuclear
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elements B2 (SINEB2). In the same study, inhibition of
mammalian target of rapamycin complex 1 (mTORC1) was
shown to trigger cytoplasmic localization of AS Uchll and to
increase the association between polysomes and Uchil
mRNA in a eukaryotic translation initiation factor 4F (eIF4F)
complex independently of translation (Figure 1h, left) [21].
Finally, compared to mRNAs, IncRNAs seem to manifest a
more tissue-specific manner [19]. In agreement with this
concept, genome-wide studies have revealed that large num-
bers of tissue-specific IncRNAs are enriched in brain regions
and some of them are involved in neurogenesis [7, 15, 37,
89]. We discuss some of these IncRNAs in greater detail
below, with a particular focus on their roles during spinal
MN development as this latter serves as one of the best para-
digms for studying the development and degeneration of the
central nervous system (CNS).

Role of IncRNAs in regulating neural progenitors

As part of the CNS, spinal MNs are located in the ven-
tral horn of the spinal cord that conveys signals from
the brainstem or sensory inputs to the terminal muscles,
thereby controlling body movements. MN development
requires precise spatiotemporal expression of extrinsic
and intrinsic factors. Upon neurulation, the wingless/in-
tegrated protein family (WNT) and the bone morpho-
genetic protein family (BMP) are secreted from the roof
plate of the developing neural tube to generate a dorsal
to ventral gradient [4, 88]. In contrast, sonic hedgehog
(Shh) proteins emanating from the floor plate as well as
the notochord generate an opposing ventral to dorsal
gradient [16]. Together with paraxial mesoderm-
expressed retinoic acid (RA), these factors precisely pat-
tern the neural tube into spinal cord progenitor domains
pd1~6, p0, p1, p2, motor neuron progenitor (pMN), and
p3 along the dorso-ventral axis (Figure 2a). This pattern-
ing is mediated by distinct expression of cross-repressive
transcription factors—specifically, Shh-induced class II
transcription factors (Nkx2.2, Nkx2.9, Nkx6.1, Nkx6.2,
Olig2) or Shh-inhibited class I transcription factors
(Pax3, Pax6, Pax7, Irx3, Dbxl, Dbx2)—that further de-
fine the formation of each progenitor domain [104, 143].
All spinal MNs are generated from pMNs, and pMNs
are established upon co-expression of Olig2, Nkx6.1 and
Nkx6.2 under conditions of high Shh levels [2, 105, 132,
162]. Although a series of miRNAs have been shown to
facilitate patterning of the neuronal progenitors in the
spinal cord and controlling of MN differentiation [24,
25, 27, 74, 141, 142], the roles of IncRNAs during MN
development are just beginning to emerge. In Table 1,
we summarize the importance of IncRNAs for the regu-
lation of transcription factors in MN contexts. For in-
stance, the IncRNA Incrps25 is located near the S25
gene (which encodes a ribosomal protein) and it shares
high sequence similarity with the 3' UTR of neuronal
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Fig. 2 Schematic illustration of spinal motor neuron development. a Notochord- and floor plate-derived sonic hedgehog protein (Shh), and roof
plate-generated wingless/integrated (WNT) protein and bone morphogenetic (BMP) protein, as well as retinoic acid (RA) diffusing from the
paraxial mesoderm, pattern the identities of spinal neurons by inducing cross-repressive transcription factors along the dorso-ventral axis (pd1~6,
pO, p1, p2, pMN, and p3). Motor neuron progenitors (pMNs) are generated by co-expression of Olig2, Nkx6.1 and Nkx6.2. After cell cycle exit,
pMNs give rise to generic MNs by concomitantly expressing Isl1, Lhx3 and Mnx1. Along the rostro-caudal axis, Hox6/Hoxc9/Hox 10 respond to RA
and fibroblast growth factor (FGF) to pattern the brachial, thoracic and lumbar segments, respectively. b In the Hox6°" segment, the interaction
between PRC2-Jarid2 complex and a IsI1/Lhx3 induced IncRNA Meg3 perpetuates the brachial Hoxa5°" MN by repressing caudal Hoxc8 and
alternative progenitor genes Irx3 and Pax6 via the maintenance of H3K27me3 epigenetic landscape in these genes. Yet the detailed mechanism

how Meg3 targets to these selective genes still needs to be illustrated.

regeneration-related protein (NREP) in zebrafish. Loss of
Incrps25 reduces locomotion behavior by regulating
pMN development and Olig2 expression [48]. Addition-
ally, depletion of an MN-enriched IncRNA, i.e. Mater-
nally expressed gene 3 (Meg3), results in upregulation of
progenitor genes (i.e., Pax6 and DbxI) in embryonic
stem cell (ESC)-derived post-mitotic MNs, as well as in
post-mitotic neurons in embryos. Mechanistically, Meg3
associates with the PRC2 complex to facilitate the main-
tenance of H3K27me3 levels in many progenitor loci, in-
cluding Pax6 and Dbx1 (Figure 2b) [156]. Apart from
IncRNA-mediated regulation of Pax6 in the spinal cord,
corticogenesis in primates also seems to rely on the
Pax6/IncRNA axis [113, 145]. In this scenario, primate-
specific [ncRNA neuro-development (Lnc-ND) located in
the 2p25.3 locus [131] exhibits an enriched expression
pattern in neuronal progenitor cells but reduced expres-
sion in the differentiated neurons. Microdeletion of the
2p25.3 locus is associated with intellectual disability.
Manipulations of Lnc-ND levels reveals that Luc-ND is

required for Pax6 expression and that overexpression of
Lnc-ND by means of in utero electroporation in mouse
brain promotes expansion of the Pax6-positive radial glia
population [113]. Moreover, expression of the Neuro-
genin 1 (Ngnl) upstream enhancer-derived eRNA,
utNgnl, is necessary for expression of Ngnl itself in neo-
cortical neural precursor cells and it is suppressed by
PcG protein at the ESC stage [108]. Thus, IncRNAs
seem to mediate a battery of transcription factors that
are important for early neural progenitor patterning and
this role might be conserved across vertebrates.

LncRNAs in the regulation of postmitotic neurons

In addition to their prominent functions in neural pro-
genitors, IncRNAs also play important roles in differenti-
ated neurons. Taking spinal MNs as an example,
postmitotic MNs are generated from pMNs, and after
cell cycle exit they begin to express a cohort of MN-
specific markers such as Insulin gene enhancer protein 1
(Isl1), LIM/homeobox protein 3 (Lhx3), and Motor

Table 1 Proposed functions of IncRNAs during spinal motor neuron development

LncRNA Proposed function Organism/cell models Reference

Lncrps25 Affects Olig2 expression Zebrafish [48]

CAT7/cat7l Recruitment of PRC1 and PRC2 complexes to suppress Zebrafish/hESC~MNs [115]
MNXT1 expression in progenitor MNs

Meg3 Association with PRC2 complex to repress MN progenitor Mouse/mESC~MNs [156]

and caudal Hox genes in cervical MNs
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neuron and pancreas homeobox 1 (Mnx1, Hb9) (Figure
2a). Isl1/Lhx3/NLI forms an MN-hexamer complex to
induce a series of MN-specific regulators and to main-
tain the terminal MN state by repressing alternative
interneuron genes [43, 72]. Although the gene regulatory
network for MN differentiation is very well character-
ized, the role of the IncRNAs involved in this process is
surprisingly unclear. Only a few examples of that role
have been uncovered. For instance, the IncRNA CAT7 is
a polyadenylated IncRNA that lies upstream (~400 kb)
of MNX1I identified from the RNA-Polycomb repressive
complex 1 (PRC1) interactome. Loss of CAT7 results in
de-repression of MNXI before committing to neuronal
lineage through reduced PRC1 and PRC2 occupancy at
the MNXI locus in hRESC~MNs [115]. Furthermore, an
antisense IncRNA (MNX1-AS1) shares the same pro-
moter as MNX1, as revealed by clustered regularly inter-
spaced short palindromic repeats (CRISPR) and
CRISPR-associated protein 9 (CRISPR-Cas9) screening
[53]. These results suggest that in addition to neural
progenitors, IncRNAs could have another regulatory role
in fine-tuning neurogenesis upon differentiation. How-
ever, whether the expression and functions of these
IncRNAs are important for MN development in vivo still
needs to be further validated. Future experiments to sys-
tematically identify IncRNAs involved in this process will
greatly enhance our knowledge about IncRNAs and their
mysterious roles in early neurogenesis.

After generic postmitotic MNs have been produced,
they are further programmed into versatile subtype iden-
tities along the rostro-caudal spinal cord according to
discrete expression of signaling molecules, including ret-
inoic acid (RA), WNT, fibroblast growth factor (FGF),
and growth differentiation factor 11 (GDF11), all distrib-
uted asymmetrically along the rostro-caudal axis (Figure
2a). Antagonistic signaling of rostral RA and caudal
FGF/GDF11 further elicits a set of Homeobox (Hox)
proteins that abut each other, namely Hox6, Hox9 and
Hox10 at the brachial, thoracic and lumbar segments,
respectively [12, 77, 129]. These Hox proteins further ac-
tivate downstream transcription factors that are required
to establish MN subtype identity. For instance, forma-
tion of lateral motor column (LMC) MNs in the brachial
and lumbar regions is regulated by Hox-activated Fork-
head box protein P1 (Foxpl) [35, 119]. It is conceivable
that IncRNAs might also participate in this MN subtype
diversification process. For example, the IncRNA
FOXPI-IT1, which is transcribed from an intron of the
human FOXPI gene, counteracts integrin Mac-1-
mediated downregulation of FOXP1 partly by decoying
HDAC4 away from the FOXP1 promoter during macro-
phage differentiation [128]. However, it remains to be
verified if this Foxpl/IncRNA axis is also functionally
important in a spinal cord context. An array of studies
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in various cell models has demonstrated regulation of
Hox genes by IncRNAs such as Hotair, Hottip and Haglr
[118, 149, 160]. However, to date, only one study has
established a link between the roles of IncRNAs in MN
development and Hox regulation. Using an embryonic
stem cell differentiation system, a battery of MN hall-
mark IncRNAs have been identified [14, 156]. Among
these MN-hallmark IncRNAs, knockdown of Meg3 leads
to the dysregulation of Hox genes whereby caudal Hox
gene expression (Hox9~Hox13) is increased but rostral
Hox gene expression (HoxI~ Hox8) declines in cervical
MNs. Analysis of maternally-inherited intergenic differ-
entially methylated region deletion (IG-DMR™*) mice
in which Meg3 and its downstream transcripts are fur-
ther depleted has further revealed ectopic expression of
caudal Hoxc8 in the rostral Hoxa5 region of the brachial
segment, together with a concomitant erosion of Hox-
mediated downstream genes and axon arborization (Fig-
ure 2b) [156]. Given that dozens of IncRNAs have been
identified as hallmarks of postmitotic MNss, it remains to
be determined if these other IncRNAs are functionally
important in vivo. Furthermore, IncRNA knockout has
been shown to exert a very mild or no phenotype in vivo
[52]. Based on several IncRNA-knockout mouse models,
it seems that the physiological functions of IncRNAs
might not be as prominent as transcription factors dur-
ing the developmental process [8, 123], yet their func-
tions become more critical under stress conditions such
as cancer progression or neurodegeneration [102, 124].
Therefore, next we discuss how IncRNAs have been im-
plicated in MN-related diseases.

Motor neuron-related diseases

Since IncRNAs regulate MN development and function,
it is conceivable that their dysregulation or mutation
would cause neurological disorders. Indeed, genome-
wide association studies (GWAS) and comparative tran-
scriptomic studies have associated IncRNAs with a series
of neurodegenerative diseases, including the age-onset
MN-associated disease amyotrophic lateral sclerosis
(ALS) [86, 164]. Similarly, IncRNAs have also been
linked to spinal muscular atrophy (SMA) [33, 152].
However, most of these studies have described associa-
tions but do not present unequivocal evidence of caus-
ation. Below and in Table 2, we summarize some of
these studies linking IncRNAs to MN-related diseases.

Amyotrophic lateral sclerosis (ALS)

ALS is a neurodegenerative disease resulting in progres-
sive loss of upper and lower MNs, leading to only 5-10
years median survival after diagnosis. More than 90% of
ALS patients are characterized as sporadic (sALS), with
less than 10% being diagnosed as familial (fALS) [17].
Some ALS-causing genes—such as superoxide dismutase



Chen and Chen Journal of Biomedical Science (2020) 27:38 Page 6 of 14
Table 2 Proposed functions of INcRNAs in spinal motor neuron diseases
LncRNA Disease Proposed function Organism/cell models Reference
ATXN2-AS ALS (CUG), repeat expansions induce SK-N-MC neuroblastoma cells and [75]

neurotoxicity. lymphoblastoid cell lines from ALS

patients

C90ORF72 antisense ALS Forms RNA foci and repeat-associated Drosophila, Zebrafish/Neuro-2a, mouse [91, 96, 134, 138, 151, 155,
RNA non-AUG (RAN) translation generates primary cortical and motor neurons 161]

dipeptides to cause neurotoxicity.
NEAT1 ALS Facilitates paraspeckle formation. Mouse/NSC-34 MN-like cells [30, 133]

High levels of NEATT trigger

neurotoxicity.
SMN-AST SMA Recruits PRC2 complex to suppress Mouse/human SMA-iPSC-derived MNs, [33, 152]

the SMN gene.

SMNA7 mouse cortical neurons

1 (SOD1I) and fused in sarcoma/translocated in sarcoma
(FUS/TLS)—have been identified in both sALS and fALS
patients, whereas other culprit genes are either predom-
inantly sALS-associated (e.g. unc-13 homolog A,
UNC13A) or fALS-associated (e.g. D-amino acid oxi-
dase, DAO). These findings indicate that complex
underlying mechanisms contribute to the selective sus-
ceptibility to MN degeneration in ALS. Since many char-
acterized ALS-causing genes encode RNA-binding
proteins (RBPs)—such as angiogenin (ANG), TAR
DNA-binding protein 43 (TDP-43), FUS, Ataxin-2
(ATXN2), chromosome 9 open reading frame 72
(C90ORF72), TATA-box binding protein associated fac-
tor 15 (TAF15) and heterogeneous nuclear ribonucleo-
protein A1 (HNRNPA1)—it is not surprising that global
and/or selective RBP-RNAs, including IncRNAs, might
participate in ALS onset or disease progression. Below,
we discuss some representative examples.

Nuclear Enriched Abundant Transcript 1 (NEAT1)

NEATI is an IncRNA that appears to play an important
structural role in nuclear paraspeckles [30]. Specifically,
there are two NEATI transcripts: NEAT1_1 (3.7 kb) is
dispensable whereas NEATI 2 (23 kb) is essential for
paraspeckle formation [30, 100]. However, expression of
NEATI_2 is low in the CNS of mouse ALS models rela-
tive to ALS patients, indicating a difference between ro-
dent and human systems [101, 103]. Although
crosslinking and immunoprecipitation assay (CLIP) has
revealed that NEAT1 associates with TDP-43 [103, 137,
154] and FUS/TLS [103], the first evidence linking
NEATI and paraspeckles to ALS was the observation of
co-localization of NEATI 2 with TDP-43 and FUS/TLS
in paraspeckles of early-onset ALS patients [103]. A
more detailed analysis has revealed that NEATI_2 is
highly enriched in neurons of the anterior horn of the
spinal cord and in cortical tissues of ALS patients [126,
137]. Indeed, increased paraspeckle formation has been
reported in the spinal cords of sALS and fALS patients
relative to healthy individuals [126], indicating that

paraspeckle formation might be a common hallmark of
ALS patients. Interestingly, by utilizing an ESC-derived
neuron system, a significant increase in paraspeckles was
observed at the neuron progenitor stage, suggesting that
paraspeckles may exist in the short time-window of
neural development [126]. Manipulating ALS-related
RBPs (i.e. FUS, TDP-43, and MATR3) impacts levels of
NEATI, showing that these RBPs not only interact with
NEATI but also regulate NEAT1 RNA levels. The level
of NEATI1_2 increases upon FUS, TDP-43 or MATR3
deletion [10, 100]. In contrast, elimination of TAF15,
hnRNPA1 or splicing factor proline and glutamine rich
(SFPQ) downregulates NEATI_2 levels [103]. There are
conflicting results with regard to whether manipulation
of TDP-43 affects NEATI_2 [100, 126]. Introducing
patient-mutated FUS (e.g. P525L) also results in im-
paired paraspeckle formation by regulating NEAT1 tran-
scription and misassemble of other paraspeckle proteins
in the cytoplasm or nucleus [5, 127]. Together, these re-
sults seem to indicate that mutation of ALS-related
RBPs affects NEATI expression and paraspeckle forma-
tion during disease progression.

Although many studies have depicted how mutated
ALS-related proteins regulate paraspeckle formation,
levels of NEATI 2, inappropriate protein assembly into
granules or sub-organelles, and the role of NEAT1_2 in
ALS progression remain poorly understood. Recently,
direct activation of endogenous NEAT1 using a CRISPR-
Cas9 system suggested that elevated NEATI expression
is somewhat neurotoxic in NSC-34 cells, a mouse MN-
like hybrid cell line. Though no direct evidence showing
that this effect is mediated by NEATI_2 was presented
in that study, it did at least exclude NEATI_1I as the me-
diator [133]. This outcome may imply that increased
NEATI_2 facilitates paraspeckle formation and also
somehow induces cell death or degeneration. However,
more direct evidence of correlations and concordant
links between RBP-IncRNA associations and ALS are
needed to strengthen the rationale of utilizing IncRNAs
for future therapeutic purposes.
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C90RF72 antisense RNA

In 2011, the C9ORF72 gene with a hexanucleotide
GGGGCC (G4C,) repeat expansion was identified as the
most frequent genetic cause of both ALS and frontotem-
poral dementia (FTD) in Europe and North America
[36, 117]. ALS and FTD represent a disease spectrum of
overlapping genetic causes, with some patients manifest-
ing symptoms of both diseases. Whereas ALS is defined
by loss of upper and/or lower MNs leading to paralysis,
FTD is characterized by degeneration of the frontal and
temporal lobes and corresponding behavioral changes.
The abnormal (G4C,) repeat expansion in the first in-
tron of C9ORF72 not only accounts for almost 40% of
fALS and familial FTD (fFTD), but it is also found in a
small cohort of sALS and sporadic FTD (sFTD) patients
[36, 85, 111, 117]. Healthy individuals exhibit up to 20
copies of the (G4C,) repeat, but it is dramatically in-
creased to hundreds to thousands of copies in ALS pa-
tients [36]. Loss of normal COORF92 protein function
and gain of toxicity through abnormal repeat expansion
have both been implicated in C9ORF72-associated FTD/
ALS. Several C9ORF72 transcripts have been character-
ized and, surprisingly, antisense transcripts were found
to be transcribed from intron 1 of the C9ORF72 gene
[97]. Both C9ORF72 sense (C9ORF72-S) and antisense
(C9ORF72-AS) transcripts harboring hexanucleotide ex-
pansions could be translated into poly-dipeptides and
were found in the MNs of C9ORF72-associated ALS pa-
tients [47, 50, 95, 121, 151, 163]. Although C9ORF72-S
RNA and consequent proteins have been investigated
extensively, the functional relevance of COORF7-AS is still
poorly understood. C9ORF72-AS contains the reverse-
repeated hexanucleotide (GGCCCC, G,C,) located in in-
tron 1. Similar to C9ORF72-S, C9ORF72-AS also forms
RNA foci in brain regions such as the frontal cortex and
cerebellum, as well as the spinal cord (in MNs and occa-
sionally in interneurons) of ALS [49, 163] and FTD pa-
tients [36, 49, 92]. Intriguingly, a higher frequency of
C90RF72-AS RNA foci and dipeptides relative to those of
C90ORF72-S have been observed in the MNs of a
C90ORF72-associated ALS patient, with a concomitant loss
of nuclear TDP-43 [32]. In contrast, another study sug-
gested that compared to C9ORF72-S-generated dipeptides
(poly-Gly-Ala and poly-Gly-Arg), fewer dipeptides (poly-
Pro-Arg and poly-Pro-Ala) derived from C9ORF72-AS
were found in the CNS region of C9ORF72-associated
FTD patients [83]. These apparently contradictory results
perhaps are due to differing sensitivities of the antibodies
used in those studies. It has further been suggested that a
fraction of the COORF72-AS RNA foci is found in the peri-
nucleolar region, indicating that nucleolar stress may con-
tribute to C9ORF72-associated ALS/FTD  disease
progression [70, 93, 136]. Interestingly, compared to the
CI90RF72-S§ G4C, repeats, a large number of COORF72-AS
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G,C, repeats are associated with mono-ribosomes [135],
suggesting that fewer dipeptides are generated in the
former scenario. This outcome may indicate that
C90ORF72-AS RNA may also contribute to the pathology
caused by C9ORF72 hexanucleotide repeat expansion.
Whereas C9ORF72-S can form G-quadruplexes [46, 55,
116] that are known to regulate transcription and gene ex-
pression [150], the C-rich C9ORF72-AS repeats may not
form similar structures. Instead, the G,C, expansions in
C90ORF72-AS may form a C-rich motif [65] that likely af-
fects genome stability and transcription [1]. Notably, an
A-form-like double-helix with a tandem C:C mismatch
has been observed in a crystal structure of the COORF72-
AS repeat expansion, suggesting that different structural
forms of COORF72-AS might regulate disease progression
[38]. Thus, during disease progression, not only may
C90RF72-AS form RNA foci to sequester RBPs, but it
could also indirectly regulate gene expression via its sec-
ondary structure.

Several C9ORF72 gain-of-function and loss-of-function
animal models have been generated [9, 91, 138, 155]. A
new Drosophila melanogaster (fly) model expressing the
G4C, or G,Cy RNA repeat followed by polyA (termed
“polyA”) or these repeats within spliced GFP exons
followed by polyA (termed “intronic”) reveals that both
sense and antisense “polyA” accumulates in cytoplasm but
sense and antisense “intronic” occur in the nucleus, with
this latter mimicking actual pathological conditions [94].
However, expression of these repeated RNAs does not re-
sult in an obvious motor deficit phenotype, such as climb-
ing ability of the Drosophila model, indicating that the
repeats per se may not be sufficient to induce disease pro-
gression [94]. Nevertheless, applying that approach in a
Danio rerio (zebrafish) model resulted in an outcome
contradictory to that in Drosophila, with both sense and
antisense repeated RNAs inducing clear neurotoxicity
[134]. This discrepancy may be due to differing tolerances
to RNA toxicity between the model species and the status
of their neurons. Several mouse models have been estab-
lished by introducing human C9ORF72 repeats only or
the gene itself with its upstream and downstream regions
via transduction of adeno-associated virus (AAV) or bac-
terial artificial chromosome (BAC) constructs (reviewed in
[9]). In the models that harbor full-length human
C90RF72 with repeat expansions as well as upstream and
downstream regions, dipeptide inclusions and RNA foci
from C9ORF72-S and -AS have been observed and some
of them develop motor [78] or cognition (working and
spatial memory) defects [61] but others appear normal
[107, 110]. Similarly, utilizing differentiated MNs from
patient-derived induced pluripotent stem cells (iPSCs),
C90RF72-associated dipeptides and RNA foci have been
observed but some of the expected pathologies were not
fully recapitulated [3, 34, 39, 80]. These inconsistent
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findings may be due to the different genetic backgrounds
used or the differing stress conditions applied.

Most studies on C9ORF72 have focused on the pathology
caused by repeat expansion, but how COORF72 itself is reg-
ulated is only beginning to be revealed. Knockdown of a
transcription elongation factor, Spt4, rescues C9ORF72-
mediated pathology in a Drosophila model and decreases
C9ORF?72-S and -AS transcripts as well as poly-Gly-Pro pro-
tein production in iPSC-derived neurons from a C9ORF72-
associated ALS patient [66]. Another CDC73/PAF1 protein
complex (PAF1C), which is a transcriptional regulator of
RNA polymerase II, has been shown to positively regulate
both C9ORF72-S and -AS repeat transcripts [51]. Moreover,
reduced expression of hnRNPA3, an G,C, repeat RNA
binding protein, elevates the G4C, repeat RNA and dipep-
tide production in primary neurons [96]. Nevertheless, the
RNA helicase DDX3X mitigates pathologies elicited by
CI90RF72 repeat expansion by binding to G,C, repeat
RNA, which in turn inhibits repeat-associated non-AUG
translation (RAN) but does not affect antisense G,C,, repeat
RNA in iPSC-derived neurons and the Drosophila model
[28]. Collectively, these findings reveal an alternative strategy
for targeting COORF72 repeat expansions in that antisense
oligonucleotides (ASOs) could be utilized against COORF72-
S to attenuate RNA foci and reverse disease-specific tran-
scriptional changes in iPSC-derived neurons [39, 122, 161].

Ataxin 2 antisense (ATXN2-AS) transcripts

Ataxin-2 is an RBP and it serves as a genetic determinant
or risk factor for various diseases including spinocerebellar
ataxia type II (SCA2) and ALS. ATXN2-AS is transcribed
from the reverse strand of intron 1 of the ATXN2 gene.
Similar to the G4C, repeats of COORF72-AS, the (CUG),
expansions of ATXN2-AS may promote mRNA stability
by binding to U-rich motifs in mRNAs and they have been
associated with ALS risk [40, 157]. Furthermore, A TXN2-
AS with repeat expansions were shown to induce neuro-
toxicity in cortical neurons in a length-dependent manner
[75]. In that same study, the authors also demonstrated
that it is the transcripts rather than the polypeptides gen-
erated via RAN translation that are responsible for neuro-
toxicity. It has been suggested that the toxicity of CUG
repeats is due to hairpin formation sequestering RBPs in
the cell [68]. Thus, it is likely that the RNA repeats of
ATXN2-AS or C9ORF72-S/AS might function in parallel
to RAN peptide-induced neurotoxicity to exacerbate de-
generation of MNs in ALS.

Other IncRNAs implicated in ALS

By means of an ESC~MN system, several IncRNAs have
been shown to be dysregulated in loss-of-function FUS
MNs. Compared to FUS™* MNs, Lhxlos upregulation and
IncMN-1 (2610316D01Rik) and IncMN-2 (5330434G04Rik)
downregulation were observed in FUS?>”M/P>17k and FUS™-
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MNs, suggesting that loss of FUS function affects some
IncRNAs conserved among mouse and human [14]. A
series of IncRNAs that have not been directly implicated in
AlLS-associated genetic mutations have been identified to
participate in ALS contexts. For instance, MALATI that
contributes to nuclear speckles formation exhibits increased
expression and TDP-43 binding in the cortical tissues of
sporadic frontotemporal lobar degeneration (FTLD) pa-
tients, whereas downregulation of Meg3 is associated with
expression and binding to TDP-43 in the same system
[137]. UV-CLIP analysis has revealed that TDP-43 associ-
ates with other IncRNAs such as BDNFOS and TFEBa in
SHSY5Y cells [154]. In muscle cells, Myolinc (AK142388)
associates with TDP-43 to facilitate binding of this latter
protein to myogenic genes, thereby promoting myogenesis
[90]. However, whether these IncRNAs play roles in ALS
progression needs to be further investigated.

Several studies using Drosophila as a model have un-
covered relationships between IncRNAs and ALS.
Knockdown of CR18854, an IncRNA associated with the
RBP Staufen [71], rescues the climbing ability defects
arising from dysregulated Cabeza (the orthologue of hu-
man FUS, hereafter referred to as dFUS) in Drosophila
[99]. In contrast, knockdown of the IncRNA heat shock
RNA o (hsrw) in Drosophila MNs gives rise to severe
motor deficiency by affecting presynaptic terminals.
Mechanistically, ssrw interacts with dFUS, and depletion
of hsrw results in dFUS translocation into the cytoplasm
and abrogation of its nuclear function [79]. Levels of
hsrw are positively regulated by TDP-43 via direct bind-
ing of TDP-43 to the hsrw locus in Drosophila [29]. The
human orthologue of Drosophila /srw, stress-induced
Satellite III repeat RNA (Sat III), has also been shown to
be elevated upon TDP-43 overexpression in the frontal
cortex of FTLD-TDP patients [29]. It would be interest-
ing to investigate the relationship between Sat III and
ALS in human patients.

Spinal muscular atrophy (SMA)

Spinal muscular atrophy (SMA) is a genetic disorder char-
acterized by prominent weakness and wasting (atrophy) of
skeletal muscles due to progressive MN degeneration. SMA
is the number one worldwide case of neurodegeneration-
associated mortality in infants younger than two years old.
SMA is caused by autosomal recessive mutation or deletion
of the Survival Motor Neuron 1 (SMINI) gene, which can
be ameliorated by elevated expression of SMN2, a nearly
identical paralogous gene of SMNI [82]. Since the discovery
of SMNI-causing phenotypes in SMA two decades ago
[73], many researchers have highlighted SMN2 regulation
as a rational approach to boost the generation of full-length
SMN2 to offset disease effects [18, 22]. Recently, accumu-
lating evidence has shown a critical role for IncRNAs in
regulating the expression of SMN protein. For example, the
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antisense IncRNA SMN-ASI derived from the SMN locus
suppresses SMN expression, and species-specific non-
overlapping SMN-antisense RNAs have been identified in
mouse and human [33, 152]. In both these studies, SMN-
AS1 recruits the PRC2 complex to suppress expression of
SMN protein, which could be rescued by either inhibiting
PRC2 activity or by targeted degradation of SMN-AS1 using
ASOs. Moreover, a cocktail treatment of SMN2 splice-
switching oligonucleotides (SSOs), which enhanced inclu-
sion of exon 7 to generate functional SMN2, with SMN-
AS1 ASOs enhanced mean survival of SMA mice from 18
days to 37 days, with ~25% of the mice surviving more than
120 days [33]. These finding suggest that in addition to
SSO treatment, targeting SMN-ASI could be another po-
tential therapeutic strategy for SMA. Moreover, transcrip-
tome analysis has revealed certain IncRNA defects in SMA
mice exhibiting early or late-symptomatic stages [13]. By
comparing the translatomes (RNA-ribosome complex) of
control and SMA mice, some of the IncRNAs were shown
to bind to polyribosomes and to alter translation efficiency
[13]. Although IncRNAs can associate with ribosomes and
some of them generate functional small peptides, it needs
to be established if this information is relevant in SMA
contexts.

LncRNAEs in liquid-liquid phase separation (LLPS) and motor
neuron diseases

An emerging theme of many of the genetic mutations
leading to the neurodegenerative MN diseases discussed
above is their link to RBPs. Interestingly, many of these
RBPs participate in granule formation and are associated
with proteins/RNAs that undergo liquid-liquid phase
separation (LLPS) (reviewed in [120]). LLPS is a
phenomenon where mixtures of two or more compo-
nents self-segregate into distinct liquid phases (e.g. sep-
aration of oil and water phases) and it appears to
underlie formation of many transient membrane organ-
elles, such as stress granules that contain many ribonu-
cleoproteins (RNPs). Although it remains unclear why
ubiquitously expressed RNP granule proteins aggregate
in neurodegenerative disease, one study found that ag-
gregated forms of mutant SODI, a protein associated
with fALS, accumulates in stress granules [41]. These ag-
gregated forms induce mis-localization of several pro-
teins associated with the miRNA biogenesis machinery,
including Dicer and Drosha to stress granules. Conse-
quently, miRNA production is compromised, with sev-
eral miRNAs (i.e. miR-17~92 and miR-218) perhaps
directly participating in ALS disease onset and progres-
sion [56, 142]. Mislocalization of ALS-related proteins
such as FUS and TDP-43 in the cytosol rather than nu-
cleus of MNs has been observed in ALS patients, but the
mechanism remains unclear [125, 146].
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A recent study highlighted differences in RNA concen-
tration between the nucleus and cytosol. In the nucleus
where the concentration of RNA is high, ALS related-
proteins such as TDP-43 and FUS are soluble, but protein
aggregations form in the cytosol where the concentration
of RNA is low, suggesting that RNA could serve as a buf-
fer to prevent LLPS [84]. Collectively, these findings indi-
cate that not only are RNAs the binding blocks for RBPs,
but may also serve as a solvent to buffer RBPs and prevent
LLPS. Accordingly, persistent phase separation under
stress conditions could enhance formation of irreversible
toxic aggregates of insoluble solidified oligomers to induce
neuronal degeneration [148]. Although many neurodegen-
erative diseases have been associated with RNP granules,
and primarily stress granules, it remains to be verified if
stress granules/LLPS are causative disease factors in vivo.
Many other questions remain to be answered. For in-
stance, are the IncRNAs/RNPs mentioned above actively
involved in RNP granule formation? Given that purified
cellular RNA can self-assemble in vitro to form assemblies
that closely recapitulate the transcriptome of stress gran-
ules and the stress granule transcriptome is dominated by
IncRNAs [63, 144], it is likely that the RNA-RNA interac-
tions mediated by abundantly expressed IncRNAs might
participate in stress granule formation in ALS contexts.
Similarly, do prevalent RNA modification and editing
events in IncRNAs [159] change their hydrophobic or
charged residues to affect LLPS and the formation of RNP
granules to give rise to disease pathologies? It will be tan-
talizing to investigate these topics in the coming years.

Conclusion and perspective

Over the past decade, increasing evidence has challenged
the central dogma of molecular biology that RNA serves
solely as a temporary template between interpreting genetic
information and generating functional proteins [23]. Al-
though our understanding of IncRNAs under physiological
conditions is increasing, it remains to be established if all
expressed IncRNAs play particular and functional roles dur-
ing embryonic development and in disease contexts. Versa-
tile genetic strategies, including CRISPR-Cas9 technology,
have allowed us to clarify the roles of IncRNA, the individual
IncRNA transcripts per se, and their specific sequence ele-
ments and motifs [42]. Taking spinal MN development and
degeneration as a paradigm, we have utilized ESC-derived
MNs and patient iPSC-derived MNss to dissect the import-
ant roles of IncRNAs during MN development and the pro-
gression of MN-related diseases such as ALS and SMA. A
systematic effort to generate MN-hallmark IncRNA knock-
out mice is underway, and we believe that this approach will
help us understand the mechanisms underlying IncRNA ac-
tivity, paving the way to develop new therapeutic strategies
for treating MN-related diseases.
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