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Abstract

Nicotinamide adenine dinucleotide (NAD) is an important coenzyme that participates in various energy metabolism
pathways, including glycolysis, β-oxidation, and oxidative phosphorylation. Besides, it is a required cofactor for post-
translational modifications such as ADP-ribosylation and deacetylation by poly (ADP-ribose) polymerases (PARPs)
and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress
response through these enzymes. Numerous studies have shown that NAD levels decrease with aging and under
disturbed nutrient conditions, such as obesity. Additionally, a decline in NAD levels is closely related to the
development of various metabolic disorders, including diabetes and fatty liver disease. In addition, many studies
have revealed that administration of NAD precursors, such as nicotinamide mononucleotide (NMN) and
nicotinamide riboside (NR), efficiently increase NAD levels in various tissues and prevent such metabolic diseases.
These NAD precursors are contained in natural foods, such as cow milk, vegetables, and meats. Therefore, altered
NAD metabolism can be a practical target for nutritional intervention. Recently, several human clinical trials using
NAD precursors have been conducted to investigate the safety, pharmacokinetics, and efficacy against metabolic
disorders such as glucose intolerance. In this review, we summarize current knowledge on the implications of NAD
metabolism in metabolic diseases and discuss the outcomes of recent human clinical trials.
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Introduction
Metabolic syndrome is increasing worldwide and is be-
coming a global health concern because it is a critical
risk for various life threatening diseases, including car-
diovascular diseases, stroke, and cancer [1]. Its patho-
physiology is based on obesity, which consequently
causes diabetes, dyslipidemia, and hypertension. Devel-
opment of metabolic syndrome is closely associated with
nutrient status and lifestyle [2]. Excess energy intake and
sedentary lifestyle cause obesity and subsequent meta-
bolic disorders. In mammalian cells, energy-sensing
pathways are important for maintaining an adequate bal-
ance between energy production and expenditure. Dis-
turbance of these pathways results in various metabolic
disorders, such as insulin resistance and fatty liver [3].
Endogenous metabolites reflect the nutrient status in

cells, and their levels regulate the activity of energy-sens-
ing molecules. For instance, adenosine monophosphate
(AMP) and adenosine triphosphate (ATP) levels regulate
AMP-activated protein kinase (AMPK) activity and con-
trol glucose and lipid metabolism [4]. The mammalian
target of rapamycin (mTOR) senses amino acid levels
and determines protein synthesis or degradation de-
pending on nutrient availability [3]. Nicotinamide
adenine dinucleotide (NAD) is also one of such
energy-sensing metabolites and is an essential cofactor
that mediates various biological processes, including me-
tabolism, aging, cell death, DNA repair, and gene expres-
sion (Fig. 1) [5]. It functions as a coenzyme in various
redox reactions in the major energy production path-
ways, such as glycolysis, tricarboxylic acid (TCA) cycle,
and fatty acid oxidation [6]. NAD levels directly influ-
ence the activity of metabolic enzymes in these pathways
as a coenzyme. In particular, many enzymes in the mito-
chondrial energy production pathway employ NAD in
their redox reactions. Further, NAD acts as a substrate
for poly (ADP-ribose) polymerases (PARPs) and class III
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NAD-dependent deacetylases (sirtuins), regulating their
activities [7].
A number of studies have demonstrated that NAD

levels decline with age and aberrant nutritional status,
such as in obesity (Table 1) [8–23, 96]. Decreased NAD
levels suppress activities of NAD (H)-dependent en-
zymes in oxidative phosphorylation, TCA cycle, and gly-
colysis, which result in lower ATP production [24].
Additionally, decreased NAD levels affect PARPs and
sirtuins and lead to the inactivation of downstream mo-
lecular pathways, including DNA repair, cellular stress
responses, and energy metabolism regulation [5]. Thus,

preventing the decline of NAD is suggested as a promis-
ing strategy to combat metabolic disorders. Dietary
intervention is an ideal way to increase NAD levels in
cells and tissues. However, NAD is considered imperme-
able to the plasma membrane, and NAD administration
cannot efficiently increase NAD levels [25]. Therefore,
NAD precursors, such as nicotinamide (NAM), nicotinic
acid (NA), tryptophan, nicotinamide mononucleotide
(NMN), and nicotinamide riboside (NR), are utilized to
increase NAD levels in rodents and humans [26]. In par-
ticular, NMN and NR administration efficiently boost
NAD levels and has beneficial effects for obesity and

Fig. 1 NAD metabolism has a potential protective effect against various metabolic diseases through redox reactions, sirtuins, and possibly PARPs.
NAD is a co-enzyme that mediates various redox reactions in glycolysis, the TCA cycle, fatty acid oxidation, and oxidative phosphorylation. It also
serves as a substrate for PARPs and sirtuins and regulates various biological pathways, including energy metabolism, gene expression, DNA repair,
and cellular stress response
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glucose tolerance in mice [8, 22, 27, 28]. NAM also pre-
vents hepatic steatosis and improves glucose tolerance
by reducing oxidative stress and inflammation in
diet-induced obese mice [29]. NA improves glucose tol-
erance and lipid metabolism, and it has already been ap-
plied for the treatment of dyslipidemia in humans [30].
In this review, the association of NAD with each meta-
bolic disease and the therapeutic potential of NAD pre-
cursors for these diseases are discussed.

NAD synthesis and consuming pathways
There are three NAD synthesis pathways named salvage,
de novo, and Preiss-Handler, where NAD is synthesized
from NAM, tryptophan, and NA, respectively (Fig. 2) [31].
These NAD precursors are ingested from dietary sources,
and their shortage causes pellagra with characteristic
symptoms of inflamed skin, diarrhea, dementia, and sores
in the mouth [32]. In mammalian cells, NAD is

predominantly synthesized through the salvage pathway
where nicotinamide phophoribosyltransferase (Nampt)
generates NMN from NAM and
5-phosphoribosyl-1-pyrophosphate (PRPP) [33]. Subse-
quently, NMN is conjugated to ATP and converted to
NAD by NMN adenylyltransferase (Nmnat) [34]. In mam-
mals, there are three Nmnat isozymes that are encoded by
different genes. Nmnat1, Nmnat2, and Nmnat3 exist in
nucleus, Golgi apparatus, and mitochondria, respectively
[34]. The salvage pathway is coupled with
NAD-consuming enzymes, such as PARPs, sirtuins, CD38
(T10), CD157 (BST1), and SARM1. These enzymes de-
grade NAD and generate NAM as a by-product [35, 36].
Nampt is a rate-limiting enzyme in the salvage pathway,
and the global deletion of Nampt in mice results in em-
bryonic lethality [33, 37]. Furthermore, the tissue-specific
deletion of Nampt in murine metabolic tissues, including
skeletal muscle, liver, and adipose tissues, decreases

Table 1 Changes of NAD levels in metabolic tissues with obesity or aging

Model Tissue Change Description Confirmatiom References

Obesity Liver ↓ C57BL/6 congenic mice fed a HFD for 6–8 months HPLC [8]

↓ BALB/c mice fed a HFD for 16–20 weeks Enzymatic [96]

↓ C57BL/6 J mice fed a HFD for 12 weeks LC/MS [9]

↓ C57BL/6 J mice fed a HFHSD for 9 or 18 weeks LC/MS [10]

→ C57BL/6JBomTac mice fed a HFD for 6–48 weeks LC/MS [11]

Skeletal muscle ↓ C57BL/6 mice fed a HFD for 6–8 months HPLC [8]

↓ C57BL/6 mice fed a HFD from 3 to 9 months HPLC [12]

↓ C57BL/6 mice fed a HFD from 6 to 16 weeks LC/MS [13]

Adipose tissue ↓ C57BL/6 mice fed a HFD for 6–8 months HPLC [8]

↓ C57BL/6 congenic mice fed a HFD from 6 to 16 weeks Enzymatic [14]

Hypothalamus ↓ C57BL/6 mice fed a HFHSD for 4 weeks LC/MS [15]

↓ db/db mice at 8 months of age LC/MS [15]

Aging Liver → C57BL/6 mice (25–31 months old v.s. 3–6 months old) HPLC [8]

↓ C57BL/6 J mice (24 months old v.s. 6 months old) HPLC [16]

↓ Human (> 60 years old v.s. < 45 years old) Enzymatic [17]

↓ Male C57BL/6 J mice (20 months old v.s. 4 months old) Enzymatic [17]

↓ Male C57BL/6 mice (32 months old v.s. 5 months old) LC/MS [18]

↓ Male C57BL/6 N mice (24 months old v.s. 3 months old) LC/MS [19]

Skeletal muscle ↓ C57BL/6 mice (25–31 months old v.s. 3–6 months old) HPLC [8]

↓ C57BL/6 J mice (22 months old v.s. 6 months old) Enzymatic [20]

↓ C57BL/6 J mice (24 months old v.s. 6 months old) HPLC [16]

↓ Male C57BL/6 mice (32 months old v.s. 5 months old) Enzymatic [18]

↓ C57BL/6 mice (24 months old v.s. 4 months old) HPLC [21]

↓ C57BL/6 J mice (22–24months old v.s. 1 months old) Enzymatic [22]

↓ Male C57BL/6 N mice (24 months old v.s. 3 months old) LC/MS [19]

Adipose tissue ↓ C57BL/6 mice (25–31 months old v.s. 3–6 months old) HPLC [8]

↓ Male C57BL/6 mice (32 months old v.s. 5 months old) Enzymatic [18]

HPLC High Performance Liquid Chromatography, LC/MS Liquid Chromatography-Mass spectrometry
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NAD levels in each organ [21, 38, 39]. Most trypto-
phan, a precursor for de novo synthesis pathway, is
consumed in the liver, which is the only organ that
possesses all synthetic enzymes of this pathway [40].
However, deficiency of quinolinate phosphoribosyl-
transferase (Qprt), a key enzyme in the de novo path-
way, has no effect in the NAD levels in murine
tissues, including the liver [41]. These results indicate
that NAD synthesis in mammalian cells largely de-
pends on the salvage pathway. However, a recent
study has demonstrated that the de novo pathway
contributes to synthesis and maintenance of NAD
levels in the macrophages, particularly during aging
and inflammation [42]. Therefore, it is possible that
the NAD synthesis pathway can switch between the
de novo and salvage pathways under certain stress
conditions.

Although Nampt functions as a NAD synthesis enzyme
in cells, it is also found in serum. It was originally reported
as a cytokine named pre-B-cell colony-enhancing factor
(PBEF) as well as visfatin, a type of adipokine [43, 44]. The
extracellular form of Nampt (eNampt) is secreted from
several kinds of cells, including mature adipocytes, pan-
creatic β-cells, myocytes, and hepatocytes [37, 45, 46]. Re-
portedly, the intracellular form of Nampt (iNampt) is
acetylated in the cytoplasm during normal nutrient status.
However, once food becomes scarce, iNampt is deacety-
lated by SIRT1 [47]. In addition, the deacetylation of
Nampt enhances its secretion and enzymatic activity [47].
Interestingly, genetic deletion of Nampt in the adipocytes
decreases hypothalamic NAD levels [47]. Likewise,
eNampt depletion by neutralizing antibodies has the same
effect on hypothalamic NAD levels [47]. These results
suggest that eNampt may generate NMN in the blood,

Fig. 2 NAD is synthesized through de novo, Preiss-Handler, and salvage pathways. NAM: nicotinamide, NA; nicotinic acid, NAD: nicotinamide
adenine dinucleotide, NMN: nicotinamide mononucleotide, NR: nicotinamide riboside, NAAD: nicotinic acid adenine dinucleotide, Nampt:
nicotinamide phophoribosyltransferase, Nmnat: NMN adenylyltransferase, NADS: NAD synthase, NRK: nicotinamide riboside kinase
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thus supplying NMN to various tissues, including the
hypothalamus. However, another study determined that
eNampt did not participate in the generation of extracellu-
lar NMN because the physiological concentrations of
NAM, ATP, and PRPP in the plasma were insufficient for
the catalysis of Nampt [48]. Therefore, the contribution of
eNampt to the generation of extracellular NMN is still
under debate.
NR is an alternative NAD precursor, and a study using

various chemical inhibitors suggested that NR is incor-
porated into cells using equilibrative nucleoside trans-
porters (ENTs) [49, 50]. Inside the cells, NR is converted
to NMN by nicotinamide riboside kinase (NRK), and
knockdown of NRK1 in mammalian cells eliminated
NAD synthesis from NR. Interestingly, NRK1 also regu-
lates NAD synthesis from NMN [51]. In NRK1 knockout
mice, administration of NMN failed to increase NAD
levels in the liver, kidney, and brown adipose tissue [51].
Furthermore, a study using stable isotope-labeled NR
and NMN revealed that NMN is dephosphorylated into
NR extracellularly [51]. These results suggest that NMN
is incorporated into cells after extracellular conversion
to NR. Meanwhile, a recent study identified Slc12a8 as a
NMN transporter [52]. This study demonstrated that
Slc12a8 directly transports NMN across the plasma
membrane, and deletion of Slc12a8 in the hepatocytes
largely diminished the incorporation of NMN. Slc12a8 is
strongly expressed in the small intestine and may con-
tribute to oral uptake of NMN. Therefore, it is possible
that uptake pathways of NMN vary with tissue types.
Therefore, further studies are necessary to reveal the
mode and kinetics of uptake of NAD precursors specific
to each tissue and/or cell.

Obesity
Obesity is a fundamental pathophysiology for various
metabolic diseases, such as diabetes, dyslipidemia, and
fatty liver. Several studies have revealed that intracellular
NAD levels decreased with obesity in multiple murine
tissues, including the adipose tissue, skeletal muscles,
liver, and hypothalamus [8, 10, 12, 15]. Further, obesity
causes low-grade inflammation, and inflammatory cyto-
kines, such as IL-1β, IL-6, and TNF-α, are induced in
various tissues, including adipose tissues, liver, and skel-
etal muscle [53]. These inflammatory cytokines impair
the gene expression of Nampt [8, 54]. In humans, several
studies have found reduced Nampt levels in adipose tis-
sue, serum, and liver from obese patients [55–57]. How-
ever, conflicting results have been reported by several
studies [58–62]. It is considered that eNampt is mainly
released from adipose tissue [37, 44]. Therefore, it is
possible that the increased amount of adipose tissue in
obese patients resulted in the enhancement of eNampt
secretion. The adipose tissue-specific overexpression of

Nampt in mice also shows significant increase in plasma
eNampt levels [47]. Reduced iNampt levels correlate
with decreased NAD levels in obese tissues; however, the
biological significance of increased eNampt in obesity
remains unclear. Thus, further studies are warranted to
reveal the role of increased eNampt levels in obese
patients.
Conversely, NMN or NR administration can prevent

the reduction in NAD levels in diet-induced obese mice
(Table 2) [27, 28, 65]. Moreover, NR administration par-
tially suppresses weight gain in mice fed a high-fat diet
(HFD) by enhancing energy expenditure [8, 28]. Mice
with long-term NMN administration exhibit both higher
energy expenditure and physical activity, and weight gain
during aging is suppressed [27]. Thus, administration of
NAD precursors can ameliorate diet- and age-associated
weight gain, and nutritional intervention using NMN
and NR may be a promising strategy against obesity.

Diabetes
Nampt and insulin secretion
Insulin resistance and subsequent impaired insulin se-
cretion compose the pathophysiology of type 2 diabetes.
Both insulin sensitivity and secretion are coordinated by
NAD metabolism [26]. Reportedly, NAD levels of islet
cells are decreased in heterozygous whole body Nampt
knockout mice, and glucose-stimulated insulin secretion
(GSIS) is compromised in these mice [37]. Conversely,
NMN administration recovers NAD, and ameliorates
impaired GSIS in these mice [37]. Although eNampt was
reported as a ligand for the insulin receptor (IR) and had
an insulin-mimetic effect, the study has been retracted
[44]. Later studies also argue that eNampt does not dir-
ectly activate the insulin-signaling pathway in β-cell lines
[37]. However, several studies have suggested positive
effects of eNampt on insulin secretion [37, 63, 66]. Re-
portedly, mice fed a fructose-rich diet (FRD) show sig-
nificantly reduced eNampt levels, leading to increased
islet inflammation and impaired insulin secretion [63].
Islet cells in FRD-fed mice exhibited increased expres-
sion of inflammatory cytokines, including TNFα and
IL-1β, whereas NMN administration reduced IL-1β ex-
pression and restored the decreased insulin secretion in
FRD-fed mice, suggesting that eNampt regulates β-cell
function through a mechanism of NAD synthesis [63].

Adipocyte Nampt and insulin resistance
Adipocyte-specific deletion of Nampt caused insulin re-
sistance, and this effect is systemic and not restricted to
the adipose tissue [67]. Loss of Nampt in adipocytes in-
creases CDK5 and PPARγ phosphorylation, leading to
reduce the serum adiponectin levels and conversely
increase serum free fatty acid levels [67]. Thus,
adipocyte-specific Nampt knockout (FANKO) mice have
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demonstrated a systemic insulin resistance when fed a
normal chow diet. A recent study has demonstrated that
FANKO mice are resistant to obesity induced by HFD
and lack healthy adipose tissue expansion [68]. Although
adipose tissue mitochondria in HFD-fed FANKO mice
have a reduced respiratory capacity, the mice exhibit im-
proved glucose tolerance compared with control mice
[68]. Furthermore, FANKO mice exhibit reduced food
intake [68]. These results suggest that Nampt in adipo-
cytes is necessary for healthy expansion during
diet-induced obesity and it is also important for the
maintenance of insulin sensitivity in normal nutrient sta-
tus. Thus, the roles of Nampt in adipose tissues may dif-
fer by the nutrient status.

Skeletal muscle Nampt and metabolic disorders
The role of skeletal muscle Nampt in metabolic disorders
has been reported using muscle-specific Nampt-overex-
pressing mice [12, 21, 69]. Although Nampt-overexpress-
ing mice have higher NAD levels in skeletal muscles,
there is no significant difference in weight gain between
Nampt-overexpressing and control mice fed an NCD or
HFD [12, 69]. Nampt-overexpressing mice fed a very HFD
are partially protected against body weight gain but not
against diet-induced insulin resistance [69]. However,

Nampt-overexpressing mice have higher exercise endur-
ance capacity and enhanced mitochondrial gene expres-
sion [69]. Furthermore, muscle-specific Nampt knockout
mice display progressive muscle degeneration with a sig-
nificant reduction in NAD levels in muscle [21]. Respira-
tory capacity also decreases in mitochondria from
muscle-specific Nampt knockout mice [21]. It is of further
interest to investigate the effect of skeletal muscle-specific
deletion of Nampt against glucose tolerance.

Nmnat3 and insulin resistance
Recently, the authors reported that systemic overexpres-
sion of Nmnat3 in mice can efficiently increase NAD
levels in various tissues and ameliorate the onset of diet-
and age-associated insulin resistance [13]. In the skeletal
muscles of Nmnat3-overexpressing (Nmnat3 Tg) mice,
the increase in TCA cycle intermediates was accompan-
ied by repletion of mitochondrial NAD level, suggesting
the activation of the TCA cycle. Additionally, the fuel for
energy metabolism was shifted from carbohydrates to
fatty acids. Furthermore, overexpression of Nmnat3
modulates the ratio of mitochondrial respiratory chain
complexes, which might be associated with lower re-
active oxygen species (ROS) generation during aging

Table 2 Therapeutic effects of NAD precursors in metabolic diseases

Model Administrated NAD
precurser

NAD levels in tissues Metabolic Effects References

Obesity NMN (500 mg/kg) Long-term: Liver ↑, Skeletal muscle↑, WAT→ Short
term: Liver ↑

Improved glucose tolerance and insulin
sensitivity

[8]

NMN (500 mg/kg) not shown Improved insulin secretion and inhibited
inflammation

[63]

NMN 500mg/kg Liver↑, Skeletal muscle↑ Improved glucose tolerance, liver citrate
synthase activity, and triglyceride
accumulation

[64]

NR (400 mg/kg) Liver↑, Skeletal muscle↑, BAT↑, WAT→, Brain→ Enhanced mitochondiral biogenesis,
Improved insulin sensitivity, and suppressed
body weight gain

[28]

NR (3 g/kg) Liver ↑ Improved glucose homeostasis and hepatic
steatosis, suppressed body weight gain, and
protective against diabetic neuropathy

[10]

NR (400 mg/kg) Liver (whole) ↑, Liver (mitochondria) ↑, Improved glucose tolerance, insulin sensitivity,
hepatic steatosis, and suppressed body weight
gain

[9]

NR (200 mg/kg) not shown Reduced lipid accumulation and fibrosis in liver [17]

NR (5-900 ppm) Liver → Improved metabolic flexibility [65]

NAM (37.5 g/kg or 75 g/kg) Liver → Improved glucose tolerance and prevented
hepatosteatosis

[29]

Aging NMN (500 mg/kg) not shown Improved lipid profile, glucose tolerance and
insulin secretion

[8]

NMN (100, 300 mg/kg) Liver↑, Skeletal muscle↑ Inhibited age-induced weight gain, improved
insulin sensitivity and plasma lipids, and
increased physical activity, energy expenditure,
and muscle mitochondrial function

[27]

WAT white adipose tissue, BAT brown adipose tissue
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[13]. Of note, Nmnat3 Tg mice have significantly in-
creased concentrations of nicotinamide guanine di-
nucleotide (NGD), a NAD analog [13]. However, it is
still unclear whether increased NGD levels contribute
to the phenotypes in Nmnat3 Tg mice, and further
studies are awaited.

CD38 and insulin resistance
A recent study has demonstrated that the decline of
NAD levels with aging is largely dependent on CD38
[18]. CD38 has an enzymatic activity catalyzing the deg-
radation of NAD into NAM and ADP-ribose (ADPR).
CD38 also has ADPR cyclase activity generating
cyclic-ADPR from NAD [70]. Interestingly, the knockout
of CD38 increases basal NAD levels in tissue, suggesting
the importance of NAD degradation by CD38 in regulat-
ing NAD levels. Additionally, expression of CD38 in
various tissues is remarkably elevated with aging, and
NAD consumption is also accelerated in correlation with
CD38 levels. In contrast, CD38 deficiency in mice elimi-
nates NAD decline during aging [18]. Although CD38
has been found in plasma membrane as an ectoenzyme,
it has been also detected in mitochondria [71, 72]. Im-
portantly, CD38-deficient mice display improved age-as-
sociated glucose intolerance. This benefit should be
attributed to the upregulation of mitochondrial function
by increasing mitochondrial NAD levels and SIRT3 ac-
tivity [18]. Recently, a CD38 specific inhibitor, 78c, has
been reported to have beneficial effects against
age-associated physical declines including glucose toler-
ance and exercise capacity [73]. Treatment with 78c pre-
vents NAD decline with aging and activates sirtuins,
AMPK, and PARPs.

NAD precursors and diabetes
Several research groups used the precursors of NAD,
NR or NMN, to increase the level of NAD and showed
they could improve insulin resistance due to obesity [8,
28, 64]. The effect of NAD precursors is mainly through
the enhancement of sirtuin pathways. The intracellular
level of NAD is increased in liver after the administra-
tion of NR, leading to activated SIRT1 and SIRT3 [28].
Then SIRT1 promotes the deacetylation of FOXO1, in-
ducing SOD2. SIRT3 promotes the deacetylation of both
SOD2 and NDUFA9 [28]. In addition, administered NR
contributes to the enrichment of the mitochondrial con-
tent in skeletal muscle and brown adipose tissues. Thus,
the administration of NR protects mice against obesity
and glucose tolerance, increasing fatty acid oxidation
and energy expenditure and improving insulin sensitivity
[28]. As well as NR, the administration of NMN in-
creases hepatic NAD level and ameliorates the insulin
sensitivity in liver. Besides, NMN relieves oxidative
stress and the inflammatory response which is induced

by diet-induced-obesity and recovers the perturbed cir-
cadian rhythm [8]. Long-term NMN administration also
ameliorates age-associated insulin resistance and pre-
vents changes in gene expression with aging [27]. Aged
mice administered NMN also maintained better mito-
chondrial respiratory capacity in skeletal muscle, which
may contribute to improved glucose tolerance.
Recently, a research group examined the effect of

long-term administration of NAM in mice. [29]. Although
the level of NAD and the mean or maximum lifespan were
unchanged, the administration of NAM restored some
aging-related metabolic decline including increased
protein carbonylation and the reduction of oxygen con-
sumption rates. Consequently, NAM administration ame-
liorates glucose tolerance during diet-induced obesity.
Thus, NAM promotes a healthy lifespan without obvious
adverse effects, and this can be translated into humans.
Previous studies have also demonstrated that NAM ad-
ministration ameliorates sustained hyperglycemia by in-
creasing β-cell proliferation in various diabetic rodent
models [74, 75]. In particular, NAM can rescue streptozo-
tocin (STZ)-induced β-cell damage and diabetes (model of
type 1 diabetes [T1DM]) [75]. Thus, oral NAM adminis-
tration is thought to be a therapeutic agent for T1DM. Al-
though small-scale clinical trials have reported the
beneficial effects of NAM against T1DM [76], a large-
scale randomized controlled trial demonstrated that NAM
intervention in patients with confirmed anti-islet cell anti-
bodies failed to prevent the onset of T1DM [77]. For
T1DM treatment, NMN and NR are still attractive candi-
dates because NAD-mediated SIRT1 activation augments
GSIS in β-cells [78]. Further studies are needed to investi-
gate the effects of NMN or NR in the prevention and/or
treatment of T1DM.

Dyslipidemia
Dyslipidemia is caused by both nutritional and genetic
factors, and it is associated with various metabolic disor-
ders and cardiovascular diseases. NA was the first thera-
peutic agent to treat dyslipidemia and has been used to
prevent cardiovascular disease clinically for a long time
[79]. NA lowers the level of triglycerides and low-density
lipoprotein cholesterol (LDL-C) and raises the level of
high-density lipoprotein cholesterol (HDL-C) [79]. How-
ever, the mechanisms of how NA improves dyslipidemia
remain unclear. Several studies have indicated that these
effects are due to the activation of the G protein-coupled
receptor GPR109A in adipocytes [80–82]. Alternatively,
a study using Gpr109A-deficient mice and the clinical
trials for GPR109 agonists contradict this hypothesis
[83]. A recent study demonstrated that NA administra-
tion increases NAD levels, and the subsequent activation
of sirtuins contributes to improved lipid metabolism
[84]. Therefore, NMN and NR, which activate SIRT1
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without activating GPR109A, can be potential thera-
peutic options [28]. Although the beneficial outcome of
NA on dyslipidemia has been confirmed by numerous
studies, two recent large clinical trials concluded that
NA combined with statin therapy did not provide add-
itional benefits over statin monotherapy against cardio-
vascular incidents [85, 86]. However, the favorable effect
of NA on LDL-C, triglycerides, and HDL-C has been
clearly shown, and NA administration is still used as an
adjuvant therapy to reduce atherogenic lipoprotein
burden.

NAFLD and hepatic steatosis
Excess calorie intake causes ectopic lipid accumulation
in the liver, known as non-alcoholic fatty liver disease
(NAFLD) [87]. The progression of NAFLD leads to hep-
atic steatosis, hepatitis, liver cirrhosis, and ultimately,
liver dysfunction. Further, these hepatic diseases occa-
sionally coincide with hepatocellular carcinoma [87]. In
NAFLD, the ectopic lipid accumulation results in in-
creased ROS and the mitochondrial dysfunction [88]. It
is reported that NAD levels are decreased in the liver of
the diet-induced NAFLD mice model [89]. Along with
this, the activity of both SIRT1 and SIRT3 is decreased
[89–92]. Conversely, SIRT1 overexpression restores the
diet-induced hepatic steatosis [93, 94]. NR administra-
tion also protects against mitochondrial dysfunction
with diet-induced NAFLD through NAD elevation and
subsequent SIRT1 activation [9, 28]. In humans, patients
with NAFLD present lowered Nampt levels in the liver
[55]. Altogether, the administration of NAD precursors
is considered a potential therapeutic option for the treat-
ment of NAFLD. In contrast, the inhibition of Nampt
using FK866 promotes lipid accumulation and hepatic
steatosis in HFD-fed mice [95]. FK866 treatment de-
creases protein levels of SIRT1 and phospho-AMPK,
and also increases the gene expression of SREBP1 and
fatty acid synthase in the liver of HFD-fed mice [95].
Similarly, dominant-negative Nampt-overexpressing
(DN-Nampt Tg) mice display NAFLD-like phenotypes,
including lipid accumulation, chronic inflammation and
impaired insulin sensitivity, in the liver. NR administra-
tion to DN-Nampt Tg mice can rescue the NAFLD-like
phenotypes [17]. miR-34a negatively regulates the ex-
pression of Nampt and SIRT1 during obesity [96]. Obes-
ity induces the expression of miR-34a, which resulted in
the reduction of Nampt levels and subsequent aggrava-
tion of hepatic lipid accumulation in vivo. In contrast,
reducing miR-34a levels in obese mice restores Nampt
and NAD levels and improves inflammation, glucose in-
tolerance, and hepatic steatosis through the Nampt-
NAD-SIRT1 axis [96]. Thus, it has been proposed that
the Nampt/NAD/SIRT1 axis can suppress hepatic stea-
tosis in HFD-fed mice.

Human clinical trials
In various mouse models of human disease, the benefit
of NAD precursors, in particularly NMN and NR, has
been demonstrated (Table 2). Currently, there are several
ongoing human clinical trials or recently reported trials
(Table 3). The first report of oral NR administration re-
vealed that NR could increase NAD levels in plasma and
peripheral blood mononuclear cells (PBMC) [97]. In this
study, consented healthy volunteers received a single
dose of 100, 300, and 1000 mg NR in different sequences
with 7-day washout periods between data collection.
Two participants reported flushing at the dose of 300
mg, but no other serious adverse side effects were re-
ported. Interestingly, NR administration also increased
nicotinic acid adenine dinucleotide (NAAD) levels in
PBMC [97]. Another clinical trial of oral NR administra-
tion for 8 days was conducted as an open-label,
non-randomized study in healthy volunteers [98]. In this
study, participants took gradually incremented doses of
NR from 250mg to 2000mg per day, and NR adminis-
tration was well tolerated with no unfavorable side ef-
fects [98]. Importantly, NR administration in healthy
subjects significantly increased plasma NAD levels in
correlation with plasma NR levels [97, 98]. Chronic NR
administration to healthy-aged volunteers (average age,
65 years) was reported [99]. In this study, participants
were orally administered 500 mg NR twice daily for 6
weeks, and there were no serious side effects. NAD
levels in the NR treatment group were significantly in-
creased in PBMC by approximately 60% compared with
that in the placebo group. Consistent with previous re-
ports, NAAD levels were also significantly increased in
the NR treatment group [99]. This study also reported
that NR treatment lowered systolic blood pressure and
arterial stiffness. Similarly, acute NR supplementation in
old individuals increased NADH and NADPH levels and
improved exercise performance [100]. Another clinical
trial in obese men investigated safety and insulin sensi-
tivity [101]. Men with a body mass index > 30 kg/m2,
with an age range of 40–70 years, were randomly
assigned to 12 weeks of NR administration (1000 mg
twice daily) or placebo. Although no serious adverse
events occurred with NR administration, insulin sensitiv-
ity, endogenous glucose production, and glucose disposal
and oxidation were not improved [101]. Another clinical
trial with a combination of NR and pterostilbene
(NRPT), a polyphenol found in blueberries, studied
healthy volunteer subjects [102]. NR and NPRT at rec-
ommended dose (NRPT 1X; 250 mg of NR plus 50 mg
of PT), and NRPT at double dose (NRPT 2X; 500 mg of
NR plus 100 mg of PT) were orally administrated to par-
ticipants for 8 weeks. In this study, NAD levels were in-
creased in a dose-dependent manner (approximately
40% in NRPT 1X and 90% in NRPT 2X), and no serious
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adverse side effects were observed [102]. Clinical trials
to examine the safety and pharmacokinetics of NMN
have been recently initiated in the United States and
Japan [103], and the results of these trials are yet to be
seen.

Conclusions
NAD metabolism is spotlighted as a therapeutic target
for metabolic disorders, such as obesity, diabetes, dyslip-
idemia, and fatty liver. The genetic manipulation of
NAD synthesis or catabolizing enzymes has established
that reduction in NAD levels causes metabolic disorders
in mice. Furthermore, mounting evidence has demon-
strated that complementing NAD with NAD precursors
ameliorates various metabolic diseases. Recently, several
human clinical trials have been reported. Overall, NR
administration is safe, well tolerated, and can efficiently
increase NAD levels in healthy volunteers. However, effi-
cacy in patients with metabolic disorders remains un-
clear, and further studies are awaited. Moreover, some
small molecules boosting NAD levels have been reported
[73, 104, 105]. Outcomes of these molecules against
metabolic diseases in patients should be clarified in fu-
ture studies. It is also demonstrated that NMN and NR
are contained in natural foods, including cow milk, broc-
coli, cucumber, avocado, and beef [27, 106, 107]. Thus,
NAD metabolism is considered a practical target for a
nutritional intervention.
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