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Abstract

Background: Cancer stem cells are capable of undergoing cell division after surviving cancer therapies, leading to
tumor progression and recurrence. Inhibitory agents against cancer stem cells may be therapeutically used for
efficiently eradicating tumors. Therefore, the aim of this study was to identify the relevant driver genes that
maintain cancer stemness in epidermal growth factor receptor (EGFR)-positive colorectal cancer (CRC) cells and to
discover effective therapeutic agents against these genes.

Methods: In this study, EGFR-positive cancer stem-like cells (CSLCs) derived from HCT116 and HT29 cells were used
as study models for in vitro inductions. To identify the differential genes that maintain CSLCs, RNAseq analysis was
conducted followed by bioinformatics analysis. Moreover, a panel containing 172 therapeutic agents targeting the
various pathways of stem cells was used to identify effective therapeutics against CSLCs.

Results: RNAseq analysis revealed that 654 and 840 genes were significantly upregulated and downregulated,
respectively, in the HCT116 CSLCs. Among these genes, notably, platelet-derived growth factor A (PDGFA) and signal
transducer and activator of transcription 3 (STAT3) were relevant according to the cancer pathway analyzed using
NetworkAnalyst. Furthermore, therapeutic screening revealed that the agents targeting STAT3 and Wnt signaling
pathways were efficient in reducing the cell viabilities of both HCT116 and HT29 cells. Consequently, we discovered
that STAT3 inhibition using homoharringtonine and STAT3 knockdown significantly reduced the formation and
survival of HT29-derived tumorspheres. We also observed that STAT3 phosphorylation was regulated by epidermal
growth factor (EGF) to induce PDGFA and Wnt signaling cascades.

Conclusions: We identified the potential genes involved in tumorsphere formation and survival in selective EGFR-
positive CRCs. The results reveal that the EGF-STAT3 signaling pathway promotes and maintains CRC stemness. In
addition, a crosstalk between STAT3 and Wnt activates the Wnt/β-catenin signaling pathway, which is also
responsible for cancer stemness. Thus, STAT3 is a putative therapeutic target for CRC treatment.
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Background
Colorectal cancer (CRC) is a leading cause of
cancer-related morbidity and mortality worldwide. Early
diagnosis followed by surgery can cure patients with
CRC. Adjuvant chemotherapy is used for eradicating
remnant tumor cells in high-risk CRC (stages II and III).
Adjuvant therapy consists of either a single agent, such
as capecitabine or 5FU/leucovorin, or a combination of
agents, such as FOLFOX (leucovorin, 5FU, and oxaliplatin)
or CapeOX (capecitabine and oxaliplatin). Moreover,
chemotherapy with oxaliplatin, irinotecan, and 5FU/leu-
covorin and targeted therapy using epidermal growth
factor receptor (EGFR) antibodies, such as cetuximab
and panitumumab, are recommended for metastatic
CRC [1–3]. However, many patients encounter cancer
recurrence despite treatment. Because CRC recurrence is
a major issue leading to poor survival rates, additional
developments of novel therapeutics are necessary.
The literature indicates that cancer stem cells (CSCs)

with higher self-renewal and pluripotency are respon-
sible for tumor recurrence [4, 5] and that they are
associated with metastatic CRC [6]. To the best of our
knowledge, CSCs present high drug resistance [7, 8] and
antiapoptosis property [9, 10] to survive tumor chemo-
therapies. Furthermore, CSCs induce the activation of
oncogenic pathways, such as MET, HER2, and Wnt, for
escaping the targeted therapies [11–15]. Therefore, to
develop an effective therapy targeting specific driver
genes, investigating the molecular mechanism of
CSCs is essential [16]. Leucine-rich repeat-containing
G-protein-coupled receptor 5 (LGR5) is a specific
marker of CRC stem cells [16, 17], which participates
in and activates the Wnt signaling pathway [18–20].
Activation of the Wnt signaling pathway is known for
maintaining the survival of CRC stem cells. LGR5 is
crucial during embryogenesis as a marker of adult in-
testinal stem cells in the small intestines [21]. Crypt
base columnar (CBC) cells with high expression of
LGR5 located interspersedly among the differentiated
Paneth cells are capable of dividing into functional
cells in the intestinal tissues [22]. The colorectal stem
cells are similar to CBC cells that express high LGR5
[23]. Thus, Wnt signaling activation maintains the
survival of CRC cells.
Because CRCs overexpress EGFR in > 90% of clinical

patients, the literature indicates that EGFR is involved in
activating the JAK–STAT signaling pathway [24] for the
survival of CSCs [25, 26]. In fact, EGFR was reported to
be responsible for maintaining the survival of cancer
stem-like cells (CSLCs) in EGFR-positive cancers [27].
Therefore, EGFR downstream proteins, such as signal
transducer and activator of transcription 3 (STAT3),
play a crucial role in activating Wnt signaling in
colon [28, 29] and ovarian [30] cancers. The crosstalk

between STAT3 and the Wnt signaling pathway pos-
sibly occurs during miRNA-92 regulation [30]. STAT3
knockdown consequently reduces β-catenin expression
in CRCs [29]. Furthermore, Wnt upregulates STAT3
for inhibiting cell differentiation in embryonic stem
cells [31]. Additionally, suppression of STAT3 by its
specific inhibitors [32, 33] leads to the prevention of
Wnt signaling activation. The results demonstrate a
crosstalk between STAT3 and the Wnt signaling path-
way. In particular, β-catenin stabilized and activated
by Wnt is predominantly detected in the invasive re-
gions of colorectal carcinomas [34] where CSCs are
responsible for tumor metastasis [35]. These pieces of
evidence support that CSCs contribute to resistance
against chemoradiotherapies, leading to tumor relapse
[36]. Therefore, therapeutics that eradicate CSCs
through targeting of specific driver genes are consid-
ered successful [6].
The aim of this study was to understand the potential

molecular mechanisms of CSCs through RNAseq ana-
lysis followed by bioinformatics analysis for identifying
the specific driver genes involved in the survival of can-
cer stem-like tumorspheres. This study also used in vitro
therapeutic screening for identifying the targeted agents
against EGFR-positive CRCs and their derived cancer
stem-like tumorspheres. The CSLCs were derived from
the colorectal HCT116 and HT29 cells through the
addition of EGF, bFGF, insulin, and heparin in a
serum-free cultured medium [37, 38]. Therefore, the
genes involved in the EGF-, FGF-, and insulin-mediated
signal transduction pathways were priorly investigated
through RNAseq analysis. Furthermore, we conducted
the study to identify the inhibitory agents against the
driver genes in the CRC-derived tumorspheres and com-
pare them with the results obtained from RNAseq and
bioinformatics analyses.

Methods
Cell culture and tumorsphere formation
The colorectal HCT116 and HT29 cancer cells were
gifted to us by the Institute of Nuclear Energy Research,
Taiwan. They were free of mycoplasma. The HCT116
cells were cultured in McCoy’s 5A medium, and the
HT29 cells were cultured in Dulbecco’s Modified Eagle’s
Medium with 10% fetal bovine serum and 1% penicillin–
streptomycin. Tumorsphere formation and measurement
were the same as described previously [37]. Platelet-
derived growth factor (PDGF)-AA was purchased from
R&D Systems, Inc. (Minneapolis, MN, USA).

EGFR measurement through flow cytometry
The obtained H520, HCT116, and HT29 cells were
treated with 2 μg/mL of cetuximab–FITC for 2 h at 4 °C.
Cetuximab–FITC was created and validated as in a
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previous study [39]. Subsequently, the medium was re-
moved and the cells were washed thrice with
phosphate-buffered saline (PBS). The cells in PBS buffer
were analyzed for EGFR expression using a FACSCalibur
Flow Cytometer (BD Bioscience, San Jose, CA, USA). In
this study, H520 was used as an EGFR-negative cell line.

Quantitative polymerase chain reaction
The procedure for mRNA extraction and complemen-
tary DNA preparation was the same as described previ-
ously [37]. Quantitative polymerase chain reaction
(qPCR) was performed using the SYBR Green system
(Applied Biosystems, Foster City, CA, USA) according
to the manufacturer’s instruction. The primers are pre-
sented in Table 1.

RNAseq and bioinformatics analyses
RNAseq analysis was performed to compare the differ-
ential levels of genes between the HCT116 cells and
HCT116-derived tumorspheres using HiSeq 4000 with
paired-end 150 bp sequencing. The differential genes are
shown in Additional file 1: Table S1. The genes that
showed a > 1-fold change (log2) in expression in the
HCT116-derived tumorspheres compared with the
parental HCT116 cells were classified according to their
molecular function using the PANTHER classification sys-
tem (http://pantherdb.org/). The genes that showed >
3-fold change (log2) in expression in the HCT116-derived
tumorspheres are presented in Table 2. In addition, the
genes classified using PANTHER that are associated with
the EGF, FGF, and insulin pathways are presented in
Table 3. Moreover, using the Kaplan–Meier plotter de-
rived from the database PROGgeneV2 (http://watson.-
compbio.iupui.edu/chirayu/proggene/database/index.php),
we identified the relationship between the overall survival
rate and mRNA expression of the target genes. The
protein–-protein interaction was analyzed using Networ-
kAnalyst (http://www.networkanalyst.ca/), and pathway
activations were selected and matched according to the
KEGG database.

Cell viability
The alarmarBlue assay was used according to the manu-
facturer’s protocol to determine cell viability. Inhibitors
against the HCT116 and HT29 cells were added to the
cell culture and incubated for 48 h. Cell viability was
then measured using alarmarBlue. STAT3 inhibitors
against HT29CSCs were added to the culture and
incubated for 7 days because tumorsphere formation
requires > 7 days.

Table 1 Primers used in this study

Gene Direction Sequence (5′ to 3′)

LGR5 Forward CTCTTCCTCAAACCGTCTGC

Reverse GATCGGAGGCTAAGCAACTG

CD133 Forward CTATTCAGGATATACTCTCAGCATT

Reverse TTTCTGTGGATGTAACTTTCAGTG

PDGFA Forward ACGTCAGGAAGAAGCCAAAA

Reverse GGCTCATCCTCACCTCACAT

GAPDH Forward GAGTCAACGGATTTGGTCGT

Reverse TTGATTTTGGAGGGATCTCG

Table 2 Genes that showed > 3-fold change (log2) in expression
in HCT116-derived tumorspheres

Gene fold chang (log2) qvalue

GBP2 5.234 7.48E-05

KRTAP2–3 4.9065 1.31E-36

LUCAT1 4.8558 2.11E-10

ITGAX 4.66 4.87E-09

TMEM158 4.4984 3.71E-85

CREB5 4.4312 5.02E-10

EFEMP2 4.3996 1.17E-11

ANKRD37 4.3836 6.70E-13

ANGPTL4 4.3529 3.55E-103

NDRG1 4.1854 0

IZUMO4 4.0022 1.24E-12

PMEPA1 3.951 0.000462

LINC00202–1 3.9266 0.004557

HLA-V 3.9176 0.001176

CXCL8 3.8982 2.38E-20

KB-1460A1.5 3.7413 0.000276

C1orf228 3.657 0.002742

IGFBP3 3.5875 3.18E-09

HIST1H1C 3.5841 1.94E-18

PDGFA 3.5807 1.44E-48

CITED4 3.5739 0.000183

CXCR4 3.5015 0.003701

STRC 3.4502 0.004858

ISG20 3.3791 0.000322

HILPDA 3.3395 5.75E-36

FAM83A 3.339 0.00102

AMY2B 3.2986 0.001327

ALDOC 3.2823 1.74E-66

AMN 3.2771 0.000458

YPEL3 3.2485 0.00012

SLPI 3.2287 0.000305

RP11-102 K13.5 3.1821 0.000914

CYP4F12 3.177 1.68E-05

AGPAT4 3.163 5.97E-24

CORIN 3.111 0.00075
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Western blots
Western blotting was conducted as previously described
[37]. The specific antibodies against β-catenin, STAT3,
pSTAT3 (Y705), and GAPDH were purchased from Cell
Signaling (Danvers, MA, USA).

Gene knockdown
STAT3 was knocked down using a short-hairpin RNA
(shRNA)-expression lentivirus system containing the
specific shRNA target sequences (1) GCAAAGAAT
CACATGCCACTT for HT29shSTAT3#1 and (2) GCAC
AATCTACGAAGAATCAA for HT29shSTAT3#2 in the
vector pLKO.1-puro that was generated in 293 T cells.
The procedure was the same as that in our previous
study [37].

Animal
Male NOD/SCID mice were purchased from BioLASCO
Taiwan Co., Ltd., Taiwan. The 5-week-old mice were
housed in a 12 h-light cycle at 22 °C. The animal studies
were approved by the institutive ethical review committee
in Mackay Memorial Hospital, Taiwan, which followed the
NIH guidelines on the care and welfare of laboratory
animals. Tumor xenografts were established by injecting

2 × 106 HT29 (n = 3) or HT29shSTAT3#2 cells (n = 3),
into the subcutaneous legs of mice of 5 weeks-old. The
tumor sizes were measured using a digital caliper and
recorded on day 14, 17, 19, 21 and 24. Tumor volume was
recorded and calculated using the formula: 0.52 x width2 x
length, herein the width represents the smaller tumor
diameter.

Statistical analysis
Statistical analyses were performed using GraphPad
Prism V5.01 (GraphPad Software, Inc., CA, USA). All
analytical data with more than two groups were evalu-
ated using analysis of variance, followed by post hoc
analysis with Bonferroni’s test. Student’s t-test was used
to compare two groups. Additionally, p < 0.05 was con-
sidered an acceptable statistically significant difference.

Results
Formation of cancer stem-like tumorspheres from
selective EGFR-positive CRCs
In this study, our first aim was to investigate the mo-
lecular mechanism of CSLCs derived from selective CRC
cells that overexpressed EGFR, including HCT116 and
HT29. The observed EGFR expression was validated
through flow cytometry and compared with lung H520
cancer cells (Fig. 1a and b), which are EGFR-negative
[37]. To analyze the CRC stem-like cells, four growth
factors, namely EGF, bFGF, insulin, and heparin, were
added to the HCT116 and HT29 cells and subsequently
incubated. The culture methodology is described in the
Materials and methods section. Both the HCT116 and
HT29 cells formed tumorspheres within 7 days of incu-
bation, reaching a size of > 100 μm (Fig. 1c and d). Both
HCT116CSC and HT29CSC expressed higher LGR5
levels without an increase in CD133 (Fig. 1e and f).
Because LGR5 is a marker of CSCs, the CSC-associated
genes were proposed to be upregulated in the tumor-
spheres; therefore, these tumorspheres were used as the
study models for investigating the molecular mechanism
of CSCs.

Activation of STAT3 in HCT116-derived tumorspheres
We investigated the major driver genes in the formation
and survival of CRC stem-like cells by conducting RNA-
seq analysis. The differential genes between the
HCT116-derived tumorspheres and parental HCT116
cells were identified. In total, 688 genes were increased
and 1788 genes were decreased in the HCT116-derived
tumorspheres compared with parental HCT116 cells
(Fig. 2a). According to the statistical q value (p < 0.005
with log2 fold change > 1), 654 and 840 genes were
significantly upregulated and downregulated, respec-
tively, in the HCT116-derived tumorspheres (Fig. 2b and
Additional file 1: Table S1 present all the differential

Table 3 Upregulated genes associated with EGF, FGF, and
insulin pathways in HCT116-derived tumorspheres (analyzed
using PANTHER, http://pantherdb.org/)

Pathway Gene fold chang (log2) qvalue

EGF RRAS 1.9498 6.33E-25

RAC2 1.1094 4.70E-07

PIK3CD 1.2025 0.002031

STAT2 1.1837 7.66E-06

MAPK15 1.2498 5.45E-07

PRKCG 2.2982 0.0042873

SHC2 2.6131 0.0019177

STAT3 1.0825 1.18E-11

PPP2R5B 2.4064 1.95E-14

SFN 1.2086 2.92E-57

AREG 1.6495 2.22E-52

FGF FGFR1 1.0804 3.25E-10

RAC2 1.1094 4.70E-07

PIK3CD 1.2025 0.002031

PRKCG 2.2982 0.0042873

PPP2R5B 2.4064 1.95E-14

SFN 1.2086 2.92E-57

Insulin IRS2 2.0046 1.06E-07

FOXO3 1.3511 9.38E-12

PDK1 1.4964 0.00013109

PIK3CD 1.2025 0.002031
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genes). Genes showing a > 3-fold change (log2) in ex-
pression are listed in Table 2. Genes showing a > 1-fold
change (log2) in expression in the HCT116-derived
tumorspheres were classified according to their molecu-
lar function by using the PANTHER classification sys-
tem (Additional file 2: Figure S1). Among the significant
genes, we were interested in the genes involved in the
EGF, FGF, and insulin pathways because the tumor-
spheres were cultured using these growth factors. The
EGF-, FGF-, and insulin-pathway-associated genes classi-
fied by PANTHER are shown in Table 3.
To analyze the interaction among the genes that

showed a > 3-fold change (log2) in expression (Table 2)
or genes associated with the EGF, FGF, and insulin path-
ways (Table 3), NetworkAnalyst was used. In NetworkA-
nalyst analysis, KEGG associated with cancer pathways
showed that PDGFA was indicative (Fig. 2c) and STAT3

may be involved in activating the formation of cancer
stem-like tumorspheres (Fig. 2c). The inceased PDGFA
levels were consequently validated in both HCT116CSC
and HT29CSC through qPCR (Additional file 3:
Figure S2). Furthermore, the HCT116 cells were
treated with EGF, bFGF, and insulin individually to
determine the growth factor playing a crucial role in
inducing PDGFA; EGF was found to significantly
induce the expressin of PDGFA in the HCT116 cells
(Fig. 2d).
To demonstrate that PDGFA was significant in CRCs,

we used the Kaplan–Meier plotter according to the
PROGgeneV2 database. We found that higher levels of
PDGFA were associated with poor survival in four co-
horts of the clinical trial datasets GSE28814, GSE28722,
GSE41258, and GSE29621 (Additional file 4: Figure S3)
among the 12 available datasets. Moreover, 20 ng/mL of

Fig. 1 EGFR-positive CRC-derived tumorspheres mimicking CSCs as study models. (a) EGFR-positive CRC cells HCT116 and HT29 were selected.
These cancer cells were validated for their EGFR expression through flow cytometry and compared with H520 cells, which are EGFR-negative.
(b) Quantification of EGFR through fluoresce intensity revealed higher EGFR expression in HCT116 and HT29 cells compared with H520 cells.
Therefore, HCT116 and HT29 were used as EGFR-positive models in this study. The tumorspheres derived from (c) HCT116 (HCT116CSC) and (d)
HT29 (HT29CSC) were cultured in low-attachment six-well plates with serum-free medium containing 20 ng/mL of EGF, 20 ng/mL of fibroblast
growth factor, 5 μg/mL of bovine insulin, and 4 μg/mL of heparin for 7 days to form tumorspheres measuring approximately 100 μm in diameter.
(e and f) qPCR revealed higher LGR5 expression in HCT116CSC and HT29CSC than in their respective parental cells; LGR5 is a known gastrointestinal
stem cell marker. However, another stem cell marker CD133 was not significantly affected. Scale bar: 100 μm. *p < 0.05. **p < 0.01. ***p < 0.001
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PDGF-AA added to the HCT116 cells was capable of
inducing the expression of not only LGR5 (Fig. 2e) but
also β-catenin (Fig. 2f ), a protein stabilized by Wnt,
indicating that PDGFA overexpression in the cancer
stem-like tumorspheres played a major role in
inducing the activation of the Wnt signaling pathway.
Furthermore, the Wnt-associated genes classfied using
PANTHER are presented in Additional file 5: Table S2,
revealing that Wnt7A, Wnt7B, Wnt9A, and others were
upregulated in the tumorspheres, which indicates the
activation of the Wnt signaling pathway.

Therapeutic screening for identifying the potential agents
against EGFR-positive CRCs
Because CSCs contribute to drug resistance and
tumor recurrence, the Compound Screening Library
(MedChemExpress, NJ, USA) targeting stem cells was
used for identifying the potential therapeutics against
EGFR-positive CRCs. A panel containing 172 compounds
was added to HCT116 and HT29 cells separately at a dose
of 1 μM and incubated for 48 h (Fig. 3a). The compounds
that reduced the cell viabilities of both HCT116 and
HT29 by 60% are marked in red. In total, 8 of the 172

Fig. 2 Gene expression profile of HCT116-derived tumorspheres investigated through RNAseq analysis indicated that PDGFA and STAT3 were
significant. (a) In total, 688 genes increased and 1788 genes decreased in the HCT116-derived tumorspheres compared with the parental
HCT116 cells. (b) Numbers of significant genes upregulated and downregulated in the HCT116-derived tumorspheres according to q value (p < 0.005
with > 1 fold change by log2) were 654 and 840, respectively. (c) Upregulated genes in the HCT116-derived tumorspheres were classified according to
their molecular functions using PANTHER software (http://pantherdb.org/) and shown in Additional file 2: Figure S1. Upregulated genes with a > 3-fold
change (log2) (Table 1) and genes associated with EGF, FGF, and insulin (Table 2) were analyzed using NetworkAnalyst (http://www.networkanalyst.ca/)
for identifying the relevant signaling pathways based on the KEGG database. Genes associated with the cancer pathway are indicated by blue spots,
revealing the overexpression of PDGFA and STAT3, indicated by arrows. (d) Through qPCR, the growth factor inducing PDGFA levels was identified.
Thus, 20 ng/mL of EGF significantly induced PDGFA levels. (e) PDGF-AA was consequently demonstrated to be capable of inducing LGR5 levels and
(f) leading to β-catenin expression. *p < 0.05. **p < 0.01
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compounds significantly reduced the viabilities of the two
CRCs (Fig. 3a); the compounds targeted genes such as
STAT3 (napabucasin, homoharringtonine, and stattic),
Wnt (pyrvinium pamoate, triptonide, salinomycin, IC261),
and transforming growth factor beta (TGFβ)/smad
(halofuginone). The compound structures are shown in
Additional file 6: Figure S4. The individual therapeutics
against HCT116 and HT29 are illustrated in Fig. 3b, and
the detailed experimental results are presented in
Additional file 7: Table S3. The results indicated that the
STAT3, Wnt, and TGFβ/smad signaling pathways were
involved in the survival of the selective EGFR-positive
CRCs.

Targeting STAT3 inhibited the formation and survival of
CRC stem-like tumorspheres
To investigate and validate that STAT3 was involved in
the formation and survival of CRC stem-like
tumorspheres, compounds targeting STAT3 were used.
Napabucasin, homoharringtonine, and stattic, which
significantly reduced the cell viabilities of the HCT116
and HT29 cells, were measured for their inhibitory con-
centrations (IC50 values) against the HCT116 and HT29
cells in a dose-dependent manner from 0 to 2 μM
(Fig. 4a). According to the IC50 results (Fig. 4b),

napabucasin specifically inhibited HCT116 with an
IC50 value of 1.02 μM and homoharringtonine specif-
ically inhibited HT29 with an IC50 value of 0.89 μM.
The results were consistent with the therapeutic
screening results shown in Fig. 3b. Furthermore,
napabucasin and homoharringtonine were added and
investigated for their activities against the formation
of HT29-derived tumorspheres. The results revealed
that both napabucasin and homoharringtonine inhib-
ited the formation of HT29-derived tumorspheres at a
dose of 0.5 and 0.1 μM, respectively (Fig. 4c), includ-
ing reducing the diameter (size, μm) and cell viability.
We speculate that the lower inhibitory concentration
against HT29-derived tumorspheres than against the
parental HT29 cells was because the incubation time
exceeded 7 days. Because the tumorspheres were cultured
with the addition of the growth factors EGF, bFGF, and in-
sulin, they were analyzed using Western blot analysis to
identify the growth factor responsible for activating
STAT3. EGF significantly induced STAT3 phosphorylation
and elevated the mRNA levels of LGR5 in the HT29 cells
(Fig. 4d), implying that addition of EGF activated STAT3
in the cancer stem-like tumorspheres, thus contributing
to the formation and survival of EGFR-positive CRC
stem-like tumorspheres.

Fig. 3 Therapeutic screening for identifying the specific agents against EGFR-positive HCT116 and HT29 cells. (a) To identify an efficient agent
inhibiting EGFR-positive CRCs, a panel containing 172 inhibitory agents was used. Each inhibitor in the panel was added to HCT116 and HT29
cells individually followed by 48 h of incubation. The detailed cell viabilities are presented in Additional file 7: Table S3. In total, 8 of the 172
compounds reduced both HCT116 and HT29 cells by < 60% in vitro, which are marked in red. (b) Moreover, the inhibitors reducing the cell
viability of HCT116 and HT29 cells by 60% individually are listed, revealing that the number of agents inhibiting HT29 cells was more than that of
agents inhibiting HCT116 cells; HCT116 is a KRAS-mutant strain and HT29 is KRAS-normal
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STAT3 knockdown reduced expression of PDGFA and
survival of HT29 cells and their derived tumorspheres
through impairment of EGF-induced Wnt activation
To validate that STAT3 was involved in the formation
and survival of the cancer stem-like tumorspheres,
STAT3 was knocked down (Fig. 5a). However, STAT3
knockdown did not sufficiently inhibit the β-catenin ex-
pression (data not shown), a protein stabilized in Wnt
signaling activation. An in-depth investigation revealed
that the mRNA levels of PDGFA decreased in the
HT29shSTAT3 cells (Fig. 5a). Furthermore, STAT3
knockdown significantly reduced the cell viability of the
HT29 cells (Fig. 5b) and tumor growth in tumor xeno-
grafts (Fig. 5c). Thus, STAT3 determined cell survival in
EGFR-positive colorectal tumors. Moreover, STAT3

knockdown inhibited the formation and survival of
tumorspheres (Fig. 5d). To investigate whether Wnt sig-
naling activation was regulated by the EGF–STAT3
pathway, 20 ng/mL of EGF was added to the HT29 and
HT29shSTAT3 cells individually. The results indicated
that EGF induced STAT3 phosphorylation, leading to
β-catenin overexpression, which had no effect on the
HT29shSTAT3 cells (Fig. 5e). Consequently, the HT29
cells were treated with the STAT3 inhibitors to clarify
the mechanism of homoharringtonine, which signifi-
cantly inhibited the formation and survival of tumor-
spheres (Fig. 4c). Only homoharringtonine remarkably
inhibited STAT3 expression when the cells were treated
with 1 μM of compound for 48 h (Fig. 5f ), resulting in
reduced EGF-mediated β-catenin expression. Thus,

Fig. 4 Targeting STAT3 with its specific inhibitors reduced the formation and survival of HT29-derived tumorspheres. (a) Inhibitors against STAT3
were selected because RNAseq analysis/NetworkAnalyst indicated STAT3 overexpression in the tumorspheres. First, the compounds were added
to HCT116 and HT29 cells individually in a dose-dependent manner and incubated for 48 h. (b) The IC50 of each compound revealed that
napabucasin inhibited HCT116 cells and homoharringtonine specifically inhibited HT29 cells. (c) Napabucasin and homoharringtonine were
consequently investigated for their activities against the formation and survival of the HT29-derived tumorspheres by using 0.1 and 0.5 μM of
compound and incubating for 7 days. The results indicated that napabucasin and homoharringtonine both significantly reduced the formation
and survival of HT29CSCs; however, homoharringtonine priorly inhibited the HT29-derived tumorspheres. (d) To investigate the growth factors
influencing STAT3 activation, Western blot analysis and qPCR were used for observing the STAT3 phosphorylation and stem cell marker LGR5
levels. The results demonstrated that EGF played a major role in activating STAT3 and increasing LGR5 levels. *p < 0.05. ***p < 0.001

Cheng et al. Journal of Biomedical Science  (2018) 25:60 Page 8 of 12



STAT3 is capable of exacerbating β-catenin and indu-
cing PDGFA to promote Wnt signaling for maintaining
the formation and survival of cancer stem-like tumor-
spheres in selective EGFR-positive CRCs.

Discussion
This study conducted gene profiling analyses of colorec-
tal HCT116CSCs through RNAseq analysis and deter-
mined that STAT3 played a crucial role in maintaining
the CRC-stem-like tumorspheres. Furthermore, PDGFA
overexpressed in the CSCs, specifically induced through
the EGF–STAT3 pathway, increased the levels of LGR5,

a marker of CRC stem cells, participating in the Wnt
signaling pathway. Thus, EGF contributed to the survival
of CSCs by STAT3 to activate the PDGFA-mediated
Wnt signaling pathway in the selective EGFR-positive
CRCs.
HCT116 has been demonstrated as an EGFR-overex-

pressed cell line [40, 41], possessing high stemness [42].
Because we previously demonstrated that EGFR may
contribute to the formation of cancer stem-like tumor-
spheres in lung cancers [37], we assumed that EGFR
may also contribute to cancer stemness in CRCs. To test
the hypothesis, we selected EGFR-positive HCT116 and

Fig. 5 STAT3 knockdown reduced cell viability of HT29 cells and formation and survival of HT29-derived tumorspheres through inhibition of
EGF-induced STAT3 phosphorylation. (a) STAT3 was knocked down using shRNA technique and measured using Western blot analysis, leading to
the downregulation of PGDFA and (b) reduction of cell viability in HT29 cells. (c) We demonstrated that knockdown of STAT3 in HT29 cells
(HT29shSTAT3#2) significantly reduced the tumor growth compared to parental HT29 cells in tumor xenografts (n = 3). Tumors are indicated by
red circles. (d) To validate the involvement of STAT3 in the formation of cancer stem-like cells, the HT29 and HT29shSTAT3 cells cultured in
serum-free medium with addition of EGF, bFGF, insulin, and heparin for 7 days were observed and investigated. The diameters of tumorspheres
in the HT29shSTAT3 cells decreased compared with HT29 cells. In addition, the cell viability was reduced in the HT29shSTAT3 cells. (e) To verify
whether STAT3 determines the activation of the Wnt signaling pathway, STAT3 phosphorylation and β-catenin expression were observed after
treatment with 20 ng/mL of EGF for 2 h. The results demonstrated that EGF led to STAT3 phosphorylation and β-catenin overexpression in HT29
cells; however, there was no significant difference in HT29shSTAT3 cells, indicating that STAT3 determines the EGF-exacerbated Wnt signaling
activation for the formation and survival of EGFR-positive cancer stem-like tumorspheres. (f) Consequently, to clarify the mechanism of
homoharringtonine against the formation and survival of tumorspheres, STAT3 inhibitors were added to HT29 cells in 1 μM and incubated for 48 h.
Homoharringtonine remarkably inhibited STAT3 expression and reduced EGF-mediated β-catenin expression. *p < 0.05. **p < 0.01. ***p < 0.001
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HT29 cell lines as study models for investigating the
molecular mechanism of CSCs that were considered re-
sponsible for tumor metastasis and recurrence. We
found that STAT3 activation (phosphorylation) and
LGR5 mRNA levels were individually induced by EGF,
revealing that EGFR is capable of exacerbating cancer
stemness properties; this finding is consistent with that
of a previous study [43]. We speculate that EGF induces
EGFR phosphorylation [37], leading to signaling cas-
cades and thus resulting in STAT3-mediated PDGFA
overexpression and Wnt signaling activation. Because
LGR5 expression was induced by both EGF and
PDGF-AA, we concluded that overexpressed PDGFA
induced by EGF seems to be able to exacerbate CRC
stemness.
Therapeutic screening using a panel containing 172

inhibitors against stem cells revealed that targeting the
STAT3, Wnt, and TGFβ/smad pathways significantly
reduced selective EGFR-positive CRC survival. Thus,
inhibition of STAT3 expression using homoharringto-
nine and knockdown techniques validated that STAT3
was a driver gene contributing to the formation and
survival of the CSLCs derived from the EGFR-positive
CRCs. However, formation of cancer stem-like tumor-
spheres was still observed in the HT29shSTAT3 cells,
although STAT3 expression was downregulated, as
observed using Western blot analysis, indicating that
blockade of STAT3 may be insufficient to completely
eradicate CRCs. According to the therapeutic screening
results, inhibitors targeting Wnt and TGFβ/smad should
be of interest for future investigations of their activities
against EGFR-positive CRCs. Anti-EGFR therapies, such
as cetuximab and panitumumab, are suggested to cure
patients with CRCs [44]. However, mutation of genes
such as KRAS, NRAS, and BRAF in CRCs promotes cell
proliferation and evokes drug resistance against
anti-EGFR therapies [45]. Downstream signaling targets
have been suggested for reducing drug resistance and
preventing tumor recurrence. This study not only estab-
lished the well-known STAT3 as a potential therapeutic
target but also identified a specific anti-STAT3 agent,
homoharringtonine, against EGFR-positive CRCs.
Homoharringtonine, in particular, inhibited the formation
and survival of the CSLCs through STAT3 expression
downregulation, which resulted in a remarkable downreg-
ulation of EGF-mediated β-catenin. Homoharringtonine
prevents the initial elongation step of protein synthesis
[46]. However, Cao and collegues demonstrated that
homoharringtonine also reduces pSTAT3 on Y705 in lung
cancer cells [47]. We found that STAT3 knockdown
reduced EGF-mediated β-catenin expression in this study,
and this result is consistent with that of a previous study
demonstrating that STAT3 mediated β-catenin in nine
CRC cell lines [29]. Therefore, homoharringtonine

probably reduced EGF-mediated β-catenin through
primarily inhibiting STAT3 expression.
We also found that PDGFA overexpression was

regulated by the EGF–STAT3 pathway, implying that the
PDGF-AA binding receptor PDGFRαα served as another
potential driver activating Wnt signaling, which could be
a potential target against tumor recurrence [48]. A previ-
ous study indicated that PDGF-AA and PDGF-BB can
express PDGFRs through an autocrine mechanism [49].
Therefore, although STAT3 was knocked down, causing
downregulation of PDGFA and lower cell viability in the
HT29 cells in this study (Fig. 5a, b, c), it was insufficient
to inhibit β-catenin and completely block tumorsphere
formation. Hence, we speculate that PDGFA is probably
also induced by either bFGF or insulin (Fig. 2d) to lead
to the autocrine mechanism of PDGF–PDGFR activation
because PDGFR plays a crucial role in triggering and
maintaining cancer stemness [50].

Conclusion
Comparing whole gene expression profiles using
PANTHER and NetworkAnalyst in combination with
RNAseq, we determined the role of STAT3 activation
in CRC-derived cancer stem-like tumorspheres.
Additionally, we validated that PDGFA increased in
the tumorspheres through the EGF–STAT3 pathway,
leading to the induction of LGR5 and Wnt signaling.
The therapeutic screening and knockdown experiment
confirmed the observation, indicating that STAT3
targeting is a potential treatment strategy against
EGFR-positive CRCs. This study not only elucidated
the molecular mechanism of CSLCs but also provided
responsible targeted inhibitors such as homoharring-
tonine against selective EGFR-positive CRCs.
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