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Abstract

B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and
function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past
decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the
development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells
and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3+ regulatory T cells with
an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates
peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and
limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription
factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8+ T cells, Blimp-1 expression
is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory
formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine
receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function
of effector and memory CD8+ T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell
activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity.
In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate
the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T
lymphocyte homeostasis.
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Background
B lymphocyte-induced maturation protein-1 (Blimp-1)1,
a zinc-finger motif-containing transcriptional repressor,
is encoded by the positive regulatory domain 1 gene
(Prdm1)1 and was initially characterized as a negative
regulator of β-interferon (IFN-β) gene expression [1].
Blimp-1 was further identified as a master regulator that
orchestrates plasma cell development and the

differentiation of immunoglobulin-secreting B lympho-
cytes [2, 3] and also controls the differentiation of the
myeloid lineage [4]. The expression of Blimp-1 is dy-
namic in primordial germ cells and is critical for mouse
embryonic development [5–7]. Generation of loss-of-
function Blimp-1 mutants by gene targeting is
embryonic-lethal in mice [8]. Therefore, Blimp-1 in-
structs diverse cell fates in the embryo and plays essen-
tial roles in multiple hematopoietic lineages.
The number of studies demonstrating the importance

of Blimp-1 expression in different subsets of T lympho-
cytes for the regulation of immune networks has grown
dramatically over recent years. Blimp-1 has been re-
vealed as a key regulator of T cell homeostasis, and its
ablation in T cells is responsible for downregulating
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expression of interleukin (IL)-10 and upregulating ex-
pression of IL-2 and gamma interferon (IFN-γ) [9, 10].
Recent experiments have demonstrated that Blimp-1 is
also critical for CD4+ T helper (Th) cell differentiation.
In CD4+ T cells, Blimp-1 inhibits Th1 differentiation
[11] and opposes the formation of follicular helper T
(Tfh) cells [12]. In contrast to the inhibition of Tfh com-
mitment by constitutive expression of Blimp-1 in CD4+

T cells, deletion of Blimp-1 in CD4+ T cells augments
Tfh differentiation [13]. Blimp-1 and interferon regula-
tory factor 4 (IRF4) were shown to be indispensable and
to cooperate to regulate the expression of IL-10 and C-C
chemokine receptor 6 (CCR6) in effector regulatory T
(Treg) cells [14]. Furthermore, Blimp-1 instructs tran-
scriptional regulation to control the expression of IL-2,
IL-21 and IL-10 in effector CD4+ T cells for the main-
tenance of T cell homeostasis [14–19]. In addition to
CD4+ T cells, Blimp-1 is also a critical component of the
transcriptional program controlling the generation of
heterogeneous CD8+ T cell populations. The importance
of Blimp-1 in the formation of killer-cell lectin-like re-
ceptor G1 (KLRG1)hiIL-7 receptor (IL-7R)lo short-lived
effector cells (SLECs), KLRG1loIL-7Rhi memory precur-
sor effector cells (MPECs), effector memory (EM,
KLRG1hiIL-7RαhiCD62LlowCCR7low) cells, central mem-
ory (CM, KLRG1lowIL-7RαhiCD62LhiCCR7hi) cells, and
exhaustion of CD8+ T cells during immune responses
has been demonstrated [20]. Moreover, Blimp-1 plays a
critical role in the functions of CD8+ T cells including
migration, cytotoxicity, survival, proliferation and cyto-
kine production [20–22]. The genes regulated by the B
cell lymphoma-6 (Bcl-6)/Blimp-1 axis serve as a cardinal
switch to enable cytokine secretion and effector function
predominantly in CD4+ and CD8+ T lymphocytes [23].
These studies highlight the complexity of the transcrip-
tional programs coordinated by Blimp-1 for the develop-
ment, differentiation and effector function of T
lymphocytes. Here, we briefly review the findings con-
cerning the significance of Blimp-1 in T lymphocytes
and demonstrate divergent roles for Blimp-1 in different
T lymphocyte lineages.

The expression of Blimp-1 in T cell lineages
Blimp-1 is expressed not only in the B cell lineage but
also in other cell lineages including T cells, granulocytes,
macrophages, epithelial cells, retinal neurons, muscle
cells and primordial germ cells [24]. In mice, the expres-
sion of Blimp-1 is detected in both CD4+ and CD8+ T
cells that have the characteristics of effector and mem-
ory cells [9, 10].

CD4+ T cells
Martins et al. reported that they could detect little
steady-state expression of Blimp-1 mRNA in thymocytes

by reverse transcription–quantitative polymerase chain
reaction. Double-negative (DN) thymocytes, CD4 single-
positive thymocytes and peripheral naïve CD4+ T cells
expressed similar levels of Blimp-1 mRNA, which were
threefold higher than the levels of Blimp-1 mRNA in
double-positive (DP) thymocytes [10]. These results were
similar to the results of another group who demon-
strated Blimp-1 expression in DP thymocytes using
microarray [25]. However, Kallies et al. did not detect
any intrathymic Blimp-1 expression using a green fluor-
escent protein (GFP) knock-in strategy [9]. Martins et al.
found that expression of Blimp-1 was higher in the
memory, effector and regulatory T cell populations, and
was induced after in vitro activation of naïve CD4+ T
cells by T cell receptor (TCR) and/or IL-2 stimulation.
The level of Blimp-1 mRNA in T cells was similar to that
in lipopolysaccharide (LPS)-activated splenic plasma
cells 6 days after in vitro stimulation with anti-CD3 and
anti-CD28 antibodies and IL-2 [10]. Likewise, Kallies et
al. demonstrated that the GFP+CD4+ T cells were
CD44hi and mainly CD62Llo, a cell surface phenotype in-
dicating effector and memory CD4+ T cells, and that
these cells showed high expression of other activation
markers such as CD122 and glucocorticoid-induced
tumor necrosis family related gene (GITR) protein [9].
Consistent with this, Gong et al. reported that Blimp-1
protein was expressed in both CD4+ and CD8+ T cells
after anti-CD3 stimulation and that Blimp-1 protein
levels in activated T cells were similar to those found in
LPS-activated B cells by western blot analysis. Moreover,
Blimp-1 expression in both CD4+ and CD8+ T cells was
detected 24 h after activation with anti-CD3 antibody,
and it was clearly expressed after 48 h in culture [15].
Taken together, these findings suggest that Blimp-1 ex-
pression is mainly confined to activated T cells.
Kallies et al. assessed Blimp-1 expression during the

differentiation of GFP knock-in mouse CD4+ T cells into
effector cells; they cultured CD62L+CD4+GFP− T cells
under Th1- or Th2-polarizing conditions. GFP analysis
showed that Blimp-1 was induced in effector cells of
both Th1 and Th2 lineages [9]. Salehi et al. sorted naive
CD4+ T cells from Blimp-1-yellow fluorescent protein
reporter mice and stimulated these cells under neutral,
Th1, Th2 or Th17 conditions to analyze Blimp-1 mRNA
expression at different time points. They found that cells
cultured in Th1 or Th2 conditions began to express
Blimp-1 sooner than cells cultured in neutral conditions
but that Th1 cells expressed significantly more Blimp-1
than Th2 cells and at earlier time points. In contrast,
cells cultured under Th17 conditions did not signifi-
cantly upregulate Blimp-1, and only 5% of the cells
expressed Blimp-1 at day 7.5 poststimulation. The differ-
ential expression of Blimp-1 during the differentiation of
different Th populations was confirmed by either mRNA
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or protein analysis. Consistent with these findings,
Blimp-1 was reported to be induced in Th1 and Th2
cells but not repressed in Th17 cells by transforming
growth factor (TGF)-β [26]. Moreover, Blimp-1 mRNA
was also detected in Treg cells [9, 10]. Cretney et al. ex-
amined the expression of Blimp-1 in Treg cells using
GFP reporter mice and demonstrated that Blimp-1 was
expressed in the subset of Foxp3+ Treg cells with an ef-
fector phenotype that produce IL-10. It was dispensable
for the formation of effector Treg cells but essential for
their ability to produce IL-10 [14].

CD8+ T cells
Blimp-1 expression in different subsets of CD8+ T cells in
mice
Previous studies demonstrated that in vitro stimulation
with anti-CD3ε, anti-CD28 and IL-2 induced high levels
of Blimp-1 mRNA expression in naïve T cells with de-
layed postactivation kinetics [9, 10], suggesting that the
expression of Blimp-1 is enhanced in CD8+ T cells when
they encounter a cognate antigen. Indeed, the amount of
Blimp-1 was significantly increased in antigen-specific
effector CD8+ T cells during acute influenza virus,
lymphocytic choriomeningitis virus (LCMV) or vaccinia
virus infection [27–29]. When they encounter antigen,
naïve CD8+ T cells undergo differentiation to generate
KLRG1hiIL-7Rlo SLECs and KLRG1loIL-7Rhi MPECs that
have different fates and potentials for memory cell devel-
opment. After an infection is cleared, the MPECs will
generate memory CD8+ T cells that can be either EM
(KLRG1hiIL-7RαhiCD62LlowCCR7low) or CM (KLRG1lowIL-
7RαhiCD62LhiCCR7hi) cells [22]. During the acute phase of
LCMV infection, the IL-7Rαlow effector CD8+ T cells with
high KLRG1 and low CCR7 mRNA expression exhibited
elevated expression of Blimp-1 mRNA [30]. Blimp-1 ex-
pression was always higher in KLRG1hiIL-7Rlo SLECs than
in KLRG1loIL-7Rhi MPECs and remained heightened in
CM T subsets after LCMV infection [28]. In contrast to the
situation during acute viral infections, during chronic viral
infections, virus-specific CD8+ T cells undergo an altered
profile of transcription and become exhausted. Blimp-1 ex-
pression was higher in virus-specific CD8+ T cells undergo-
ing exhaustion during chronic viral infection than in
antigen-specific T cells after acute infection, suggesting a
correlation between Blimp-1 expression and exhaustion
[31]. Overall, these results indicate that during virus infec-
tion, Blimp-1 expression exhibits a heterogeneous pattern
in different CD8+ T cell subsets.

The expression of BLIMP-1 in human CD8+ T cells
In addition to mouse T cells, the expression of BLIMP-1
in human CD8+ T cells was also demonstrated in several
recent studies. In CD161++IL-18Rα+CD8+ human T
cells, a newly identified subset of memory cells, the

transcription level of BLIMP-1 was significantly higher
than that in classical CD27+CD45RA− memory CD8+ T
cells. This high level of BLIMP-1 expression may con-
tribute to the differentiated effector-type features of
CD161++IL-18Rα+ CD8+ human T cells [32]. Lee et al.
identified a novel population of IL-6RαhiCD45RA
+/−CCR7−CD8+ EM T cells, which may serve as a reser-
voir of effector CD8+ T cells. These IL-6Rαhi CD8+ EM
T cells produce high levels of Th2 cytokines and GATA
binding protein 3 (GATA3), and are expanded in the
peripheral blood mononuclear cells of asthma patients.
Moreover, they express low levels of the transcription
factors T-BET, Eomesodermin (EOMES) and BLIMP-1,
suggesting that they are not terminally differentiated
CD8+ T cells [33]. In addition to different expression
levels in CD8+ T cell subsets, HIV-1 transactivator of
transcription (Tat) protein treatment enhanced the tran-
scription of PRDM1 after T cell receptor stimulation.
This effect of Tat on PRDM1 expression was inhibited
by blocking integrins, indicating that Tat modulates
BLIMP-1 through the interaction of integrins with their
ligands [34].

The effects of Blimp-1 on T cell functions
Deletion of Blimp-1 in T cells leads to the dysregulation
of T lymphocytes and the expression of an abnormally
activated phenotype. This phenomenon is supported by
evidence that Blimp-1 is necessary for normal thymocyte
survival and controls T cell homeostasis. Blimp-1 is also
critical for T helper differentiation and cytokine
production.

CD4+ T cells
Blimp-1 is important for thymocyte development
Martins et al. observed that the numbers of immature
DP thymocytes are reduced and that they are prone to
apoptosis in mice with T cell-specific Blimp-1 deletion
generated using the proximal-Lck-Cre deletion system,
suggesting that Blimp-1 may function in early T cell
maturation and that its dysfunction is responsible for
survival defects in DP thymocytes [10]. In addition, Lin
et al. reported that Blimp-1 modulates lymphocyte de-
velopment. The number of thymocytes in 6-week-old
Blimp-1 transgenic mice was increased compared with
controls and was even higher in conditional knockout
(CKO) mice lacking Blimp-1 in T cells. The numbers of
DP thymocytes in both transgenic and CKO mice were
significantly increased compared with controls, suggest-
ing that Blimp-1 may have a complicated and stage-
dependent modulatory effect on thymocyte survival and/
or expansion. After stimulation through the TCR or with
phorbol-12-myristate-13-acetate plus ionomycin, the
proliferation of thymocytes was significantly impaired in
Blimp-1-transgenic mice compared with controls. In
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contrast, it was dramatically enhanced in Blimp-1-CKO
mice compared with controls, indicating a suppressive
role of Blimp-1 in thymocyte proliferation [35]. Deletion
of Blimp-1 under control of Cd4 or the proximal-Lck
promoter resulted in global T cell defects during early
thymic development. However, Blimp-1-deficient mice
created using a distal-Lck-Cre system, which promotes
deletion of genes during the late single-positive thymic
development stage, had a normal number of thymocytes
and did not show any signs of spontaneous autoimmun-
ity [36]. Furthermore, Bach et al. showed that T cell-
specific expression of the IL-2-inducible kinase-spleen
tyrosine kinase (Itk-Syk) oncogene in mice leads to an
early onset and aggressive polyclonal T cell lymphopro-
liferation. They found that high Itk-Syk expression in
thymocytes induced Blimp-1-mediated premature ter-
minal differentiation, resulting in oncogene-expressing
cells being eliminated early in development [37]. Thus,
Blimp-1 is required to induce cell elimination in the
thymus.

Blimp-1 maintains peripheral homeostasis
Kallies et al. and Martins et al. both reported that
Blimp-1 is expressed in effector and memory T cells.
Kallies et al. generated Blimp-1-GFP knock-in mice and
demonstrated that the GFP+ CD4+ T cells were effector
and memory CD4+ T cells with high expression of acti-
vation markers such as CD122 and GITR, which accu-
mulated in vivo and contributed to severe early-onset
colitis [9]. Martins et al. showed that mice lacking
Blimp-1 specifically in the T cell lineage had more ef-
fector CD4+ and CD8+ cells in the periphery [10]. Both
mice with a T cell-specific deletion and Rag1−/− mice
reconstituted with Prdm1gfp/gfp fetal liver cells displayed
a dysregulated population expansion that resulted in ei-
ther T cell-mediated immune pathology or multiorgan
infiltration, suggesting a linkage between Blimp-1 and
the cell-intrinsic control of T cell activation and homeo-
stasis [9, 10]. Studies from Sytwu’s group illustrated that
Blimp-1 deficiency in T cells leads to higher numbers of
activated CD4+ T cells, and this is associated with a
homeostatic dysregulation of effector/memory T cells
that contributes to both severe colitis in nonobese dia-
betic (NOD) mice and the exacerbation of autoimmune
encephalomyelitis in myelin oligodendrocyte glycopro-
tein (MOG)35–55-immunized mice [35, 38, 39]. There-
fore, Blimp-1 is a key regulator of effector T cells and
controls their homeostasis.
Kallies et al. reported that Blimp-1 controls T cell pro-

liferation and apoptosis. Blimp-1-mutant T cells are less
susceptible to apoptosis than wild-type cells: when cell
death was impaired in Prdm1gfp/gfp mice, the numbers of
Blimp-1-mutant T cells increased, suggesting a mechan-
ism that contributes to effector T cell expansion in vivo.

They suggested that Blimp-1 in late-stage T cells con-
trols activation-induced cell death (AICD) [9]. In con-
trast, Martins et al. showed that CKO and control CD4+

T cells were similarly susceptible to AICD. They demon-
strated that when naive CKO CD4+ T cells were stimu-
lated via the TCR, more cells produced IL-2 and
proliferated than in wild-type mice [10]. Lin et al. dem-
onstrated the inhibitory function of Blimp-1 on T cell
proliferation in Blimp-1-transgenic mice. This downreg-
ulated proliferation may be the result of Blimp-1-
mediated suppression of IL-2 production, because the
production of IL-2 by stimulated transgenic CD4+ T cells
was significantly decreased compared with that by con-
trol cells. In contrast, IL-2 production was remarkably
increased in CKO T cells, indicating that Blimp-1 critic-
ally modulates T cell activation and proliferation [35].
Blimp-1-deficiency in T cells results in both enhanced
proliferation and attenuated AICD, resulting in aber-
rantly large numbers of activated T cells. However, the
detailed mechanism by which Blimp-1 regulates prolifer-
ation and cell death needs further investigation.
During chronic and acute viral infections, the antiviral

T cell response is controlled through a host-regulated
process. Hua et al. identified T-bet- and Blimp-1-
dependent development of CD4+ T cells with cytotoxic
potential and showed that this development was induced
during influenza virus infection by antiviral type I IFNs
and IL-2. Blimp-1 deficiency impaired the binding of T-
bet to the Gzmb and Prf1 promoters, suggesting that
Blimp-1 controls the development of CD4+ T cells with
cytotoxic potential by regulating the binding of T-bet to
the promoters of the genes for cytolytic molecules [40].
In addition, increasing expression of IL-10 regulates the
suppression of viral-specific T cell responses. A recent
study demonstrated that virus-specific Th1 cells with el-
evated and sustained Blimp-1-dependent IL-10 expres-
sion displayed reduced inflammatory function during
chronic LCMV infection [41]. Another study showed
that Blimp-1 is highly expressed in CD4+ memory T cells
compared with naive CD4+ T cells and that it limits
HIV-1 transcription in CD4+ memory T cell subsets, the
primary reservoir of latent HIV-1 [42]. Therefore,
Blimp-1 plays an important role in regulating the ef-
fector function of CD4+ T cells during viral infections to
maintain T cell homeostasis.

Blimp-1 controls T cell differentiations
Naïve CD4+ T cells can differentiate into different ef-
fector lineages including Th1, Th2, Th17 and Treg cells
that express lineage-specific transcription factors (such
as T-bet, GATA3, retinoic acid-related orphan receptor
(ROR)γt or Foxp3) upon environmental stimulation and
in a specific cytokine milieu [43]. Using a GFP knock-in
strategy to delete Blimp-1 in T cells, it was demonstrated
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that Prdm1gfp/gfp CD4+ T cells can differentiate into Th1
and Th2 effector cells that secrete levels of IFN-γ, IL-4
and IL-10 similar to those produced by wild-type ef-
fector cells, indicating that Blimp-1 is not required for
initiation of differentiation and cytokine production.
These findings suggest that early CD4+ T cell effector
differentiation is independent of Blimp-1 and that
Blimp-1 expression is not essential for the acquisition of
effector functions in the T-cell lineage [9]. Blimp-1 con-
trols the differentiation of some Th cell lineages, includ-
ing promoting Th2 lineage commitment by opposing the
differentiation of IFN-γ-secreting Th1 cells [11], antag-
onizing follicular Th (Tfh) cells [12] and cooperating
with IRF4 to maintain the function of Treg cells [14].
Th1 cells also express Blimp-1 to limit Tfh lineage com-
mitment by suppressing the expression of both Bcl6 and
C-X-C chemokine receptor type 5 (CXCR5), a chemo-
kine receptor that is characterized as a signature marker
for Tfh cells migrating into B-cell follicles [44, 45]. Re-
cently, several studies reported that Blimp-1 regulates
IL-17-secreting Th17 cells [26, 35, 39]. Lin et al. demon-
strated that transgenic expression of Blimp-1 in T cells
attenuates autoimmune diabetes through suppression of
Th17 cells, while Blimp-1 deficiency leads to an increase
in Th17 cells [35]. In addition, Blimp-1 regulates and
maintains homeostasis of the intestinal mucosa by limit-
ing the numbers of Th17 cells [26]. Disruption of the IL-
23–Th17 axis ameliorates the severity of T cell-specific
Blimp-1 deficiency-mediated colitis in CKO mice [39].
Elevated susceptibility to experimental autoimmune en-
cephalomyelitis in Blimp-1-deficient mice involves in-
creased Th1 and Th17 responses [38]. Deletion of
Blimp-1 in T cells leads to the inability to suppress Th1
and Th17 cells in mice with colitis or autoimmune dia-
betes [9, 10, 26, 35, 39]. Therefore, Blimp-1 is clearly
central to effector CD4+ T cell differentiation.

The interplay between Blimp-1 and cytokines
Kallies et al. and Martins et al. agree that Blimp-1-
deficient CD4+ T cells produce higher levels of IL-2 and
IFN-γ but less IL-10 and IL-4 [9, 10] than wild-type
cells. Further reports showed that the mean fluorescence
intensity of IFN-γ staining per cell in these CKO CD4+

T cells was increased, indicating that each CKO cell pro-
duces more IFN-γ. Blimp-1 attenuates IFN-γ production
in CD4+ T cells activated in vitro under nonpolarizing
conditions and in vivo [11, 35, 38]. Wang et al. showed
that Blimp-1 is very strongly induced and plays a role in
IL-2 inhibition when naive T cells are stimulated in the
presence of IL-4, both in vitro and in vivo [46]. IL-2 is
critical for T cell immunity to promote proliferation, ac-
tivation and differentiation of T cells [47]; it induces
Blimp-1 expression in activated T cells and inhibits its
own production through the induction of Blimp-1 in a

negative feedback loop [15, 16]. Lack of Blimp-1 expres-
sion in CD4+ cells under the control of the proximal-Lck
or Cd4 promoters leads to intrinsic functional defects
and an increase in IL-17-producing cells in vivo, estab-
lishing a new role for Blimp-1 in regulating IL-17 pro-
duction [26, 35, 38, 39]. The overexpansion of Th1 and
Th17 cells in CKO mice was significantly reduced by
introducing a Blimp-1 transgene, supporting the crucial
role of Blimp-1 in autoimmunity [35, 38]. Thymic dele-
tion of Blimp-1 in T cells results in T cell development
defects and spontaneous autoimmunity. However, per-
ipheral deletion of Blimp-1 driven by the distal-Lck pro-
moter led to reduced Th17 activation and reduced
severity of autoimmune encephalomyelitis. Jain et al. also
identified Blimp-1 as a key transcription factor induced
by IL-23 to drive the inflammatory function of Th17
cells by enhancing expression of IL-23 receptor,
granulocyte-macrophage colony stimulating factor and
IFN-γ in the peripheral T cells [36].
IL-21 is a pleiotropic cytokine that induces expression

of Blimp-1 that is controlled by cooperation between
signal transducer and activator of transcription 3
(STAT3) and IRF4 [17]. A high percentage and absolute
number of IL-21-producing CD4+ T cells were observed
in MOG35–55-immunized Blimp-1-deficient mice, and
the numbers of central nervous system (CNS)-infiltrat-
ing Th1, Th17, IFN-γ+IL-17A+ and IL-21+IL-17A+ CD4+

T cells were markedly increased in the brain and spinal
cord of these Blimp-1 CKO mice at an early effector
phase, suggesting a critical role of Blimp-1 in control of
IL-21 production [38]. These findings raise the possibil-
ity that a negative feedback loop exists wherein IL-21 in-
hibits its own production through induction of Blimp-1;
this possibility needs to be further investigated.
IL-10 is an anti-inflammatory cytokine produced by

CD4+ T cells, Treg cells, CD8+ T cells, dendritic cells
(DCs), macrophages and B cells [48]. IL-10-producing
CD4+ T cells have been reported to be a self-regulation
mechanism during viral or parasitic infections [49, 50].
A population of effector T cells producing IL-10 (IL-10
+IFN-γ+ double producers) defined as T regulatory 1
(Tr1) cells is responsible for T-cell plasticity or repro-
gramming [51]. Blimp-1 has been implicated as a key
transcription factor involved in the molecular mechanisms
directing IL-10 production in effector T cells. Blimp-1-
deficient CD4+ T cells produce less IL-10 [9, 10], and tar-
geting tumor necrosis factor receptor 1 assembly in
Blimp-1 CKO mice regulates Th1/Th17 effector status by
increasing the frequency of IL-10-producing cells and the
levels of IL-10 in Th1 and Th17 cells [39]. Virus-specific
T cells self-limit their responsiveness and reduce their in-
flammatory function via Blimp-1-dependent IL-10 expres-
sion during chronic LCMV infection [41]. Type I
interferon-mediated induction of Blimp-1, and a
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subsequent expansion of Tr1 cells, has been reported to
limit Plasmodium-specific Tfh accumulation and to con-
strain antimalarial humoral immunity during blood-stage
Plasmodium infection [52]. In addition, IL-27, together
with TGF-β, is critical for IL-10 production in Th1-driven
immune responses both in vitro and in models of infec-
tion with Toxoplasma gondii [53, 54]. Moreover, IL-23
counteracts the IL-27- and IL-12-mediated effects on
Blimp-1-induced Tr1 development and stabilizes the in-
flammatory Th17 phenotype, leading to uncontrolled
Th17 cell-driven CNS pathology [18]. TGF-β antagonizes
Blimp-1, is a key driver of IL-10 production in proinflam-
matory effector T cells downstream of IL-12 and IL-27,
and shifts IL-10 regulation from a Blimp-1-dependent to a
Blimp-1-independent pathway by inducing c-Maf in Tr1
cells [19]. Importantly, Blimp-1-dependent IL-10 produc-
tion by Tr1 cells is a major regulator of tumor necrosis
factor (TNF)-mediated inflammation [55]. In summary,
these studies demonstrate an essential role for Blimp-1 in
the transcriptional framework regulating the intrinsic
plasticity of Th cells in an inflammatory milieu.

Blimp-1 controls regulatory T cell function
Treg cells are required for peripheral tolerance, and
Blimp-1 is a target of Foxp3 in Treg cells [56]. Because
Treg cells are dependent on IL-2 for their maintenance,
the feedback regulatory loop between Blimp-1 and IL-2
shown in activated T cells may also be important for
Treg homeostasis.
IL-10 production by Tregs is significantly downregu-

lated in Blimp-1-CKO mice, suggesting that Blimp-1 has a
critical role in Treg function, which is important for limit-
ing severe T cell-mediated immune pathology [10, 38].
However, Kallies et al. reported that Blimp-1-deficient
Treg cells protect lymphopenic hosts from colitis elicited
by injection of T cell populations depleted of Treg cells
[9]. Intriguingly, Blimp-1 overexpression upregulates the
suppressive ability of Treg cells in Blimp-1-transgenic or
Blimp-1-CKO mice, suggesting that Blimp-1 critically
modulates and rescues the expansion and functions of
Tregs [35, 38]. Importantly, the acquisition of Treg ef-
fector functions in Foxp3+ Tregs by production of IL-10
also requires the expression of Blimp-1 [14, 57]. A popula-
tion of follicular regulatory T (TFR) cells expressing
Blimp-1was identified in the germinal center, which lim-
ited Tfh cell and germinal center B cell numbers. Notably,
Bcl-6 is essential for TFR cell formation, and Blimp-1
limits the numbers of TFR cells, suggesting that Bcl-6 co-
ordinates with Blimp-1 to control TFR formation and
homeostasis [58]. Blimp-1 was also upregulated in associ-
ation with the activation of virus-reactive T-bet+ Treg and
with acquired expression of IL-10 in a mouse model of in-
fluenza virus infection, thereby conferring a functional
specialization to an antiviral immune response [59].

Furthermore, Blimp-1, together with elevated levels of
TGF-β, IL-10, IFN-β and CXCR3, plays a crucial role in
the ability of graft-infiltrating Foxp3+ Treg cells to main-
tain spontaneously induced kidney allograft tolerance in
the DBA/2 (H-2d) to C57BL/6 (H-2b) mouse strain com-
bination [60]. Therefore, upregulation of Blimp-1 is essen-
tial for modulating the immunoregulatory and effector
functions of Treg cells.

Blimp-1 is associated with CD4+ T cell exhaustion
During chronic viral infection, both the CD4+ and CD8+

T cell responses are impaired by a dysfunctional or
exhausted state characterized by diminished effector
function and enhanced expression of inhibitory mole-
cules in T cells [61]. Higher levels of BLIMP-1 are
expressed in T cells from patients with progressive
chronic HIV infection [62] and are associated with lower
levels of HIV expression in memory CD4+ T cells from
nonprogressors [63]. BLIMP-1 is also induced in T cells
stimulated by HIV-pulsed DCs and is associated at both
the RNA and protein levels with other protein markers
of exhaustion, including programmed death-1 (PD-1),
lymphocyte activation gene-3 (LAG-3), cytolytic T-
lymphocyte antigen-4 (CTLA-4) and T-cell immuno-
globulin mucin-containing domain-3 (TIM-3) [64, 65].
Interestingly, expression of BLIMP-1 is translationally
regulated by microRNA miR-9 [66]. Reduced levels of
miR-9 in CD4+ T cells have been shown to play a func-
tional role in the higher levels of BLIMP-1 expression in
patients with progressive chronic HIV infection who
have reduced IL-2 expression and generalized T-cell dys-
function, indicating a novel miR-9/BLIMP-1/IL-2 axis
that is dysregulated in progressive HIV infection [62].
Elevated expression of IL-10 mediated by Blimp-1 is

involved in the suppression of viral-specific T cell re-
sponses during the course of chronic LCMV infection
[41]. In addition, Blimp-1 is a critical regulator of CD4 T
cell exhaustion with elevated levels of inhibitory factors
being expressed during chronic toxoplasmosis [67].
Therefore, Blimp-1 is highly upregulated in exhausted
CD4+ T cells.

CD8+ T cells
The effects of Blimp-1 on CD8+ T cell differentiation
Over recent years, the functions of Blimp-1 in program-
ming the differentiation of CD8+ T cells have been grad-
ually established. During acute LCMV infection, a
deficiency of Blimp-1 in activated CD8+ T cells
(Prdm1flox/flox GzB-cre+ mice) disturbs the normal ex-
pression of several cytolytic molecules. Blimp-1-deficient
CD8+ T cells acquired mature memory features includ-
ing enhanced survival, proliferation potential, IL-2 pro-
duction and increased formation of KLRG1loIL-7Rhi

MPECs as well as CD62Lhi CM CD8+ T cells at early
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time points after infection. In addition, in the absence of
Blimp-1, the transition rate from effector to memory
cells was increased, indicating that Blimp-1 is critical in
the development of CD8+ T cells during viral infection
at stages from terminal differentiation to memory cell
maturation [28]. During chronic infection, virus-
specific CD8+ T cells become exhausted and accom-
panied by a hierarchical loss of effector function and
sustained expression of several inhibitory molecules.
In exhausted CD8+ T cells, Blimp-1 plays an import-
ant role in the regulation of expression of inhibitory
molecules including PD-1, 2B4, LAG-3 and CD160,
indicating that it has a role in controlling T cell ex-
haustion during chronic viral infection. Moreover,
Blimp-1 functions as a transcriptional rheostat that
intrinsically regulates the effector function and the
exhaustion of CD8+ T cells at low and high expres-
sion levels, respectively [31]. In addition to its role
during viral infection, Blimp-1 also affects effector
CD8+ T cell differentiation during DC vaccination.
However, the expansion of CD8+ T cells and the for-
mation of functional memory T cells is not affected
in Blimp-1-deficient OT-I cells responding to DC vac-
cination, suggesting a critical role for Blimp-1 in the
formation of SLECs but not MPECs in the absence of
inflammation [68].
IRF4 directly binds to the regulatory elements of

Prdm1 to control Blimp-1 expression. During Listeria
monocytogenes infection, Irf4−/− CD8+ T cells retained
a “precursor-like” state with impaired acquisition of
an effector phenotype that was similar to that of
Prdm1−/− CD8+ T cells, suggesting that IRF-4 func-
tions upstream of Blimp-1 in the development of pro-
tective effector CD8+ T cells during an immune
response against an intracellular bacterium [69]. Dur-
ing virus infection, signals via costimulatory molecules
and cytokines are critical for the generation of ef-
fector CD8+ T cells. After virus clearance, downregu-
lation of costimulatory and cytokine receptors may
promote apoptosis of the effector population. Blimp-1
can recruit the histone-modifying enzymes G9a and
histone deacetylase 2 (HDAC2) to the regulatory ele-
ments of Il2ra and Cd27, thereby repressing the ex-
pression of these genes, further dictating the fate of
effector CD8+ T cells [70]. Previous studies estab-
lished a critical role for Blimp-1 in integrating inflam-
mation and antigen signaling during effector T cell
priming. Recently, Stelekati et al. demonstrated that
the negative impact of persistent LCMV infection on
CD127+KLRG1− memory CD8+ T cell development
was abolished in Prdm1flox/flox Gzmb-Cre OT1 cells,
suggesting that Blimp-1 regulates memory CD8+ T
cell differentiation in the presence of bystander
chronic infection and prolonged inflammation [71].

The effects of Blimp-1 on effector functions of CD8+ T cells
Blimp-1, Bcl-6, T-bet and Eomes orchestrate a transcrip-
tional program that regulates the differentiation of ef-
fector and memory CD8+ T cells. In addition to cell
differentiation, Blimp-1 is required for the function of
cytotoxic T cells. Kallies et al. demonstrated that Blimp-
1 is required for the migration of viral antigen-specific
CD8+ T cells from lymph nodes into the lungs during in-
fluenza virus infection. They observed that Blimp-1-
deficient T cells had decreased and elevated expression
of lung-homing CCR5 and lymph organ-localizing
CCR7, respectively, suggesting that Blimp-1 suppresses
CCR7 expression to control the efficient trafficking of
CD8+ T cells from lymph nodes to peripheral tissues
[27]. Blimp-1 is also required for the cytotoxic function
of CD8+ T cells. Conditional deletion of Blimp-1 in acti-
vated CD8+ T cells (Prdm1flox/flox Gzmb-Cre) did not
affect the production of effector cytokines and CD107a
but attenuated the granzyme B expression and cytotox-
icity of viral antigen-specific CD8+ T cells during chronic
infection [31]. Rutishauser et al. also observed that
Blimp-1-deficient cytotoxic T cells had decreased gran-
zyme B expression after acute LCMV infection. More-
over, their results revealed that the percentage of
polyfunctional (IFN-γ, TNF-α and IL-2 triple cytokine-
producing) cells was increased in Prdm1−/− (Prdm1flox/
flox GzB-Cre) mice. In addition to altering effector mol-
ecule expression, Blimp-1 antagonized the proliferation
of virus-specific effector CD8+ T cells stimulated by viral
antigens and homeostatic cytokines [28].
Inhibitor of DNA binding 3 (Id3) is expressed by ef-

fector CD8+ T cells and supports their survival during
the effector-to-memory cell transition. Ji et al. demon-
strated that Blimp-1 triggers the death of terminally dif-
ferentiated CD8+ T cells through directly repressing Id3
expression and consequently increasing E2A transcrip-
tional activity [29]. It is well established that CD25, a
subunit of the IL-2 receptor, and CD27, a costimulatory
molecule in the TNF receptor family, play important
roles in regulating CD8+ responses, proliferation and
survival during the different stages of viral infection
[72–75]. Blimp-1 acts as an epigenetic regulator to con-
trol the chromatin state of Cd25 and Cd27 by recruiting
histone-modifying enzymes G9a and HDAC2, but not
Ezh2, in CD8+ T cells at the peak of the response to
LCMV infection, suggesting that Blimp-1 downregulates
cytokine receptor expression to promote the death of ef-
fector cells [70].
In contrast to its function as a repressor, Blimp-1 can

also function as an enhancer of IL-10 production. Dur-
ing influenza virus infection, antiviral CD8+ cytotoxic T
lymphocytes produce IL-10 to prevent excess inflamma-
tion [76]. Sun et al. demonstrated that CD4+ T cell-
produced IL-2 and innate cell-derived IL-27 act
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synergistically via Blimp-1 to amplify IL-10 production
in CD8+ T cells in the respiratory tract during influenza
virus infection [77]. Moreover, the authors recently
demonstrated that type I interferons can enhance the
synergistic effect of IL-2 and IL-27 to promote Blimp-1-
mediatedI L-10 production by effector CD8+ T cells dur-
ing influenza infection [78].

Transcriptional regulation of Blimp-1 in T cells
Blimp-1 in T cells is induced upon activation. Blimp-1 is
associated with an abundance of chromatin-modifying
enzymes that induce epigenetic changes at specific tar-
gets or recruit corepressor complexes to mediate gene
silencing to regulate diverse cell fates [24].

CD4+ T cells
Transcriptional control of Blimp-1 in CD4+ T cells
It has been reported that nuclear factor-κB signaling is
required for induction of Prdm1 expression in B cells
[79]. In addition, the BTB and CNC homology 2 (Bach2)
protein functions mainly to repress Blimp-1 in B cells
[4]. Recently, Bach2 was shown to be expressed also in
T cells and to function as a critical regulator suppressing
EM-related genes in naive T cells [80]. The expression of
Bach2 mRNA is high in CD4 single-positive thymocytes,
Foxp3+ CD4 single-positive thymocytes, naïve T cells,
splenic CD4+ and CD8+ T cells, and Treg cells in the
spleen, but very low in DN, DP and CD8 single-positive
thymocytes [80, 81]. Although the protein expression of
Bach2 in naive T cells is high, it is lower than that in B
cells [80]. Bach2 plays crucial roles in CD4+ T cell differ-
entiation, generation of EM T cells and survival and de-
velopment of Treg cells by regulating the effector and
differentiation transcriptional program. Blimp-1, upregu-
lated in EM T cells, is repressed by Bach2 in T cells, con-
sistent with its repression by Bach2 in B cells [80–82].
The level of Prdm1 expression was elevated in Bach2−/−

Treg cells or naive Bach2−/− CD4 T cells after TCR
stimulation [80, 82]. Binding of Bach2 to Prdm1 was
measured in induced Treg cells by chromatin immuno-
precipitation with massively parallel sequencing (ChIP-
Seq) [81]. Bach2 protein functions mainly to repress
Blimp-1 in T cells to regulate T cell homeostasis, activa-
tion and differentiation. Other studies have also indi-
cated that the abundance of Blimp-1, and consequently
the secretion of proinflammatory cytokines, is regulated
by enhancing miR-9 expression to target the 3′ untrans-
lated region of Prdm1 upon TCR activation [62, 66]. To-
gether, these data indicate that Blimp-1 can be regulated
at transcriptional and posttranscriptional levels.

Transcriptional involvement of Blimp-1 in effector T cells
Blimp-1 is expressed in memory and effector popula-
tions of T cells [9, 10]. Blimp-1 antagonizes the

expression of Bcl-6 to regulate the effector function and
differentiation program not only of B cells but also of T
cells [23]. Martins et al. reported that Blimp-1 CKO
CD4+ effector T cells had twice the abundance of Bcl6
mRNA transcripts as did control effector cells, indicat-
ing that Bcl-6 repression was impaired in Blimp-1-
deleted CD4+ effector T cells [10]. Moreover, Bach2 sup-
presses the EM-related expression of ST-2, Blimp-1, IL-
10 and S100a to maintain the naïve status of T cells in a
cell-intrinsic manner. Expression of these EM-related
proteins was upregulated in Bach2−/− naive T cells [80].
Therefore, Blimp-1 is a critical component in the com-
plex genetic programs that control effector and memory
lymphocytes.

Cooperation of Blimp-1 with transcription factors in T
helper differentiation
An emerging role of Blimp-1 is to regulate differenti-
ation programs in T cells. The Bcl-6 and Blimp-1 regula-
tory axis is critical for B cell differentiation, while Blimp-
1 expression is repressed by Bcl-6 in mature B cells. In
T cells, Blimp-1 also functions as an antagonistic tran-
scription factor because Blimp-1 expression is sup-
pressed when Bcl-6 expression is initiated [10]. Initial
reports have indicated high levels of Bcl-6 expression in
the Tfh cells responsible for the antigen-specific regula-
tion of B cell immunity, while high levels of Blimp-1 are
expressed in non-Tfh cells [12, 23, 83].
Bcl-6 is involved in Th1 differentiation by repressing

Th2 cytokine expression via decreasing GATA3 protein
levels [84] and repressing IL-5 transcription [85]. In con-
trast to Bcl-6, Blimp-1 counteracts Th1 differentiation
during Th2 lineage commitment by directly binding to
Ifng, Tbx21 and Bcl6 genes. Blimp-1 mRNA and protein
are more highly expressed in Th2 cells than in Th1 cells,
and mice lacking Blimp-1 in CD4+ T cells exhibit im-
paired humoral Th2 responses. However, Bcl-6 mRNA is
more highly expressed in Th1 cells than in Th2 cells
[11]. In addition, Bach2−/− naive T cells have increased
expression of IL-4, IL-10, Blimp-1 and GATA3, suggest-
ing that a lack of the Blimp-1 repressor in T cells predis-
poses them to differentiate into Th2 cells [80]. The
suppressive effect of Blimp-1 in Th1 cells is supported
by evidence that transgenic Blimp-1 expression in T cells
attenuates Th1 cell expansion through downregulation
of Tbx21 and Ifng [35]. Other studies also indicated that
Blimp-1 is able to bind to at least one site in the Il17a
gene in Th2 cells but that this is not sufficient to down-
regulate Il17a transcription in cells stimulated under
Th17 conditions [26]. Blimp-1 is reported to impede the
development of Th17 cells via Rora and Rorc downregu-
lation after transgenic Blimp-1 expression in Blimp-1 de-
ficient T cells under control of the proximal-Lck
promoter [35]. However, peripheral deletion of Blimp-1
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resulted in reduced Th17 activation, and IL-23-induced
Blimp-1 was found to colocalize with RORγt, STAT3
and p300 at the Il23r, Il17a/f and Csf2 cytokine genes to
enhance their expression and to drive the inflammatory
function of Th17 cells [36]. The mechanism by which
Blimp-1 regulates Th17-mediated immunopathology de-
pends on the model that is used, and it causes either
thymic T cell developmental defects or deletion of genes
during the late SP thymocyte developmental stage that
continues in peripheral T cells.
Bcl-6 orchestrates Tfh cell lineage commitment to

support B cell maturation into antibody-producing cells
[86], whereas Blimp-1 functions as an antagonistic tran-
scription factor to oppose Tfh cell differentiation [12].
Fazilleau et al. demonstrated that the differentiation and
diversity of effector Tfh cells in vivo was related to the
strength of TCR binding. Expression of Blimp-1 distin-
guished “lymphoid” Th effector cells (CD62LhiCCR7hi)
from those Bcl-6-expressing CXCR5hi “resident” effector
Tfh cells (CD62LloCCR7lo) by high expression of IL-4,
IL-21 and PD-1 after stimulation with TCR of higher af-
finity [83]. Multiple signals are involved in negatively
regulating Tfh cells. Recent studies have reported that
STAT5 signaling, induced by IL-2, negatively regulates
Tfh cell differentiation and controls humoral immunity
and B cell tolerance by upregulating Blimp-1 to repress
Bcl6 expression, suggesting that the IL-2/STAT5 axis
functions to regulate Blimp-1 expression [87, 88]. It has
been reported that there is a flexibility between Th1 and
Tfh-like gene expression patterns as a result of strong
IL-2 signaling that decreases the ratio of Bcl-6 to T-bet
and controls the Bcl-6–Blimp-1 axis, leading to Blimp-1-
mediated repression of Tfh signature genes in effector
Th1 cells [45]. Another transcription factor, Kruppel-like
factor 2 (KLF2), binds to the promoter region of Prdm1
and restricts Tfh cell differentiation by inducing Blimp-1
to inhibit Bcl-6 expression after T cell activation [89].
Notably, recent studies have demonstrated a critical role
for T cell factor 1 (TCF-1) function upstream of the Bcl-
6–Blimp-1 axis to direct the differentiation of the Tfh
lineage [90–92]. After viral infection, effector CD4+ T
cells differentiate into TCF-1highBlimp-1low Tfh and
TCF-1lowBlimp-1high Th1 cells. In the absence of TCF-1,
cells were unable to maintain the transcriptional and
metabolic signatures of Tfh cells and displayed an abnor-
mal “Th1-like” gene expression profile with increased
expression of Il2ra and Prdm1, which limit the Tfh re-
sponse [91]. TCF-1 was also found to bind directly to
the Bcl6 promoter and Prdm1 5′ regulatory regions,
resulting in activation of Bcl-6 but repression of Blimp-1
[92]. Downregulation of TCF-1 binding to the Prdm1 in-
tron leads to upregulation of Blimp-1 and Blimp-1-
mediated repression of Bcl-6 in Th1 cells, while its re-
tention on the upstream region of Bcl6 in Tfh cells

results in upregulation of Bcl-6 and suppression of
Blimp-1 during Tfh differentiation [90]. Consequently,
the balance between Bcl-6 and Blimp-1 expression in T
cells plays an essential role in regulating T cell
differentiation.

Transcriptional regulation of Blimp-1 in cytokine production
Blimp-1 is also crucial for inducing cytokine production
by inflammatory T helper cells and effector Treg cells.
The gene encoding IL-2 is one of the most import-

ant genes targeted by Blimp-1 in T cells, because IL-2
production is indispensable for T cell proliferation
and differentiation. The relationship between IL-2 and
Blimp-1 was reported as a negative feedback loop in
which IL-2 signaling induces Prdm1 transcription and
Blimp-1 represses Il2 transcription in T cells [15].
Further studies reveal that IL-2 production in Blimp-
1-deficient CD4+ T cells is upregulated upon TCR
stimulation and that Blimp-1 in T cells represses IL-2
production by direct repression of Il2 and Fos tran-
scription [10, 16]. Furthermore, IL-21-activated
STAT3 is a potent inducer of Blimp-1 expression in B
cells [93] and CD4+ T cells [17]. The molecular basis
for IL-21-mediated Blimp-1 induction in CD4+ T cells
was clarified by the identification of an IL-21 re-
sponse element downstream of Prdm1 that binds
STAT3 and IRF4, which cooperatively mediate signaling
and are required for optimal Prdm1 expression [17].
IRF4 regulates the activation of Blimp-1 expression

not only during plasma cell differentiation [94] but also
in all effector Treg cells by binding strongly to two pre-
viously identified binding sites in the 3′ region and be-
tween exons 5 and 6 of Prdm1 (conserved noncoding
sequence 9) [14]. Strong binding of IRF4 to the first in-
trons of Il10 and Ccr6 and binding of Blimp-1 specific-
ally to intron 1 of the Il10 locus were further identified
by chromatin immunoprecipitation (ChIP) analysis, sug-
gesting that IRF4 together with Blimp-1 regulates Il10
expression in Treg cells. This study also demonstrated
that both IRF4 and Blimp-1 are required for active his-
tone modification and that the IRF4–Blimp-1 axis is es-
sential for the acquisition of Treg cell effector functions
[14]. Consistent with these features of effector Treg cells,
TFR cells express elevated levels of Blimp-1, IL-10, GITR,
CTLA-4 and inducible T cell costimulator [58]. Blimp-1
expression specifies a distinct population of effector
Treg cells expressing the anti-inflammatory cytokine IL-
10 and is important for the function and homeostasis of
Treg cells.
Blimp-1 deficiency in T cells results in downregulation

of IL-10 production [9, 10], and Blimp-1 is critical for
IL-10 expression in Treg cells [14]. Likewise, the IL-27-
mediated induction of IL-10 in CD8+ T cells depends on
Blimp-1 [77]. An early study of IL-27 signal transduction
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for IL-10 production in CD4+ T cells indicated that the
involvement of early growth response gene 2 (Egr-2) and
Blimp-1 is required for IL-10 production in CD4+ T cells
and controls the balance between regulatory and inflam-
matory cytokines. Furthermore, this study demonstrated
that IL-27-induced expression of Egr-2, which binds to
the promoter region of Prdm1 to activate its transcrip-
tion, is dependent on STAT3 in CD4+ T cells [95]. Pub-
lished studies have further identified an essential
function for Blimp-1 in IL-10 production induced by IL-
27 in inflammatory T helper cells [18, 19]. Notably, pre-
committed Th17 cells adopt an IL-27- and IL-12-
mediated Tr1-like phenotype, producing IL-10 and IFN-
γ, by upregulating Blimp-1, while IL-12 signaling results
in phosphorylation of STAT4, which binds directly to
regulatory elements of Prdm1 [18]. Blimp-1 is also es-
sential for IL-10 expression by Th1 cells through direct
binding to a regulatory element in the Il10 locus that is
mainly dependent on IL-12-mediated activation of
STAT4, which binds to conserved noncoding sequence-
sin the Prdm1 locus and to the same region (conserved
noncoding sequence-9) as Blimp-1 in the Il10 locus. In
addition, c-Maf acts synergistically with Blimp-1 to in-
duce IL-10 expression in Th1 cells by binding to the
conserved noncoding sequence-9 region in the Il10 pro-
moter, the same region bound by Blimp-1 and STAT4.
c-Maf further enhances Blimp-1 expression by binding
to the intron 5 Maf recognition site but not to the pro-
moter of Prdm1, suggesting that it interferes with the re-
pressive function of Bach2 by binding to the same DNA
motif [19]. These studies have also demonstrated that
IL-27 induces Blimp-1-dependent IL-10 production in
Th cells, whereas TGF-β antagonizes Blimp-1 expression
and mediates IL-10 production driven by c-Maf and
AhR [18, 19], consistent with a previous report that
TGF-β acts as a suppressor of Blimp-1 expression during
Th17 differentiation [26]. Therefore, Blimp-1 regulates
cytokine production by T cells via a complex pathway co-
ordinated by diverse transcriptional programs depending
on various stimuli from the surrounding environment.

CD8+ T cells
The molecular regulation of Blimp-1 expression in CD8+ T
cells
The molecular regulation of Blimp-1 expression is dis-
tinct in naïve, effector and memory CD8+ T cells. Previ-
ous studies demonstrated that additional culture of
activated CD8+ T cells in IL-2, IL-4 or IL-12 but not in
IL-15 maintains the expression of Blimp-1 [15]. IL-21 in-
duces higher and more rapid expression of Prdm1 in T
cells than does IL-4 stimulation. The induction of Prdm1
expression by IL-21 was abrogated and diminished in
Stat3−/− and Irf4−/− T cells, indicating that IL-21-
mediated Prdm1 gene expression is dependent on

STAT3 and IRF4. ChIP and luciferase assay experiments
revealed that STAT3 and IRF4 broadly cooperate to
regulate IL-21-induced Prdm1 gene expression in T cells
[17, 69]. Cui et al. demonstrated that the IL-21–IL-10–
STAT3 pathway is critical to the differentiation, matur-
ation and self-renewal of memory CD8+ T cells during
LCMV infection through regulating individual transcrip-
tion factors including Blimp-1, Eomes and Bcl-6. The
amounts of Eomes, T-bet, Bcl-6 and Blimp-1 protein in
Stat3−/− CD8+ T cells are comparable to those in Stat3
+/+ cells at day 8 after LCMV infection, suggesting that
STAT3 signaling is not critical to the translational ex-
pression of these molecules in the differentiation of ef-
fector CD8+ T cells. However, the expression of Blimp-1,
Eomes and Bcl-6 was significantly decreased in Stat3−/−

memory T cells compared with Stat3+/+ memory cells,
suggesting that IL-21–IL10–STAT3 signaling necessarily
regulates Blimp-1 expression during the effector-to-
memory transition [96].
During DC vaccination, the expression of Blimp-1 was

correlated with the number of antigen-specific T cells.
The expression of Prdm1 was more highly induced in ef-
fectors when low numbers (104) compared with high
(106) numbers of OT-I cells were transferred prior to
DC vaccination. Moreover, the induction of Prdm1 was
dependent on IL-2, indicating that the IL-2/Blimp-1 axis
is a key regulator of SLEC differentiation in vivo in this
low-inflammation model of DC immunization [68]. Dur-
ing influenza virus infection, the splenic IL-2Rα-
deficient antigen-specific CD8+ T cells fail to develop
into KLRG1+IL-7R− SLECs and express less Blimp-1
than wild-type cells. However, the differentiated Il2Ra−/−

antigen-specific SLECs express high levels of Blimp-1,
indicating that IL-2 signaling is not essential for Blimp-1
expression but is required for its optimal expression in
CD8+ T cells during virus infection. Moreover, IL-2–
STAT5 can cooperate with IL-12–STAT4 to induce high
amounts of Blimp-1 and SLEC differentiation [97].
The Hippo pathway, a conserved developmental sys-

tem triggered by cell–cell contact signals to trigger dif-
ferentiation, induces yes-associated protein degradation
and Blimp-1 expression [98]. Rodriguez et al. demon-
strated that suppressor of cytokine signaling1 (Socs1)−/−

MHC-I-restricted premelanosome protein-1 (Pmel-1)
transgenic TCR CD8+ T cells expressed higher levels of
Blimp-1 upon stimulation with cognate self-antigen
(mgp10025–33) than did wild type Pmel-1 cells, suggest-
ing that SOCS1 regulates Blimp-1. However, the under-
lying mechanism of this effect is unknown [99]. Kurachi
et al. demonstrated that a basic leucine zipper transcrip-
tion factor (BATF) is essential for operation of the differ-
entiation checkpoint in early effector CD8+ T cells.
BATF binds to regulatory regions in Prdm1 and many
other genes encoding effector transcription factors to
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form a “BATF-centric” interaction network of transcrip-
tion factors to regulate the differentiation of effector
CD8+ T cells [100]. Moreover, BATF overexpression en-
hances Blimp-1 and granzyme B expression to promote
the quality and quantity of virus-specific CD8+ T cells dur-
ing infection. In addition, the IL-21–STAT3–BATF axis
cooperates with antigen-induced IRF4 to maintain Blimp-
1 expression and CD8+ T cell effector functions [101].
Recently, Yamada et al. demonstrated that a deficiency

of menin, a tumor suppressor protein, in CD8+ T cells
will result in impaired immune responses of antigen-
specific CD8+ T cells to infection. Their results revealed
that menin inhibits terminal effector differentiation and
enhances memory development by suppressing expres-
sion of T-bet and Blimp-1 [102]. Although the under-
lying mechanism by which menin suppresses Blimp-1
expression is unknown, the authors suggest that menin
interacts with JunD and acts as a repressor of AP-1.

The molecular regulation of Blimp-1 in CD8+ T cell
functions
Growing evidence suggests that the interactions between
Blimp-1 and other factors mediate counter-regulatory
influences to produce functional T cells. After an acute
influenza virus infection, the transcriptional profiles of
Tbx21, Eomes and Bcl6 are changed in virus-specific
Blimp-1-deficient CD8+ T cells, suggesting that Blimp-1
is required for the differentiation of effector CD8+ T
cells by regulating the transcriptional programs of ef-
fector and memory T cell differentiation [27]. Recently,
Xin et al. demonstrated that Blimp-1 cooperates with T-
bet to drive effector CD8+ T cell differentiation by regu-
lating overlapping and distinct transcriptional signatures
during virus infection. T-bet overexpression partially
compensates for KLRG1 expression and downregulates
IL-7R and Eomes in Blimp-1-deficient CD8+ T cells dur-
ing viral antigen-specific SLEC differentiation and mem-
ory cell formation. However, T-bet protein expression
does not differ significantly between antigen-specific
wild-type and Blimp-1-deficient CD8+ T cells during in-
fluenza virus infection, indicating that the expression of
T-bet protein in CD8+ T cells is largely independent of
Blimp-1 [97]. Id2 and Id3 are expressed by effector CD8
+ T cells and support their survival during the naïve-to-
effector cell and effector-to-memory cell transitions, re-
spectively [103, 104]. Ji et al. demonstrated that Blimp-1
represses Id3 expression by directly targeting the Id3
promoter in effector CD8+ T cells. Id3 regulates the sur-
vival of SLECs partly through antagonizing the binding
of E2A to DNA, suggesting that the Blimp-1–Id3–E2A
axis determines the fate of effector CD8+ T cells [29]. In
addition to Id3, Blimp-1 directly regulates Il2ra and
Cd27 expression through recruitment of histone-
modifying enzymes H3 methyltransferase G9a and

HDAC2, indicating that Blimp-1 acts as an epigenetic
regulator to regulate effector CD8+ T cell development
in response to an acute virus challenge [70]. Moreover,
Blimp-1 directly represses Pd1 transcription by regulat-
ing expression of nuclear factor of activated T cells
(NFAT)c1, altering local chromatin structure and evict-
ing NFATc1 from its binding sites on the Pd1 gene dur-
ing the early stages of effector CD8+ T cell
differentiation after acute virus infection [105].

Genetic disruption of Blimp-1 in T cells and its ef-
fect on predisposition to disease
The role of Blimp-1 in autoimmune diseases, infectious
diseases and lymphoid malignancies has been studied
intensively.

Animal disease models
Blimp-1 is expressed in effector T cells and is required for
controlling their homeostasis. Mice either lacking Blimp-1
specifically in T cells or reconstituted with Blimp-1-
deficient fetal liver cells develop progressive colitis or a le-
thal wasting disease with increased effector CD4+ and
CD8+ T lymphocyte infiltration [9, 10]. C57BL/6 mice in
which Blimp-1 is ablated develop severe colitis. A similar
phenotype is observed in NOD mice with T cell-specific
Blimp-1 disruption that have increased Th1/Th17 effector
cell populations [35, 39], while transgenic Blimp-1 attenu-
ates the diabetogenic effect of lymphocytes and thereby
ameliorates the disease progression of autoimmune dia-
betes in NOD mice [35]. Blimp-1 is also able to suppress
autoimmune encephalomyelitis through downregulation
of Th1 and Th17 cells [38].
The function of Blimp-1 has been studied in multiple

infectious disease models. During influenza virus infec-
tion, deficiency of Blimp-1 in T cells (Prdm1flox/flox prox-
imal-Lck-Cre) will lead to a delayed recovery from
infection and increased cellular infiltration in the lungs,
indicating a significant role of Blimp-1 in T cell responses
against influenza infection [27]. Although Blimp-1-
deficient memory CD8+ T cells are capable of providing
protection during a second LCMV infection [28], double
mutant Tbx21−/−Prdm1flox/floxLck-Cre mice showed accel-
erated weight loss and death during LCMV infection com-
pared with single-mutant and wild-type mice, indicating
that Blimp-1 cooperates with T-bet for the differentiation
of protective effector CD8+ T cells [97].
Blimp-1 also participates in the development of T cell

lymphoma. High expression of the Itk-Syk oncogene in
thymocytes induces Blimp-1 expression regulated by
STAT3 and IRF4 cooperation. Furthermore, the high Itk-
Syk-expressing thymocytes may undergo Blimp-1-
mediated premature terminal differentiation, leading to
the elimination of oncogene-expressing cells at an early
developmental stage. In contrast, the expression of
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a b

Fig. 1 Regulators for Blimp-1 expression in a CD4+ T cells and b CD8+ T cells. Bach2, BTB and CNC homology 2; BATF, Basic leucine zipper tran-
scription factor; Blimp-1, B lymphocyte-induced maturation protein-1; Egr-2, Early growth response gene 2; IL, Interleukin; IRF4, Interferon regula-
tory factor 4; KLF2, Kruppel-like factor 2; MHC II, Major histocompatibility complex class II; Prdm1, Positive regulatory domain 1; SOCS, Suppressor
of cytokine signaling; STAT, Signal transducers and activators of transcription; TCR, T cell receptor. The solid line indicates direct action by activa-
tion of expression of the Prdm1 gene. The dashed line indicates regulations that require further investigation for underlying mechanisms

a

b

Fig. 2 Blimp-1 cooperates with different molecules to regulate the differentiation and function of a CD4+ T cells and b CD8+ T cells. Bcl-6, B cell
lymphoma-6; Blimp-1, B lymphocyte-induced maturation protein-1; Eomes, Eomesodermin; HDAC2, Histone deacetylase 2; Id2, Inhibitor of DNA
binding 2; Id3, Inhibitor of DNA binding 3; IL, Interleukin; IRF4, Interferon regulatory factor 4; MPECs, Memory precursor effector cells; RORγt, Retin-
oic acid-related orphan receptor γt; SLECs, Short-lived effector cells; STAT, Signal transducers and activators of transcription; TCF-1, T cell factor 1;
Tfh, Follicular helper T cells; Th, T helper
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Blimp-1 was not observed in lymphocytes expressing
low levels of Itk-Syk. Therefore, low and high expression
levels of the Itk-Syk fusion transcript induce early and
delayed onset of clonal T cell lymphoma, respectively,
through regulating Blimp-1 expression [37].

Human diseases
BLIMP-1 is considered to be a candidate tumor suppres-
sor gene in lymphoid malignancies. Early studies indi-
cated that BLIMP-1β lacking its PR domain and having
a diminished capacity to repress target genes was
expressed in myeloma cell lines [106], and mutational
inactivation of BLIMP-1 has been identified in a subset
of diffuse large B-cell lymphomas [107, 108]. An involve-
ment of BLIMP-1β in T cell lymphoma was also re-
ported, where a high expression level was correlated
with chemotherapy resistance [109]. Another study has
also indicated that loss of BLIMP-1 occurs in anaplastic
large T-cell lymphomas [110]. In addition, BLIMP-1 is
inactivated in extranodal NK/T-cell lymphoma, nasal
type (EN-NK/T-NT) where its downregulation is medi-
ated by miR-223, providing a prognostic indicator for
evaluating the clinical outcomes of EN-NK/T-NT pa-
tients [111]. Recent study reported that infiltration of

BLIMP-1+ FOXP3+ effector Treg cells into tumor can
improve prediction of disease recurrence in a cohort of
colorectal cancer patients [112]. BLIMP-1 has been
further identified as an important factor in T cell ex-
haustion during progressive chronic HIV infection. IL-2-
induced expression of BLIMP-1 is repressed by upregu-
lation of miR-9, which leads to reduced binding of
BLIMP-1 to the IL2 promoter. Published studies have
further identified that a regulatory miR-9/Blimp-1/IL-2
pathway is impaired in progressive HIV disease [21, 62].
Low expression of PRDM1 was associated with high
HIV genome transcription levels in resting CD4+ CM T
cells, suggesting that BLIMP-1 might be involved in con-
trolling the HIV reservoirs in the CM T cell subset [63].
Therefore, BLIMP-1 functions as a gatekeeper of T cell
activation and suppression to prevent or dampen auto-
immune disease, antiviral responses and antitumor
immunity.

Conclusion
This review has focused on the findings over the past
decade that have led to a better understanding of the es-
sential role of Blimp-1 in instructing T cell destiny and
effector functions. Expression of Blimp-1 is observed in

a

b

Fig. 3 Overview of Blimp-1-mediated regulations in T cells. a Broad influence of Blimp-1 in the expression of different molecules. Bcl-6, B cell
lymphoma-6; Blimp-1, B lymphocyte-induced maturation protein-1; Id3, Inhibitor of DNA binding 3; IFN-γ, interferon-γ; IL, Interleukin; IL2ra,
Interleukin 2 receptor subunit alpha; PD-1, Programmed death-1. The solid line indicates direct action. The dashed line indicates regulations that require
further investigation for underlying mechanisms. b Blimp-1 regulates divergent functions of T cells. +: Positive regulation; −: Negative regulation; x:
Unidentified regulation
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both CD4+ and CD8+ T cells (Fig. 1), and its expression
promotes the differentiation and cytokine production of
effector T cells through cooperation with other tran-
scription factors while suppressing the transcriptional
signatures of naïve and memory T cells (Fig. 2). Blimp-1
is conventionally regarded as a repressor that regulates
T cell differentiation and function, but notably, Blimp-1
is identified as an enhancer of IL-10 production to fine-
tune the extent of inflammation and injury (Fig. 3). It is
intriguing that Blimp-1 together with cooperating tran-
scription factors can function as either an activator or a
repressor and can determine the fate of multiple T-cell
lineages. Understanding the expression patterns of tran-
scriptional regulators in T cell subsets suggests that the
determination of activation and repression of T cells is a
combinatorial process mediated by these molecules to
maintain immune homeostasis. Because Blimp-1 appears
to orchestrate cascades of explicit gene expression pro-
grams in T lymphocytes, studying Blimp-1 and identify-
ing its target genes has revealed important aspects of
this regulatory machinery and may help to provide im-
portant insights into the regulation of immune homeo-
stasis and the potential for therapeutic intervention.

Endnote
1Fully capitalized PRDM1 and BLIMP-1 were referred

as human gene and protein names, respectively, while
only an initial capital letter of Prdm1 and Blimp-1 were
represented as mouse gene and protein names,
respectively.
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