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Abstract

Background: Neonatal monosodium glutamate (MSG) treatment triggers excitotoxicity and induces a degenerative
process that affects several brain regions in a way that could lead to epileptogenesis. Na*/Ca”* exchangers
(NCX1-3) are implicated in Ca®* brain homeostasis; normally, they extrude Ca’* to control cell inflammation, but
after damage and in epilepsy, they introduce Ca®* by acting in the reverse mode, amplifying the damage. Changes
in NCX3 expression in the hippocampus have been reported immediately after neonatal MSG treatment. In this
study, the expression level of NCX1-3 in the entorhinal cortex (EC) and hippocampus (Hp); and the effects of
blockade of NCXs on the seizures induced by 4-Aminopyridine (4-AP) were analysed in adult rats after neonatal
MSG treatment. KB-R7943 was applied as NCXs blocker, but is more selective to NCX3 in reverse mode.

Methods: Neonatal MSG treatment was applied to newborn male rats at postnatal days (PD) 1, 3, 5, and 7 (4 g/kg
of body weight, s.c.). Western blot analysis was performed on total protein extracts from the EC and Hp to estimate
the expression level of NCX1-3 proteins in relative way to the expression of B-actin, as constitutive protein.
Electrographic activity of the EC and Hp were acquired before and after intracerebroventricular (i.c.v.) infusion of
4-AP (3 nmol) and KB-R7943 (62.5 pmol), alone or in combination. All experiments were performed at PD60.
Behavioural alterations were also recorder.

Results: Neonatal MSG treatment significantly increased the expression of NCX3 protein in both studied regions,
and NCX1 protein only in the EC. The 4-AP-induced epileptiform activity was significantly higher in MSG-treated rats
than in controls, and KB-R7943 co-administered with 4-AP reduced the epileptiform activity in more prominent way
in MSG-treated rats than in controls.

Conclusions: The long-term effects of neonatal MSG treatment include increases on functional expression of NCXs
(mainly of NCX3) in the EC and Hp, which seems to contribute to improve the control that KB-R7943 exerted on
the seizures induced by 4-AP in adulthood. The results obtained here suggest that the blockade of NCXs could
improve seizure control after an excitotoxic process; however, this must be better studied.
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Background

Excitotoxicity is a complex process in which several mech-
anisms lead to intracellular Ca®>* overload and cell death
observed in various neuropathological conditions [1-3].
The most common trigger mechanism of the excitotoxi-
city in neurons is the overactivation of receptors for the
excitatory neurotransmitter glutamate (Glu) [1, 4], mainly
the ionotropic receptor selectively activated by N-Methyl-
D-Aspartate (NMDA), whose overactivation causes a pro-
longed increase in the intracellular Ca** concentration
([Ca®>*]) and the subsequent proteolysis of diverse
proteins, including receptors and exchangers among
others [5, 6]. Monosodium glutamate (MSG) is probably
the broad-spectrum glutamate analogue most used to
study excitotoxic neuronal damage [7, 8]. Neonate animals
are more susceptible to MSG toxic effects, and repeated
systemic administration of MSG at neonatal age produces
neuronal death in the short term [9, 10] and several
degenerative changes in the long term [11-14]. The ex-
pression levels and functionality of numerous enzymes
[15, 16], receptors [9, 10, 17, 18] and transporters [14, 19]
are modified by neonatal MSG treatment. Recently, a
significant increase in the expression level of mRNA en-
coding the sodium/calcium (Na*/Ca®*) exchanger type 3
(NCX3) was reported in the hippocampus (Hp) twenty
hours after cessation of treatment [19], but it is unknown
if neonatal MSG treatment has any long-term effects on
this exchanger.

On the other hand, sodium/calcium (Na*/Ca**) ex-
changers (NCXs) show a better capacity to transport Ca**
than the plasma membrane Ca?*-ATPase (PMCA) [20],
and they are essential for maintaining [Ca®*]; homeostasis
[21]. In mammals, these exchangers belong to the solute
carrier family 8 (Slc8a) and are represented by three inde-
pendent genes that encode for NCX1 to 3 proteins, which
share close to 70% of their amino acid sequence [22-24].
NCX expression is differentially regulated at the transcrip-
tional level [25]. Increases in [Ca®']; upregulate NCX1 and
NCX3 expression, while NCX2 expression is downregu-
lated [26]. Recently, it has been reported that early effects
of nerve growth factor (NGF) include upregulation of
NCX1 and NCX3 expression and downregulation of
NCX2 expression; all these effects depend on the p38
signalling pathway activation and are related to increases
in the CREBI transcription factor binding to the promoter
of NCXs [27]. NCXs are expressed in a tissue-specific
manner, where NCX1 is found in several tissues including
the brain, and NCX2 and NCX3 are mainly expressed in
the brain and skeletal muscle [28, 29]. In the brain, the ex-
pression level of NCX1 and NCX2 is higher than the ex-
pression level of NCX3 during development [30, 31],
where NCX1 and NCX3 are predominantly located in
neurons, while glial and endothelial cells express all three
exchangers [32, 33]. NCXs exchange 3 Na* for 1 Ca** and
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operate bidirectionally, in a forward mode expelling Ca**
and in a reverse mode introducing it [21, 34]. Rises in
[Ca®*]; activate the forward mode of the exchangers, and
rises in [Na']; activate the reverse mode [34, 35]. Interest-
ingly, during the excitotoxic process, the Na" influx pro-
moted by Glu receptors could activate the reverse mode
of NCXs and contribute to Ca®* overload, potentiating the
damage [36, 37]. Moreover, NCX1 and NCX3 in reverse
mode could contribute to epileptogenesis [38, 39], and
their blocking improves the control of seizures in different
animal models of epilepsy [38, 39]. KB-R7943 (2-[2-[4-(4-
nitrobenzyloxy)phenyl]ethyl]isothiourea ~ methanesulfo-
nate) preferentially blocks NCXs in reverse mode, is 3-
fold more effective on NCX3 [40], and exerts a neuropro-
tective effect in the excitotoxic process [41, 42]. Further-
more, KB-R7943 orally administered prevents seizures
induced by pilocarpine and pentylenetetrazole (PTZ) in
adult animals [38, 39]. However, high doses of KB-R7943
may interact with other transporters and reduce the bene-
ficial effects describe above [43].

Because neonatal MSG treatment modifies several
GABAergic markers and reduces GABA-positive cell
density in the Hp of adult male rats [14, 15], seizure sus-
ceptibility was thought to be altered by MSG treatment.
Therefore, preliminary results published by our group
showed that neonatal MSG treatment increases the
susceptibility to seizures induced by 4-aminopyridine
(4-AP), reaching more severe convulsive signs with
lower doses than in intact animals [44]. Historically,
4-AP has been known as an organic compound that
blocks A- and D-voltage-gated K* channels [45, 46],
avoiding neuronal repolarization, prolonging the de-
polarizing phase of the action potential, and promoting
vesiculated release of neurotransmitters [47]. Over the
years, both in vitro and in vivo studies have demon-
strated that 4-AP could induce electrographic [48-50]
and convulsive seizures [51, 52], respectively. Seizures
induced by 4-AP correspond to limbic seizures and have
been mainly related to strong increases in Glu release
[53, 54]. The ionic imbalance produced by 4-AP also
may affect the functionality of NCXs; however, this hy-
pothesis has been poorly studied after an excitotoxic
process and during epileptogenesis, but we addressed
the issue here.

Epilepsy is a neurological disorder that ails 65 million
people worldwide’ who suffer from recurring and spon-
taneous seizures [55]. Although almost 20 antiepileptic
drugs are available on the market and several more
drugs are in preclinical phases [56], 30 to 40% of epileptic
patients present pharmacoresistant seizures [57, 58].
Therefore, it is important to continue the characterization
of drugs, such as KB-R7943, with possible antiepileptic ef-
fects. In the present study, we analysed the expression
level of NCX proteins in the entorhinal cortex (EC) and
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Hp of male adult rats after neonatal MSG treatment. In
addition, behavioural and electroencephalographic activ-
ities were recorded after intracerebroventricular (i.c.v.)
infusion of KB-R7943 and 4-AP, both alone and in com-
bination, in male adult rats neonatally treated with MSG.

Methods

Animals and neonatal treatment

Pregnant Wistar rats were used and kept under optimal
environmental conditions in separate cages with water
and food provided ad libitum, 12/12 h light/dark cycles
and the room temperature at 23-25 °C. At dawn, all lit-
ters were adjusted to eight offspring per female. Only
males were used for this study. Monosodium glutamate
(MSG: 4 g/kg body weight; Cat. G1626, Sigma-Aldrich,
MO, USA) was subcutaneously (s.c.) administered on
postnatal days (PD) 1, 3, 5, and 7 [11]. A group of un-
treated rats was included to compare. All litters included
MSG-treated and intact rats, which and stayed with the
females until PD21. After that, animals were separated
into subgroups of 4 animals per cage and kept under the
bioterium conditions described above until PD57-60. Ex-
periments were designed to minimize the suffering in
the animals and the number of used animals. Animal
care and experimental procedures were in accordance
with the Mexican Official Norms NOM-062-ZO0O-1999
and NOM-033-ZOO0O-1995, and also with the Directive
2010/63/EU referenced rules. Full experimental protocol
was approved by the local Committee of Bioethics.

Western blotting

At PD60, animals were euthanized by decapitation, their
brain was extracted, and whole hippocampi (Hp) and en-
torhinal cortices (EC) were dissected out. Samples were
immediately weighed and frozen at -20 °C for 24-72 h.
Total protein content was extracted from the samples
through homogenizing the tissue samples by sonication
in lysis buffer (10 mM Tris—HCIl pH 7.5, 150 mM NaCl,
20 mM NaF, 0.5 mM NazVO,, and 1% NP40) with a
protease inhibitor cocktail (Cat. sc-29130, Santa Cruz
Biotechnology, CA, USA) at 4 °C. For each 100 mg of
tissue, 920 pL of lysis buffer and 80 uL of protease in-
hibitor cocktail were added. Homogenates were centri-
fuged at 16,060 x g at 4 °C for 30 min, and the
supernatants were recovered and stored at —20 °C. The
protein concentration in the supernatants was deter-
mined by the Lowry method [59] (Bio-Rad, DC Protein
Assay kit, Cat. 5000116, Bio-Rad Laboratories, CA,
USA) with bovine serum albumin (Cat. 500-0007, Bio-
Rad Laboratories, CA, USA) as the external standard.
Sixty pg of total protein were denatured in 5 uL of
Laemmli buffer (500 mM Tris—HCI pH 6.8, 2% SDS,
10% glycerol, 10% beta-mercaptoethanol, 0.1% bromo-
phenol blue) at 95 °C for 5 min. Denatured proteins
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were electrophoresed in 10% SDS-PAGE gels with Tris-
Glycine as the running buffer (25 mM Tris—HCI,
192 mM glycine, 0.1% SDS, pH 8.3; Cat. 1610723, Bio-
Rad Laboratories, CA, USA), applying 110 V for 2 h.
Then, electrophoresed proteins were blotted onto nitro-
cellulose membranes (Cat. 1620115, Bio-Rad Laborator-
ies, CA, USA) in a wet system at 110 V for 0.5 h using a
transfer buffer containing methanol (25 mM Trizma
Base, 250 mM Glycine, 20% methanol, pH 8.8). Both
electrophoresis and blotting were performed in a Mini-
Protean Tetra Cell (Cat. 1658005, Bio-Rad Laboratories,
CA, USA) using a PowerPac HC (Cat. 1645052, Bio-Rad
Laboratories, CA, USA) as a power supply. To confirm
the blotting efficiency we stained acrylamide gels with
Bio-Safe Coomassie G-250 Stain solution (Cat. 1610786,
Bio-Rad Laboratories, CA, USA) and nitrocellulose
membranes with Ponceau S solution (Cat. P7170-1 L,
Sigma-Aldrich Co., WI, USA), only those membranes
without bubbles or without problems in blotting were
processed to immunolabeling.

Blotted proteins in nitrocellulose membranes (Cat.
10600003, Amersham Protran, GE Healthcare Life
Science, WA, USA) were incubated in 5% BLOT-
QuickBlocker Reagent (Cat. WB57, EMD Millipore, MA,
USA) in PBS-0.1% Tween 20 (PBST) for 30 min. Then,
the membranes were washed 5 times in PBST for 3 min
each, followed by incubation in primary antibodies: anti-
NCX1 (1:10, Cat. sc-30304-R, Lot. G2914, Santa Cruz
Biotechnology, CA, USA), anti-NCX2 (1:100, Cat. sc-
33528, Lot. C1914, Santa Cruz Biotechnology, CA,
USA), anti-NCX3 (1:25, Cat. sc-48896, Lot. H2013,
Santa Cruz Biotechnology, CA, USA) and anti-p-actin
(1:6000, Cat. ab 8227, Lot. GR40411-1, Abcam,
Cambridge, UK) used as a reference protein. All primary
antibodies were diluted in PBST-0.05% sodium azide and
incubated for 18 h. Moreover to avoid contamination of
immunolabeling each membrane was incubated only
one time with only one primary antibody (not stripping
of antibodies was done). Then, membranes were washed
as described above and incubated in the respective
secondary anti-body: HRP-goat anti-rabbit IgG for anti-
NCX1 and anti-B-actin (1:7500 and 1:10000, respect-
ively, Cat. 92680011, Lot. (C30-118.03, LI-COR
Bioscience, NE, USA) and HRP-chicken anti-goat IgG
for anti-NCX2 and anti-NCX3 (1:5000, Cat. sc-2953,
Lot. B2414, Santa Cruz Biotechnology, CA, USA). Sec-
ondary antibodies were diluted in PBS and incubated for
2 h. After this incubation, membranes were washed in
PBS 5 times for 3 min each. All incubations described
above were performed at 4 °C with continuous shaking.
Finally, membranes were incubated in Western Sure
Premium Chemiluminescent Substrate (Cat. 92695000,
LI-COR Bioscience, NE, USA) at room temperature with
shaking for 5 min. The chemiluminescent signal was
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acquired through a C-DiGit Blot Scanner (Cat. 6536—
030, LI-COR Bioscience, NE, USA) and analysed
through free Image Studio Lite Software 3.1.4 (LI-COR
Bioscience, NE, USA).

The relative expression levels of the NCXs were calcu-
lated considering the ratio of the signal of each NCX
band to the signal of corresponding p-actin. Data repre-
sent the mean + SEM of five samples by group and cere-
bral region, which were analysed in triplicate.

Animal stereotaxic surgery

Young adult rats (PD57-59) were anesthetized with an
intraperitoneal mix of ketamine (90 mg/kg; Lot.
C15J044, PiSA Pharmaceutical, Mexico) and xylazine
(Lot. A084121, 15 mg/kg, PiSA PiSA Pharmaceutical,
Mexico) and placed in a stereotaxic frame (Cat.
MD3000, Basi Analytical Instruments, IN, USA) over a
heating pad to maintain body temperature at 37 +2 °C
during surgery with the incisor bar positioned 5 mm
dorsal to the interaural line. According to Paxinos and
Watson [60] and considering Bregma point as a refer-
ence, one stainless steel guide cannula (22 Gauge and
13 mm of length) was settled in the right lateral ventricle
(RLV; Coordinates in mm: Anteroposterior (AP): -0.8,
Lateral (L): -1.4, and Ventral (V): -0.5), and four copper
electrodes (250 pm of diameter) were positioned in the
right and left dorsal hippocampal CA1 region (Coordi-
nates in mm: AP: -3.3, L: +2, and V: -2.6) and in the
right and left entorhinal cortex (Coordinates in mm: AP:
-6.3, L: +4.6, V: —-8). As reference electrodes, two stain-
less steel screws with a copper wire welded, were placed
on the left and right frontal sinus (Coordinates in mm:
AP: 4, L: £2, V: —0.6). Finally two screws were placed as
support for the electrodes (Coordinates in mm: AP: -8,
L: 3, V: -0.6). All electrodes were soldered to a plug-
gable multipin connector. Dental acrylic cement was
used to fix all elements to the rat skull.

EEG recording

Three days after surgery, awake animals were connected
to a Grass Polygraph (AC amplifiers Model 7P511],
Grass Medical Instrumentations, MA, USA), and EEG
activity was digitalized and acquired through a
USB1208FS device (MC Measurement Computing, MA,
USA) controlled by a software designed in
LabVIEW2014 (Vi platform, 32 bits; National Instru-
ments, TX, USA) with similar characteristics to
PolyVIEW software purchased by Grass-Telefactor. This
acquisition system was calibrated with an external gener-
ator and programed to filter unspecific signals in
60—60.5 Hz (corresponding to electrical installation sig-
nal) and in 0.5 Hz (related to movement artefacts). The
signal acquired with the amplifiers off had a net ampli-
tude of 0.015+0.003 mV and a frequency of 52.86 +
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12.18 Hz in general for all channels recorded; with the
amplifiers on and unconnected animal had a net ampli-
tude of 0.163 £0.017 mV and a frequency of 88.35 +
0.00004 Hz; while with the amplifier on and control ani-
mals connected had a net amplitude of 0.899 +
0.172 mV and a frequency of 1.831+0.272 Hz in
channels where Hp activity was recorded; whereas in
channels where CE activity was recorded the net
amplitude was 0.615+ 0.090 mV and the frequency was
1.977 £+ 0.256 Hz. Data of basal EEG activity represent
mean = SDM of twelve experiments for each experimen-
tal group and demonstrate that signal to noise ratio of
our system in amplitude is more than the minimal ratio
required (3:1).

During each experiment, 10 min of basal activity,
followed by 5 min during i.c.v. infusion of 4-AP or KB-
R7943 (alone or in combination), and 60 min after drug
administration were acquired through EEG.

Because a very few studies have analysed the in vivo ef-
fects of KB-R7943, several doses of the NCXs blocker
(500, 250, 125 and 62.5 pmol) were characterized at the
beginning of this study. We selected 62.5 pmol as the
dose of KB-R7943 to be used for more broad
characterization. Then, control and MSG-treated rats re-
ceived one of the following treatments: 1) 4-AP (3 nmol),
2) KB-R7943 (62.5 pmol) and 3) 4-AP (3 nmol) plus KB-
R7943 (62.5 pmol). The 4-AP was purchased from
Sigma-Aldrich, MO, USA (Cat. 504-24-5), and both
stock (5 mg/mL) and infusion solutions (3 nmol/5 pL)
were dissolved in 0.9% NaCl solution. KB-R7943 was
purchased from Tocris Bioscience, Bristol, UK (Cat.
1244), stock solution (0.5 mg/mL) was dissolved in
DMSO at 100 mM and infusion solution (62.5 pmol/
5 pL) was dissolved in 0.9% NaCl solution. Infusion so-
lutions were administered through the cannula (a dental
injection needle 27 Gauge with 16 mm of length), which
penetrated into infusion guide to reach the RVL (Coor-
dinates in mm relative to Bregma: AP 0.8, L: -1.4, and
V: -3.6). The cannula was connected to a microsyringe
(Cat. ILS500TLL, WPI, FL, USA) installed in a micro-
injection pump (Model SP101L, WPI, FL, USA) to estab-
lish the infusion rate in 1 pL/min for 5 min. Direct blue
15 (Cat. D2535, Sigma-Aldrich, MO, USA) was added to
the infusion solutions (5 mg/mL) to visual check the
penetration of the drugs. At the end of the EEG record-
ings, animals were euthanized by decapitation, the brain
was dissected, and implantation and infusion locations
were verified; only animals with implants and infusions
in the correct locations were included in our analysis.

The latency, duration and net amplitude of the first
burst triggered by infusion solutions were analysed, and
ictal activity duration and the elapsed time to EEG activ-
ity normalization were estimated. We considered as
burst to electroencephalographic pattern characterized
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by continuous discharges with a predominant delta
rhythm whose net amplitude was three-fold higher than
the average basal activity and whose long was 30 s or
more. To estimate ictal activity duration, in addition to
burst activity, we considered continuous discharges pat-
terns of short duration, peak-wave complexes, or
isolated peaks with net amplitude at least two-fold
higher than the average of basal activity (Table 1). The
results are expressed as the mean + SEM of 4 animals
for each i.c.v. treatment in each experimental group.

Statistical analysis

The statistical analysis was performed using Student’s ¢-
test for the western blot analysis, basal EEG activity and
body weight comparisons, Mann—Whitney U test for
bursts number comparison, and a two-way ANOVA with
Tukey’s post hoc test for the comparison of the other
variables measured through EEG recordings. Statistical
significance was set at p <0.05 using the SPSS version
20.0 (SPSS, IBM Analytics, NY, USA).

Results

Expression of NCX1-3 proteins in the EC and Hp

All three types of NCX were detected in our samples
with only one specific band for NCX2 (102 kDa) and
more than one for NCX1 and 3, but only the bands
equivalent to 67 and 66 kDa for NCX1 and NCX3, re-
spectively, displayed a specific relationship between the
signal and protein concentration and a higher signal
than the other bands. No consistent bands over 100 kDa
were detected with the NCX1 and NCX3 antibodies
used here (Additional file 1). The other bands observed
for NCX1 and NCX3 may correspond to some isoforms
reported previously for these exchangers [28, 61, 62].

In the control group, at PD60, the NCX2 expression
levels were higher than that of NCX1, followed by the
expression levels of NCX3, in both the EC and Hp, with
higher values observed in the EC. MSG treatment did
not modify the relationship described above.

Neonatal MSG treatment significantly increased the
expression levels of NCX1 (p<0.05) in the EC and
NCX3 in both the EC and Hp (p <0.01) measured at
PD60. The expression level of the NCX2 protein was

Table 1 Basal EEG activity in studied cerebral region and
groups

Parameter
Net Amplitude (mV)

Region Control Group MSG Group
Hp 0.899+£0.172 0.664+0.099 <0.001

p value

EC 0615+0.090 0.517+0.104 0.023
Avarage Frequency (Hz) Hp 1.831+£0272 2351£0806 0.046
EC 1977 +£0256 2.558+0.854 0.034

Hp hippocampus, EC entorhinal cortex
Values represent mean + SDM of twelve animals per group. p values were
obtained through the Student’s t-test with 95% confidence interval
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also slightly augmented in both cerebral regions studied
at PD60 after treatment, but the change was not signifi-
cant (Fig. 1).

KB-R7943 effects on the electrographic and seizure
activity in the EC and Hp

Since neonatal MSG treatment modified the expression
level of NCX1 and NCX3, we decided to evaluate the ef-
fects of i.c.v. infusion of KB-R7943. However to identify
clearly KB-R7943 or 4-AP effects on EEG activity, in each
experiment we first analysed the effect of MSG treatment
exerted on basal activity, we noted that MSG treatment
reduced net amplitude and increased average frequency in
both the EC and Hp (Table 1).

Because there are no previous studies that have ad-
ministered this isothiourea into the brain; therefore, we
evaluated several doses between 500 to 62.5 pmol. The
highest dose of KB-R7943 (500 pmol) induced bursts
and like-epileptiform activity in the EEG recordings of
the cerebral regions studied (Fig. 2) as well as convulsive
behaviours, such as facial clonus, chewing, salivation,
head clonus and wild running. The lowest KB-R7943
dose (62.5 pmol) only induced slight changes in EEG re-
cordings, but no bursts (Fig. 2) or major behavioural
changes were observed (Table 2). Therefore, we decided
to use 62.5 pmol of KB-R7943 to evaluate the effects of
blocking NCXs on seizures induced by 4-AP.

According to previous studies from our group, i.c.v. in-
fusion of 3 nmol of 4-AP was applied to induce epilepti-
form activity. In control rats, this 4-AP dose generated
1-3 EEG bursts (Fig. 3) and facial, head and forelimb
clonus followed by more severe convulsive behaviour
such as wild running and rearing (Table 2). In contrast,
in MSG-treated rats, 3 nmol of 4-AP induced 6-11 EEG
bursts (Fig. 4) and generalized tonic-clonic seizures
(GTCS) along with more severe convulsive behaviour
(Table 2). KB-R7943 alone or mixed with 4-AP increased
the number of EEG bursts (Fig. 4), and convulsive be-
haviour was confined to minimal clonic convulsions of
head (Table 2), whereas in MSG-treated rats, KB-R7943
alone or mixed with 4-AP reduced the number of EEG
bursts (Fig. 4) and the convulsive behaviour to facial clo-
nus (Table 2).

To clarify the effects of KB-R7943 on seizure suscepti-
bility, we decided to analyse the electrographic parame-
ters of the first EEG burst recorded in the right Hp at
the level of the CAl (the recorded area most proximal
to the infusion location). In control rats, the latency of
the first burst was close to 6 min after 4-AP infusion,
and it was shorter after KB-R7943 or KB-R7943 + 4-AP
infusion. In MSG-treated rats, the latency of the first
burst was close to 20 s after 4-AP infusion and it was
longer after infusion of KB-R7943 or KB-R7943 + 4-AP
(Fig. 5a). Furthermore, the first burst induced by 4-AP
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was longer (Fig. 5b) and higher (Fig. 5¢) in MSG-treated
rats than in controls, and KB-R7943 significantly re-
duced both parameters when it was applied with 4-AP
(Fig. 5b, ).

On the other hand, the duration of ictal activity in-
duced by 4-AP was slightly but not significantly longer
in MSG-treated rats than in the controls, and KB-R7943
induced a significant reduction in this parameter, in both
control and MSG-treated rats, where the reduction was
close to 90% (Fig. 5d). The time elapsed until the
normalization of EEG activity (return to basal parame-
ters) was longer in control rats after KB-R7943 and
KB-R7943 + 4-AP infusion and also in the MSG-treated
rats after 4-AP infusion than in the controls infused with
only 4-AP. Moreover this parameter was significantly
reduced by KB-R7943 infused in combination with 4-AP
(Fig. 5e).

Statistical analysis of electrographic parameters
mentioned above applying two-way ANOVA test to
evaluate the interactions between the treatments (Main
treatment: Groups: Control and MSG; and Conditional
treatment: Subgroups: 4-AP, KB-R7943 and 4-AP +
KB-R7943) showed that they (Treatments: Groups/Sub-
groups) have a significant interaction on all evaluated
parameters (see Additional file 2). Furthermore, to

identify clearly the effect of each combination between
treatments (Control/4-AP; Control/KB-R7943; Control/
4-AP + KB-R7943; MSG/4-AP; MSG/KB-R7943; and
MSG/4-AP + KB-R7943) a post hoc Tukey’s test were
applied and founded significant differences are showed
in the Fig. 5.

Discussion

Neonatal MSG treatment induced long-term upregula-
tion of NCX1 and NCX3 protein expression and modi-
fied the functional implication of these exchangers in
the control of seizure susceptibility. In a previous work,
increases in the expression level of mRNA and protein
of NCX3 were already observed at PD8 in the Hp after
MSG treatment [19]. Here, NCX3 protein expression
was augmented by MSG treatment in both the Hp and
EC at PD60, which suggests that the upregulation of
NCX3 expression could be a long-term effect of the
treatment and also that this outcome may be present in
other cerebral regions; however, these hypotheses should
be tested yet. In this sense, a developmental profile of
the NCXs expression should be established for both the
EC and Hp in both controls and MSG-treated rats in fu-
ture studies.
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Representative EEG recordings about KB-R7943 effects in control rats
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Fig. 2 EEG activity generated in the entorhinal cortex and hippocampus of control rats (CTL group) at PD60 by i.cv. infusion of KB-R7943 at different
doses. Representative one-minute fragments from the recordings taken during basal activity (5 min before the infusion), at the onset of altered activity,
and 1 h after the infusion was completed are presented for 500, 250, 125 and 62.5 pmol of KB-R7943

Because NCX3 expression has been previously reported
to be lower than that of NCX1 and NCX2 [30, 31], the in-
crease induced by MSQG treatment may be even more rele-
vant for the physiology of the studied regions, where
NCX3 is classically confined to the neurons at the soma
level and dendrites and is found to be strongly expressed
in mossy fibres projecting to the CA3 in the Hp and in
layers V and VI of the EC [30, 33, 63]. In contrast, high

expression levels of NCX1 in the Hp are confined to the
distal dendrites [33] and to layer II in the EC [63]. MSG
treatment significantly increased only NCX1 expression in
the EC at PD60; no similar change has been reported pre-
viously in other excitotoxicity models. Furthermore,
although neonatal MSG treatment induces neuronal loss
[9-11], it also increases glial cell density [12], where
NCX1 and NCX3 may be expressed [29, 33, 64]; however,

Table 2 Features and epileptiform behaviours observed in the studied groups

Group Weight (g) Subgroups Bursts Behaviours Death

CTL 25499 +20.03 4-AP 1-3 facial, head and forelimb clonus, wild running and rearing Not observed
KB-R7943 0-2°¢ clonic convulsions of head Not observed
4-AP + KB-R 0-45¢ clonic convulsions of head Not observed

GMS 164.53 +10.70° 4-AP 6-11° facial, head and forelimb clonus and GTCS Observed in 1 animal
KB-R7943 0-1°¢ facial clonus Not observed
4-AP + KB-R 0-1°¢ facial clonus Not observed

p <0.01 CTL vs. MSG animals, using Student's t-test; °p < 0.05 all subgroups compared to CTL/4-AP, and p < 0.05 all subgroups compared to MSG/4-AP, both
using Mann-Whitney U test. Doses: 3 nmol of 4-AP and 62.5 nmol of KB-R7943 (also named KB-R)
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Representative EEG recordings about 4-AP and KB-R7943 effects in control rats
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Fig. 3 EEG activity generated in the entorhinal cortex and hippocampus of control rats (CTL group) at PD60 with i.cv. infusion of 4-AP (3 nmol),
KB-R7943 (62.5 pmol) or the combination of 4-AP (3 nmol) and KB-R7943 (62.5 pmol). Representative one-minute fragments from the recordings
taken during basal activity (5 min before the infusion), at the onset of altered activity, and 30 and 60 min after completion of the infusion
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analysis of the immunochemical location of these proteins
must be performed to confirm this possibility.

Due to the crucial role of NCX exchangers in Ca**
homeostasis, several studies have tried to clarify their in-
volvement in the excitotoxicity process. In vitro studies
have demonstrated that activation of the NMDA receptor
under glucose deprivation increases [Ca®*]; and promotes
NCX reversal activity, prolonging the Ca®* overload and
enhancing neuronal death [65]. Moreover, the increase in
[Ca®*]; and reversal of NCX activity stimulates calpains,
which act on NCX3 and lead to loss of its activity,
followed by a permanent high [Ca®*]; [2, 6, 65]. Proteolysis
of NCX3 by calpains specifically produces fragments of
low molecular weight proximate to 60 kDa [2, 6, 66], pos-
sibly corresponding to the bands observed in our western
blot analysis for this protein. NCX1 and NCX2 have been
reported to be resistant to proteolysis induced by calpains
[2, 6, 66]. Proteolysis of NCX3 has also been observed in
vivo after ischaemia secondary to middle cerebral artery

occlusion (MCAO) [2, 67]. Thus, most of the in vivo stud-
ies have reported reductions in the expression level of
NCXs as a consequence of an excitotoxic process, which
differs of our results. In chronic epileptic adult rats, the
expression of the NCX1 protein was decreased in the den-
tate gyrus and layer III of the EC; similarly, NCX3 protein
expression was diminished in the stratum lucidum and
hilar region of the dentate gyrus, and both reductions
were permanent from 3 weeks until 2 months after the in-
duction of status epilepticus by kainic acid and were
closely related to neuronal death in the same regions [63].
Seizures induced by hyperthermia in young rats (PD20)
have been related to downregulation of NCX3 expression
in the Hp and cerebral cortex [68], while seizures induced
by pentylenetetrazol in adult mice decrease NCX1 and
NCX2 expression in the Hp without modifications in
NCX3 expression [69]. In adult rats, ischaemia reduces
the expression of NCX1 and NCX3 without affecting
NCX2 in the temporoparietal cortex, but when ischaemic
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Representative EEG recordings about 4-AP and KB-R7943 effects in MSG-treated rats
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Fig. 4 EEG activity generated in the entorhinal cortex and hippocampus of MSG-treated rats at PD60 with i.c.v. infusion of 4-AP (3 nmol), KB-
R7943 (62.5 pmol) or the combination of 4-AP (3 nmol) and KB-R7943 (62.5 pmol). Representative one-minute fragments from the recordings
taken during basal activity (5 min before the infusion), at the onset of altered activity, and 30 and 60 min after completion of the infusion are
presented. KB-R7943 significantly reduced epileptiform activity induced by 4-AP in MSG-treated rats

J

preconditioning or postconditioning are applied, the ex-
pression levels of NCX1 and NCX3 are augmented, with
more significant effects at 24 h of reperfusion [70, 71]. Al-
though it is unknown if the increases produced by ischae-
mic preconditioning or postconditioning remain, it is
possible that repeated administration of MSG in the treat-
ment scheme applied here acts as postconditioning and
upregulates the expression of NCX1 and NCX3 in the
long term; however, this statement should be analysed.
Several intracellular signalling pathways have been asso-
ciated with the regulation of NCX expression. Overex-
pression of NCX1 and NCX3 induced by a short exposure
to NGF is dependent on activation of the p38 and ERK1/2
signalling pathways [27]. Similarly, neuronal death in-
duced by neonatal MSG treatment in the cerebral cortex
[9] and Hp [10] is dependent on activation of the p38
signalling pathway. Moreover, neonatal MSG treatment
produces long-term positive effects through activation of
the ERK1/2 signalling pathway measured in the hypothal-
amus [72]. Then, both the p38 and ERK1/2 signalling

pathways could be related to the long-term increase in
NCX1 and NCX3 expression observed here after MSG
treatment, but it remains to be demonstrated.
Functionally, expression of NCX1 and NCX3 plays an
important role in cell survival and is positively regulated
by growth factors such as NGF [27] and BDNF [25] in a
way that increases neural differentiation and reduces neur-
onal death by excitotoxicity, respectively. NCX3 overex-
pression has been related to seizure resistance [73] and
downregulation of seizure susceptibility [68, 73]. Evidence
on the roles of NCX1 is contradictory, as NCX1 knock-
out mice are resistant to seizures induced by pentylenete-
trazole [74], but NCX1 downregulation has been related
to epileptogenesis in a kindling model [69]. Here, even
though MSG-treated rats show an augmented expression
of NCX3 and NCX1, they are more susceptible to seizures
induced by 4-AP [44], probably because the changes in
the expression of NCXs are accompanied by a very broad
and complex set of modifications [18, 25], including
reductions in GABAergic inhibitory neurotransmission
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Fig. 5 KB-R7943 (62.5 pmol) effects on epileptiform EEG activity induced by 4-AP (3 nmol) in control (colourless bars) and MSG-treated (black bars)
rats. The latency, duration and net amplitude of the first burst recorded in the right hippocampus after i.c.v. infusion of the drugs alone or in
combination are presented in panel a, b and ¢, respectively. Furthermore, the duration of ictal activity d and elapsed time before EEG activity
normalization e were also measured in the same conditions described before. Activity recorded in the right hippocampus was considered for
these measurements because it was the region closest to the infusion location. Data represent the mean + SEM from four animals for each
infusion scheme (subgroups: 4-AP, KB-R7943, and 4-AP + KB-R7943) in each group (CTL and MSG). Statistically different at *p < 0.05 for all
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subgroups compared to that in control rats with 4-AP; @p < 0.05 for all subgroups compared to that in MSG-treated rats with 4-AP; &p < 0.05 for
all subgroups compared to that in control rats with KB-R7943; #p < 0.05 for all subgroups compared to that in control rats with 4-AP + KB-R7943;
and §p < 0.05 between KB-R7943 alone and 4-AP + KB-R7943 in MSG-treated animals; tested using two-way ANOVA with post hoc Tukey's test.
Furthermore, p and F values, including degree of freedom, for each variable compared by two-way ANOVA are summarized in Additional File 2

[14, 15]. Then changes in NCXs described above are only ~ blocking on control of seizure propagation and

a part of the mechanisms implicated in the process by
which MSG-treated rats are more susceptible to seizures
induced by 4-AP [44]. Furthermore, because neural
depolarization may induce inversion of NCXs and the in-
version may increase firing probability [75, 76], changes
induced by MSG treatment as increased average fre-
quency of basal EEG activity in both studied cerebral
regions (reported here for first time; Table 1), suggest that
the probability of NCXs inversion could be potentiated
after the treatment; however this suggestion should be
proved.

In our study, KB-R7943 reduced the duration of ictal
activity induced by 4-AP in both control and MSG-
treated rats (Fig. 5d), suggesting a general effect of NCXs

generalization. However, only in MSG-treated rats the
KB-R7943 increased the latency, and reduced the length
and net amplitude of the first burst induced by 4-AP
(Fig. 5a-c), suggesting that after neonatal MSG treatment
the blockage of NCXs in adult rats delay the onset of
seizures. Furthermore, convulsive behaviours induced by
4-AP were reduced by KB-R7943 in both experimental
groups (Table 2). Then, although action mechanisms of
KB-R7943 are still controversial, and it seems to block
not only NCXs but also other transporters and receptors
[77-80], we proposed that the effects exerted by KB-
R7943 on seizure control in MSG-treated rats are related
at least in part, to the increases in expression level of
NCX1 and NCX3 described above.
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On the other wise, in vitro approaches have demon-
strated that low concentrations (<1 uM) of KB-R7943 pre-
dominantly block the reverse mode of NCX3 [81],
avoiding the rise in [Ca>*]; and reducing the frequency of
excitatory postsynaptic currents, but high concentrations
(210 uM) can block both the reverse and forward modes
of the NCXs and promote increases in both [Ca**]; and
the frequency of excitatory postsynaptic currents [76].
Because very few studies have applied KB-R7943 intrace-
rebrally, we are not able to specifically propose how
KB-R7943 is exerting its effects on the seizures. However,
since all KB-R7943 doses proved here (500-62.5 pmol) in
control rats induced alterations on basal EEG activity, and
62.5 pmol of KB-R7943 in both experimental groups in-
duced similar EEG alterations; we propose that when this
isothiourea is applied alone, then predominantly blocks
the forward mode of NCXs. In contrast, when KB-R7943
was applied in combination with 4-AP, it is possible that
reverse mode blocking happen, since prolonged neural
depolarization induces inversion of NCXs [65, 67, 75]. In
addition, if we take in count that in MSG-treated rats: 1)
neural inhibition mediated by GABA is reduced [14, 15, 44]
and 2) NCX1 and NCX3 are overexpressed; then it is pos-
sible that the NCXs inversion may be reached sooner than
in control rats; however more studies are necessary to clar-
ify these statements.

Since a previous work demonstrated that SEA0400, a
specific blocker of NCX1, did not have a significant ef-
fect on 4-AP induced seizures [74], it is possible that
exerted effects of KB-R7943 on control seizures induced
by 4-AP mainly depends on the blockage of NCXS3,
which should be analysed in future studies.

Finally, because the beneficial effects of KB-R7943 on
seizure control after a degenerative process triggered by
neonatal MSG treatment are clear, we suggest that the
blockage of NCXs as possible therapeutic target for epi-
lepsies developed after an excitotoxic process, which
must be analysed more broadly.

Conclusions

This is the first study reporting long-term effects of an
excitotoxic process on functional expression of NCXs in
the EC and Hp. In particular, neonatal MSG treatment
increased the expression of NCX1 only in the EC and
NCX3 in both of the studied regions at PD60. Further-
more, the changes induced by the intracerebral adminis-
tration of KB-R7943 on EEG activity and behaviour of
adult rat also were described here for first time. Specific-
ally, KB-R7943 generated EEG discharges and behaviours
similar to epileptiform activity in more significant way in
control rats; but when it is administered in combination
with 4-AP, KB-R7943 control the seizures, in more signifi-
cant way in MSG treated rats. Thus, according to KB-
R7943 selectivity, our results suggest that the role of
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NCXs, and particularly of NCX3, should be better charac-
terized in the changes induced in seizure susceptibility
produced by an excitotoxic process.

Additional files

Additional file 1: Representative images with the complete banding
pattern are showed in each panel for samples of total protein extract
obtained of the hippocampus of adult rats. (PPTX 315 kb)

Additional file 2: Results of two-way ANOVA test (in p values) applied
to determinate the interactions between treatments on the electro-
graphic parameters evaluated in this work. (DOCX 16 kb)
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