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Abstract

Human mesenchymal stem cells (MSCs) are multilineage somatic progenitor/stem cells that have been shown
to possess immunomodulatory properties in recent years. Initially met with much skepticism, MSC immunomodulation
has now been well reproduced across tissue sources and species to be clinically relevant. This has opened up
the use of these versatile cells for application as 3rd party/allogeneic use in cell replacement/tissue regeneration, as
well as for immune- and inflammation-mediated disease entities. Most surprisingly, use of MSCs for in immune-/
inflammation-mediated diseases appears to yield more efficacy than for regenerative medicine, since engraftment
of the exogenous cell does not appear necessary. In this review, we focus on this non-traditional clinical use
of a tissue-specific stem cell, and highlight important findings and trends in this exciting area of stem cell
therapy.
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Stem cell therapy for immune- and inflammation-
mediated diseases
Stem cells are likely the most promising agent for the
treatment of degenerative and ischemic diseases due to
their self-renewal and multilineage differentiation
capacity. The most exciting aspect of these unique cells
is their potential therapeutic impact for regenerative
medicine [1, 2]. The best studied type of stem cell is the
hematopoietic stem cell (HSC), and transplantation of
these tissue-specific stem cells have now become
standard-of-care for numerous indications [3]. Over
50 years in the making, the success of HSC transplan-
tation is illustrative of the paradigm for stem cell
therapy: replacement and regeneration of pathological
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endogenous tissue with autologous or 3rd party/alloge-
neic stem cells. While research in stem cell biology is
mainly focused on this goal, an unexpected new avenue
of clinical application has emerged for the mesenchymal
stem cell (MSC) as an immunotherapeutic agent. A type
of somatic progenitor/stem cell, the MSC is capable of
multilineage differentiation. However, in recent years,
consistent reports on its immunomodulatory properties
have opened up the use of these cells for indications
other than regenerative medicine. The therapeutic appli-
cation of MSCs in immune/inflammatory contexts may
be more efficacious than traditional indications for
regenerative medicine, since engraftment of infused/
transplanted stem cells—which have proved surprisingly
difficult to achieve [4]—appears not to be necessary for
efficacy [5]. In this review, we specifically focus on this
non-traditional application of a tissue-specific stem cell,
and highlight important findings and trends in this
exciting area of stem cell therapy.
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Background: Functional capacity of Mesenchymal
stem cells (MSCs)
MSCs were first isolated from the adult bone marrow
(BM), and distinguished from marrow hematopoietic
cells by their adherent nature in in vitro cell cultures
and fibroblastic morphology [6, 7]. The function of
BMMSCs was initially thought to be limited to suppor-
ting hematopoiesis; indeed, one of the first clinical use
of these progenitor/stem cells was to enhance HSC
engraftment [8]. Since these early reports, MSCs have
been demonstrated to exist in a wide range of adult and
fetal organs/tissues [9], and popular sources for isolation
other than the BM include adipose tissue, umbilical cord
blood, umbilical cord and placenta. In 2006, the Inter-
national Society for Cellular Therapy (ISCT) established
the following unified and minimal criteria to define
MSCs [10].

� Plastic-adherent cells
� Expression of the surface markers CD73, CD90 and

CD105, but not the hematopoietic markers CD45,
CD34, CD14, CD11b, CD19, CD79a or HLA-DR

� Trilineage mesenchymal differentiation capacity into
osteoblasts, adipocytes and chondrocytes

In the early 2000’s, reports of immunomodulatory
properties in BMMSCs began to emerge [11–13]. While
initially met with much skepticism, the reproducibility of
these findings using multiple species and disease models
along with human case reports established that in vitro
cultured MSCs clearly are immunosuppressive and
immunomodulatory [14–16]. Moreover, these properties
were not limited to MSCs from the BM, but also found
with other sources of MSCs, especially fetal sources
[17, 18]. Interestingly, despite the increasing number of
reports on MSC immune-related functions, the question
of why these somatic progenitor/stem cells harbor these
properties remain much of a mystery. Regardless of this
issue, MSC immunomodulatory functions have greatly
expanded the clinical utility of this progenitor/stem cell
over other stem cell types, since this allows 3rd party/allo-
geneic use. Moreover, use of MSCs for immune-/inflam-
mation-mediated disease entities appear to yield more
efficacy than for cell replacement/tissue regeneration,
since engraftment of the exogenous cell is not necessary.
These reasons, along with easily accessible sources for
isolation, help explain the popularity of MSC therapy for
immune-and inflammation-mediated diseases.

Clinical status of MSC therapy for immune-/
inflammation-mediated diseases
Disease indications in clinical trials utilizing MSCs
The capacity of MSCs for multilineage differentiation as
well as immunomodulation has meant that these somatic
progenitor cells are highly versatile for a wide range of
therapeutic applications. Moreover, a number of animal
model and translational studies have reported on the
capacity of MSCs to home to sites of injury and/or inflam-
mation, thus adding to their attractiveness for clinical use
[19]. Indeed, as of April 2016, there were over 500
MSC-related clinical trials registered on the NIH Clinical
Trial Database (https://clinicaltrials.gov/). Surprisingly,
while the immunomodulatory properties of MSCs have
only more recently been identified, nearly half of all regis-
tered clinical trials—230 trials or 42 % of all registered
trials—are being conducted for immune-/inflammation-
mediated diseases (Fig. 1). The main clinical indications
within these trials include autoimmune diseases (n = 51),
organ transplantation and rejection (n = 67), and other in-
flammatory aspects of various diseases (n = 112). These
trials generally are Phase 1 studies to evaluate safety
(n = 49 or 21.3 %; 2 Phase 0 trial to establish dosage safety
in a small number of subjects), Phase 2 studies to evaluate
efficacy (n = 53 or 23.0 %), or combined Phase 1/2 studies
(n = 103 or 44.8 %). A small number of trials are in Phase
3 (n = 10 or 4.3 %) or combined Phase 2/3 (n = 8 or 3.5 %).
There is only one Phase 4 trial to monitor side effects after
marketing, and there are 4 trials which did not specify a
trial Phase (n = 4 or 1.7 %) (Table 1). Trials also differ in
terms of the tissue source of MSCs used, with the most
frequent reported source being adult BMMSCs (41.2 %).
However, other tissue and fetal source MSCs are also
popular choices, with 16.3 % of trials using adipose-
derived MSCs, and 21.1 % of trials using fetal-source
MSCs which includes MSCs isolated from umbilical cord,
umbilical cord blood, and placenta (Table 1). While 32.5 %
of all trials specify the use of autologous sources, over
50.9 % of trials appear to use allogeneic sources, i.e. trials
which use fetal-source MSCs on adult patients. Unspeci-
fied donor sources account for approximately 16.7 % of
trials. Clearly, the capacity to use allogeneic/3rd party
source MSCs greatly contributes to the popularity of this
stem cell source. In this review, we will focus our attention
on disease indications which have a higher number of
clinical trials being conducted.

Mechanisms of human BM and other tissue source MSC
immunomodulation
Since the first studies demonstrating immunomodula-
tion by MSCs, there have been significant advances in
understanding mechanisms involved in these properties,
including interactions with specific leukocyte popula-
tions [16, 20]. MSC modulation of CD4 T lymphocyte
populations has been best studied, with most reports
demonstrating that secreted factors such as transforming
growth factor β1 (TGF-β1) and prostaglandin E2 (PGE2)
being involved in inhibiting T cell proliferation [21].
In addition, MSCs can modulate T lymphocyte fate,

https://clinicaltrials.gov/


Fig. 1 Clinical application of human mesenchymal stem cells (MSCs) for immune- and inflammation-mediated diseases. Graph is a summary of
the number of clinical trials using MSC therapy in immune-/inflammation-mediated diseases, as registered on the website https://clinicaltrials.gov/
(accessed April 2016). MS, multiple sclerosis; T1DM, type 1 diabetes mellitus; GVHD, graft versus host disease; OA, osteoarthritis; IBD, inflammatory
bowel disease
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polarizing naïve CD4 towards a regulatory T cell (Treg)
phenotype and shifting the cytokine profile from a T
helper cell type 1 (Th1)—in which high levels of
interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α)
are secreted—to a Th2 milieu [22]. MSCs can suppress
the cytotoxic activity of CD8 cytotoxic T cells [23, 24] as
well as natural killer cells (NK) [25], and can also interfere
with B cell maturation and antibody production [26, 27].
In addition to interacting with adaptive and innate
lymphocyte populations, MSCs have also been shown to
modulate the differentiation, expansion, and/or function
of myeloid cells towards more immunosuppressive and
immunomodulatory phenotypes. These interactions include
myeloid populations ranging from monocytes [28, 29],
dendritic cells (DCs) [30, 31], macrophages [32, 33], and
myeloid-derived suppressor cells (MDSCs) [34]. Most
recently, there is also data showing modulation of granu-
locytes by BM and placental MSCs [35, 36]. In studies using
animal disease models, efficacy was especially prominent in
Table 1 MSC clinical trials for immune-related diseases

MSC source Total % Total No. No. of c

?

Unspecified 21.0 49 1

Bone marrow 41.2 96 3

Adipose tissue 16.3 38 0

Umbilical cord 14.2 33 0

Umbilical cord blood 5.6 13 0

Placenta 1.3 3 0

Menstrual Blood 0.4 1 0

Total No. of clinical trial phases 230 4

Total % of clinical trial phases 1.7
abcMSCs are applied to the same clinical trials
deNumber of total clinical trial phase 1 and phase 2 withdraw duplicated MSC sourc
experimental autoimmune encephalomyelitis (EAE) and
moderate for collagen-induced arthritis (CIA), which are
models for multiple sclerosis (MS) and rheumatoid arthritis
(RA), respectively [20, 37]; an early human case report
demonstrated efficacy of allogeneic BMMSCs towards
graft-versus-host disease (GVHD) [14].
In correlation to animal studies and human case

reports, the most common immune-/inflammation-medi-
ated indications in MSC clinical trials were for GVHD
(n = 46), osteoarthritis (OA; n = 38), inflammatory airway
diseases (n = 29), MS (n = 23), and solid organ transplant
rejection (n =21). The majority of trials are still ongoing,
with less than 7 % of trials with published results; these
published reports have been for clinical trials on MS [38],
GVHD [39–41], OA [42–46], inflammatory bowel disease
(IBD) [47, 48] and various pulmonary inflammatory
diseases [49–51]. In this review, therefore, we will discuss
the possible mechanisms and clinical efficacy of MSC
treatment for these particular indications (Fig. 2).
linical trial phases

0 1 1 & 2 2 2 & 3 3 4

0 9 21 14 3 1 0

1 21a 38 25 3 5 0

1 10 17 7 1 2 0

0 6ab 22 4c 0 0 1

0 3 4 3 1 2 0

0 2b 0 1c 0 0 0
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e number in the same clinical trials
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Fig. 2 MSC-derived paracrine factors mediate immunomodulatory
functions, particularly towards T lymphocytes, in preclinical animal
studies of various immune-and inflammation-mediated diseases
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State of MSC clinical research in specific immune-/
inflammation-mediated diseases
Graft-versus-host disease (GVHD)
The most successful therapeutic application using stem
cells has been with HSCs [52]. These tissue-specific stem
cells can be isolated from adult BM, cord blood, or
mobilized to peripheral blood, and represent a life-saving
treatment for patients with hematopoietic malignancies
and genetic diseases, including hereditary anemia and
immunodeficiencies. Either autologous or matched allo-
geneic/3rd-party HSC transplantation may be performed
depending on the clinical scenario. With allogeneic/
3rd-party HSC transplantation, immunosuppression is
necessary. But despite immunosuppressant therapy,
immune rejection in the form of GVHD is still a major
cause of morbidity and mortality, occurring in 30 ~ 40 %
of allogeneic HSC transplantations [53]. The presence of
allo-reactive donor lymphocytes is the crucial reason for
GVHD, which are responsible for the inflammatory injury
to multiple organs, most commonly the skin, gastrointes-
tinal tract, and liver [54, 55]. The clinical application of
MSCs for GVHD developed more rapidly than for any
other type of immune-/inflammation-mediated diseases,
likely due in large part to a case report in which a
pediatric patient with severe GVHD was infused with
haploindentical BMMSCs with dramatic therapeutic effect
[14]. The scientific basis for this case largely rested on a
few human in vitro report showing allogeneic BMMSCs
suppressing lymphocyte proliferation and effector func-
tions [11–13], along with clinical safety data from MSC-
HSC co-transplantation engraftment trials [8]. In this case
report, the patient was a 9 year-old boy with acute
lymphoblastic leukemia post-allogeneic HSC transplan-
tation. Despite being on multiple immunosuppressants
including two types of corticosteroids, infliximab + dacli-
zumab, as well as cyclosporin, the patient developed
severe acute GVHD which lead to the inability to eat by
day 24 post-transplantation. Haploidentical BMMSCs
from his mother—a readily available donor—was infused
at 2 × 106 cells/kg weight, and dramatic decreases in
GVHD symptomatology could be seen within a week of
MSC infusion. The patient eventually required a 2nd infu-
sion of MSCs at a lower dose of 1 × 106 cells/kg, which
along with low levels of immunosuppression (predinoso-
lone + cyclosporine) resolved the GVHD and allowed for
the patient to be alive and well many years post-HSC
transplantation. Based on this one successful case report,
numerous clinical trials for GVHD using autologous,
haploidentical, and/or unmatched MSCs have subse-
quently been conducted. Among completed trials with
published reports are two large-scale multicenter Phase 2
studies for treatment of steroid-resistant, severe acute
GVHD, both of which showed striking efficacy [56, 57].
Smaller trials on other related complications have also
been published: refractory cytopenias [58] and attenuated
dry eye in patients with chronic GVHD [59, 60].
Currently, there are 46 registered trials of MSCs for
GVHD and related complications. Most of these trials are
Phase 2 (n = 20) or combined Phase 1/2 trials (n = 15),
whereas a small number are Phase 1 (n = 3), Phase 3 (n
= 3), combined Phase 2/3 (n =3), or undefined trials (n
= 2). BM is the major source of MSCs in GVHD trials (n
= 22), with a few trials utilizing MSCs from other
sources including adipose tissues (n = 3), umbilical
cord (n = 1) and umbilical cord blood (n = 3). 17 trials did
not specify the source of MSC used. A few currently regis-
tered trials have published results, and all demonstrate
safety of MSC use in GVHD patients as well as some effi-
cacy [39–41].
Despite the promising results of several MSC trials for

GVHD treatment, this trend was not consistently seen
in all trials [61]. A recent meta-analysis revealed much
heterogeneity in conducted trials both on the patient
end—which include differences between pediatric vs.
adult patients, type of HSC transplanted (BM, peripheral
blood, or cord blood)—as well as with the MSCs utilized
[62]. A striking difference in published trials conducted
in Europe (with generally positive results) compared to
North America (with more equivocal results) has been
in the MSCs used in terms of culture conditions, passage
number, and whether cryopreservation was involved
[63, 64]. Adding to the problem may be the fact that
detailed mechanisms on acute GVHD are still somewhat
unclear, and even more so for chronic GVHD [65]. Thus,
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there is continued research using mouse and other animal
models to further understand the pathophysiology of these
diseases. A number of mouse GVHD models—including
humanized mouse models—have been developed, and the
infusion of mouse and human BMMSCs have generally
demonstrated efficacy against the disease by suppressing
donor leukocyte inflammatory responses [66–68]. MSC
factors involved include PGE2 [69] and nitric oxide (NO)
[70]; and effects can be enhanced with pretreatment of
IFN-γ to the MSCs [68]. Animal model studies also
demonstrate that sources of MSCs other than BMMSCs
may also ameliorate GVHD, and may involve vascular
endothelial growth factor (VEGF), PGE2, and TGF-β
[71–74]. One advantage of MSC immunodulation
compared with immunosuppressant drug therapy may be
the capacity of MSCs to inhibit GVHD processes while
preserving graft-versus-leukemia (GVL) effects, a process
thought to eliminate primary or secondary cancer/tumor
formation [69]. This may be due to the fact that
MSCs—regardless of source—highly expand Tregs [18,
75], a CD4 population now thought to be critical for sim-
ultaneously inhibiting GVHD without compromising GVL
responses [76]. Clearly, MSCs have strong potential as
therapeutic agents for GVHD, but detailed tailoring of
patient population and stringent MSC processing criteria
are necessary to deliver consistent and reproducible
results.

Multiple sclerosis (MS)
MS is an inflammatory and demyelinating disorder of
the central nerve system (CNS), and current studies
have found that both Th1 and interleukin-17A (IL-17A)-
secreting CD4 (Th17) lymphocytes are involved in the
pathogenesis of this autoimmune disease [77, 78]. MS
has long been known to be a CD4 T-cell mediated
autoimmune disease that targets myelin-based protein
(MBP), a protein found specifically in myelin sheaths [79].
The resulting demyelination leads to neuronal damage
and conduction impairment, which explains the ‘waxing
and waning’ nature of the disease. Symptoms are progres-
sive and debilitating, and include blurred vision, blindness,
partial or total paralysis, memory and cognitive deficits
[80]. Currently without cure, MS is the most common
autoimmune disease of the CNS and as of 2013, an esti-
mated 2.3 million people are affected with the disease,
with women twice as likely as men to be affected [81].
One of the best animal models for MS is EAE in mice

and using this model, treatment with MSCs has demon-
strated strong therapeutic effects [37, 82]. Intravenous
administration of either mouse or human MSCs can be
detected in the lymphoid organs and demyelinating
regions of EAE mice, and results in amelioration of
inflammation as well as symptoms and disease course
[82, 83]. MSC treatment suppresses auto-reactive Th1/
Th17 proliferation and infiltration in both in vitro and
in vivo studies [82, 84, 85]. Other reports show that
MSC treatment increases accumulation of Th2 cytokine-
s—IL-4 and IL-5—and generation of Treg in vivo, both
of which help reduce EAE symptomatology [83, 86].
Molecular mechanisms by which MSCs polarize CD4 T
cells in EAE models include via indoleamine-2,3-dioxy-
genase (IDO) and monocyte chemoattractant protein-1/
CC chemokine ligand 2 (MCP-1/CCL2) [87]. Interes-
tingly, an in vitro human study found that while MSCs
can effectively inhibit proliferation and IL-2 production
by T cells isolated from MS patients as well as normal
controls, T cells of MS patients still produce higher
levels of IL-2 compared to normal control T cells, dem-
onstrating the inherent pathological immune responses
in these patients [88]. Based on these and many other
preclinical studies demonstrating MSC therapeutic effi-
cacy in animal disease models, these stem/progenitor
cells were considered as strong candidates for treatment
of patients with MS.
To date, there are 23 registered clinical trials using

MSCs for treatment of MS, with 4 in Phase 1, 4 in Phase
2, and 15 as combined Phase 1/2. Sources of MSCs used
in these trials are from the BM (n = 11), umbilical cord
(n = 4) and adipose tissue (n =2), with 6 studies using
unspecified sources. In general, the number of MSCs
transplanted is approximately 2 × 106 cells/kg given ei-
ther intravenously or intrathecally. One clinical trial
has published results on determination of safety and
efficacy of intravenously administration of autologous
BM-MSCs for MS patients [38]. This Phase 2A trial,
which included 10 MS patients and 8 healthy con-
trols, demonstrated that the treatment was safe.
While efficacy was difficult to evaluate, a few out-
come parameters—mainly of optic nerve-based mea-
sures—demonstrated statistically significant or near
significant improvement. The importance of this trial
was also to establish detailed trial design and clinical effi-
cacy measures for MSC therapy in MS. Resolution of
these critical issues will help to pave the way for use of
MSCs, which is one of the most novel methods of treating
MS, in this incurable CNS disease.

Joint diseases: Osteoarthritis (OA) & Rheumatoid Arthritis
(RA)
MSCs are an important therapeutic option for joint
disease, since cartilage does not regenerate and these
progenitor/stem cells are the endogenous progenitor for
this tissue. Two major joint disease entities have been
targeted for MSC treatment: OA and RA. OA is the
most common joint disorder which is due to gradual
deterioration of joint cartilage from ‘wear-and-tear.’ This
subsequently induces an immune response with further
resultant damage to joints [89]. Since cartilage does
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not regenerate, OA is a progressive and irreversible
condition, with the incidence increasing with age and
body weight. While immune injury is not the causa-
tive reason for OA, by the time patients seek medical
help due to pain and joint stiffness, inflammation is
well underway. Moreover, inhibition of the vicious
cycle of cartilage destruction and immune attack is
necessary in order for joint repair to occur. As such,
MSCs are particularly suited for use in OA, since car-
tilage regeneration and immunosuppression can be
achieved simultaneously [90]. Indeed, both small and
large animal studies demonstrate that MSCs decrease
inflammation in OA and allow for cartilage repair
[91–93]. Currently, there are 38 clinical trials regis-
tered, with 9 in Phase 1, 16 in joint-Phase 1/2, and 8
in Phase 2. Not surprisingly, more than 18 % of stud-
ies have published results on the safety and efficacy
of MSCs for OA treatment [42–46, 94]. Overall, these
studies demonstrate quite positive results regarding
improvement in symptomatology—including pai-
n—and joint repair as seen by cartilage regeneration.
While translational and clinical data are generally

positive for MSC therapy in OA, surprisingly this is not
the case for RA. To date, there are only 5 clinical trials
utilizing MSCs for RA treatment registered, with 1 trial
in Phase 1, 3 in Phase 1/2 and 1 in Phase 2/3; no trials
have yet published results. Unlike OA, RA is an auto-
immune disease with a well-established animal model
being the CIA model, in which autoimmune joint dis-
ease can be reproduced in rodent models [95]. Even with
animal models, there are discrepant results with
regards to MSC therapeutic effects [20, 96]. Clearly,
there are detailed mechanistic differences between RA
and OA which still need to be resolved, and may likely ex-
plain the therapeutic divergence in MSC therapy for the
two joint diseases.

Inflammatory bowel diseases (IBD)
The etiology and progression of human IBD which
includes Crohn’s disease (CD) and ulcerative colitis (UC)
are multifactorial, but a critical part of these diseases is
the uncontrolled immune responses to intestinal microbes
[97]. Both CD and UC are progressively fatal without
curative treatment, making MSCs an attractive therapeutic
option for these chronic inflammatory diseases.
There are several experimental animal models for

IBD, and among the commonly used models are the
chemically-induced acute colitis models, with dextran
sodium sulfate (DSS) supplemented in drinking water
or 2, 4, 6-trinitrobenzene-sulfonate acid (TNBS) adminis-
trated by enema [98]. These are also the models in which
MSC therapeutic effects were tested on [99, 100]: MSCs
can be given by intraperitoneal or intravenous routes,
and this can prevent DSS-induced morphological and
immunogenic injury of the intestines. Moreover, application
of MSCs can specifically reduce Th1 and Th17 responses as
well as serum levels of proinflammatory IL-1β, IL-6, IL-17,
TNF-α, IFN-γ levels, while enhancing the numbers of Tregs
and splenic MDSCs [101, 102]. In TNBS animal models,
injection of MSCs resulted in decreased immune cells
infiltration and TNF-α expression, but increases of TGF-β
levels in sites of injury [103]. To improve the efficacy of
MSC treatment for IBD, these progenitor/stem cells
have also been coated with antibodies against mucosal
addressin cell adhesion moledule-1 (MAdCAM-1) and
vascular cell adhesion molecule-1 (VCAM-1), both of
which were shown to increase cell delivery to inflamed
intestinal regions [104]. Immunosuppression was also
enhanced when MSCs was modified with IL-12p40 or
IL-37ß [105, 106].
Currently, there are 19 registered clinical trials

using MSCs for IBD, with 3 for UC & 16 for CD.
With the exception of 4 trials which are in Phase 3,
all other trials are in Phase 1 and/or 2. Interestingly,
there are already quite a number of published reports
regarding treatment of MSCs for fistulas in CD in
particular [48]. BM or adipose-derived MSCs were
used in these trials, with 2 trials using autologous
sources, 11 trials using allogenic source and 2 trials
using undefined source. Collectively, a review of 15
trials (some registered at Clinicaltrials.gov but some
are not) overwhelmingly demonstrate that MSC ther-
apy is not only safe but therapeutically relevant, with
some patients showing durable effects [107]. A very
recent trial using allogeneic placenta-derived MSC-
like cells (which was not registered) also showed fa-
vorable responses [108]. Thus, MSC therapy for
IBD—especially CD fistula formation—appears to be
safe and a highly viable option.

Inflammatory airway & pulmonary diseases
Inflammation is now known to affect many disease
processes of the pulmonary system, including obstruc-
tive diseases like chronic obstructive lung diseases
(COPD) and asthma, as well as restrictive diseases
including idiopathic pulmonary fibrosis (IPF) and acute
respiratory distress syndrome (ARDS). Whether as cause
or consequence, the acute and chronic lung injury found
in these diseases invariably involves aberrant immune
activity and fibrosis [109, 110]. MSC therapy, indeed
most cell therapies, may be particularly suited for use in
pulmonary diseases since it has been consistently shown
that the overwhelming majority (usually 80 ~ 90 %) of
MSCs delivered intravenously—likely the most clinically
feasible method for introduction of cellular products—
will rapidly reach the lungs [111]. Under conditions of
pulmonary inflammation, this percentage increases even
further (Fig. 3) [112, 113]. A recent study also suggest



Fig. 3 Mechanisms involved in MSC therapy for inflammatory pulmonary diseases based on preclinical animal studies. Immunomodulatory effects
include enhancing bacterial clearance by direct killing and enhancement of macrophage phagocytosis; decreasing inflammatory response by
modulation of macrophages towards an M2 phenotype and inhibition of neutrophil recruitment; as well as reducing damage to alveolar epithelium
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that the lung may represent a unique niche for MSCs
[114]. Thus, there has been rapid development of using
MSCs for a wide range of pulmonary diseases.
Interestingly, while specific inflammatory/immune

processes are distinct for pulmonary diseases even within
the same classification, i.e. COPD vs. asthma, MSCs
have been shown in preclinical studies to impart thera-
peutic effects despite these pathophysiological differences.
In COPD, inflammation driven by alveolar macrophages,
cytotoxic T cells, and neutrophils leads to progressive
limitations in airflow, with small airway fibrosis and
alveolar destruction [115, 116]. In asthma, however, mast
cells, eosinophils and Th2 lymphocytes are involved in
further aggravation of airway hyperresponsiveness and
bronchoconstriction [117]. In rodent models of elastase-
induced emphysema or cigarette-induced COPD, MSC
infusion reduces lung destruction and aberrant inflamma-
tion [118, 119]. MSC-secreted epidermal growth factor
(EGF) leads to induction of secretory leukocyte protease
inhibitor (SLPI), an inhibitor which protects epithelial
tissues from serine protease degradation [120, 121]. Infu-
sion of MSCs in a rat model of cigarette smoke-induced
lung injury also results in down-regulation of pro-
inflammatory cytokines such as TNF-α, IL-1β, IL-6
and MCP-1/CCL2, and up-regulation of VEGF and
TGF-β [122]. In addition, MSC treatment can inhibit
cyclooxygenase-2 (COX-2) and COX-2-mediated PGE2
production in alveolar macrophages to decrease inflam-
mation [123]. For asthma, in rodent disease models using
inhalation of toluene diisocyanate, ovalbumin or cock-
roach extract, MSC treatment modulated the immune
milieu through generation of Tregs and inhibition of Th2
responses [124–126]. Reversal of disease symptomatology
along with decreases in Th2 cytokines including IL-4,
IL-5, and IL-13, as well as immunoglobulin E (IgE)
levels, matrix metalloproteinase deposition, and mucus
production were seen [127–129].
Even for fibrotic pulmonary diseases, MSC treatment

appears to be efficacious. In fact, one of the earliest
studies documenting therapeutic efficacy of MSC infu-
sion was in mouse models of bleomycin-induced lung
fibrosis, which is an animal model for IPF [112]. Sub-
sequently, the same group demonstrated that MSC-
secreted IL-1 receptor antagonist (IL-1RA) mediated
the anti-inflammatory and anti-fibrotic effects [130].
Using the same disease model, infusion of umbilical
cord MSCs were also shown to have therapeutic effects
[131, 132]. In addition to anti-inflammatory effects, MSC
treatment may reduce fibrosis through enhancing the
resident lung bronchioalveolar stem cell population for
repair and regeneration of healthy lung parenchyma [133].
Such profound effects induced by MSC treatment may
account for the rapid push to clinical studies in this field,
since about half of the basic and animal studies in this
field were published within the past 3 years.
Most interestingly, MSC treatment can have thera-

peutic results in pneumonia of infectious etiology, espe-
cially bacterial pneumonia which clearly elicits intense
inflammatory and immune responses. This is somewhat
surprising given the strong immunosuppressive effects
of MSCs towards effector cell functions. A lethal conse-
quence of infection-induced pneumonia is ARDS, which
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is a complication with high mortality and morbidity
despite medical advancements [134]. Using mice with
lung injury induced by lipopolysaccharide, a compo-
nent of gram-negative bacterial cell wall, delivery of
MSCs or MSC-conditioned medium improved tissue
damage and survival, which involved MSC-derived
factors such as insulin-like growth factor I (IGF-I)
and TNF-stimulated gene 6 protein (TSG-6) for
generation of anti-inflammatory M2 macrophages
and suppression of inflammatory cell infiltration
[135–137]. In Escherichia coli (E. coli)-induced pneu-
monia rodent models, MSCs improved bacterial clear-
ance by secreting antimicrobial peptide LL-37,
antibacterial protein lipocalin 2 (LCN-2) and keratino-
cyte growth factor (KGF) directly against bacteria or
by enhancing macrophage phagocytosis [138–140].
Moreover, administration of BMMSC-conditioned
medium-derived microvesicles can also alleviate pul-
monary inflammation and injury [141]. MSC treat-
ment for viral pneumonia and subsequent lung injury,
on the other hand, may not be as potent, with some
reports demonstrating therapeutic effects [142] but not
other reports [143, 144]. The dichotomous results of MSC
treatment on bacterial compared to viral pneumonia may
be due to the fact that MSCs have been shown by multiple
studies to modulate neutrophil—the key leukocyte in-
volved in bacterial but not viral infections—life span and
functions [35, 36, 145, 146].
To date, 29 clinical studies of using MSCs for pulmo-

nary disorders have been registered. Targeted disease en-
tities include asthma, COPD, ARDS, bronchial
pulmonary dysplasia (BPD), and fibrosis (including but
not exclusive for IPF), with trials being in Phase 1 (n =
14), Phase 2 (n = 4), or combined Phase 1/2 (n = 11).
There are a few published reports of MSC trials for vari-
ous lung diseases, with the largest published trial being a
Phase 2 multicenter study with 62 patients evaluating
allogenic BMMSCs for COPD [50]. While safe, the trial
did not demonstrate much efficacy. Other published
studies are for Phase 1 trials using various tissue-source
allogeneic MSCs infused intravenously (except where
noted): two trials on ARDS, one using adipose-derived
MSCs [147] and one using BMMSCs [51]; one using
placental-derived MSCs for IPF [148]; and one using
umbilical cord blood MSCs (delivered intratracheally)
for preterm BPD [49]. All three reports showed safety of
MSC infusion, but efficacy was weak at best. The strong
evidence shown in preclinical animal studies does not
seem to be replicated in human trials so far, and this
may be a consequence of the diversity of lung diseases
targeted, as well as the fact that multiple tissue source of
MSCs were used. In addition, whether differences in
MSC tissue source affect homing capacity is also a crit-
ical issue. Thus, careful selection of patient populations
and more research into whether tissue-specific MSCs
harbor distinct therapeutic effects are warranted.

Conclusion
The immunomodulatory properties of MSCs have become
increasingly relevant for clinical use. Based on hundreds
of clinical trials, the safety of this therapy appears clear;
less certain is the efficacy of such cell therapy. The over-
whelming positive results seen in preclinical animal stud-
ies have largely not yet translated into clinical efficacy.
Clearly, there is still much to learn and optimize with
regards to the in vivo interactions of MSCs in human
pathological states. As we improve our understanding on
the mechanistic properties of MSC immunomodulation,
we also need to clarify pathophysiological details and
subsets within disease entities to better tailor MSC
therapy. One important aspect is to delineate tissue-
specific functional differences in MSCs from difference
sources; the current ISCT standardization does not include
immune-related functional tests or more detailed molecular
validation. In addition, standardization of in vitro culture
protocols with stringent criteria for testing of functional
parameters is necessary as well. While there is clearly much
still to do in this field, it must be remembered that even for
HSC transplantation—a clinically established treatment
modality—continued evolution in improving engraftment
and decreasing complications is still ongoing. Nevertheless,
based on current development and results, the tremendous
potential of MSC therapy can be expected in the near
future to achieve clinical relevance.
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