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Abstract

The prevalence of psychiatric disorders which are characterized by cognitive decline is increasing at an alarming
rate and account for a significant proportion of the global disease burden. Evidences from human and animal
studies indicate that neurocognitive development is influenced by various environmental factors including nutrition.
It has been established that nutrition affects the brain throughout life. However, the mechanisms through which
nutrition modulates mental health are still not well understood. It has been suggested that the deficiencies of both
vitamin B12 and omega-3 fatty acids can have adverse effects on cognition and synaptic plasticity. Studies indicate
a need for supplementation of vitamin B12 and omega-3 fatty acids to reduce the risk of cognitive decline,
although the results of intervention trials using these nutrients in isolation are inconclusive. In the present article,
we provide an overview of vitamin B12 and omega-3 fatty acids, the possible mechanisms and the evidences
through which vitamin B12 and omega-3 fatty acids modulate mental health and cognition. Understanding the role
of vitamin B12 and omega-3 fatty acids on brain functioning may provide important clues to prevent early cognitive
deficits and later neurobehavioral disorders.
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Background
The escalating prevalence of brain disorders is currently
a global health challenge [1] and has emerged as leading
contributors to global disease burden [2]. Brain disorders
affect neurological and cognitive performance and there-
fore have lifelong devastating effects on the individual,
family and society. However, the underlying causes of
mental health problems are poorly understood. Substan-
tial evidence suggests that cognitive impairment can be
influenced by number of environmental factors such as
nutrition [3]. Nutrition plays a key role in maintaining
optimal brain health throughout the lifespan of an indi-
vidual [4]. In view of this, the studies examining the link
between nutrition and mental health have gained wide-
spread attention in recent years.
Nutrients like B vitamins and omega-3 fatty acids have

been widely studied in recent years in context of brain
development and functioning. In developing countries
like India, due to widespread vegetarianism, vitamin B12

deficiency [5] coexists with suboptimal levels of omega-3
fatty acids [6]. Reports suggested that these nutrients are
critical for brain health and their deficiencies could in-
fluence cognitive performance adversely. It has also been
suggested that vegetarians should increase their dietary
intake of vitamin B12 and omega-3 fatty acids to reduce
increased risk factors for non-communicable diseases
[7]. However, the effects of both vitamin B12 and omega-
3 fatty acids supplementation together on neurological
disorders are relatively unexplored and the underlying
mechanisms need to be established.
In this review, we highlight the role of vitamin B12 and

omega-3 fatty acids on brain function and proposed
mechanisms through which these nutrients influence
mental health and cognition.

Review
Vitamin B12
Vitamin B12 is generally found only in foods of animal
origin [8]. Thus, the population predominantly consum-
ing a vegetarian diet is deficient in vitamin B12 [5, 9].
Vitamin B12 is a key micronutrient required for proper
brain development and is associated with one carbon
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metabolism that plays a pivotal role in transmethylation
reactions. It is involved in the formation of S-
adenosylmethionine (SAM), which is an important
substrate for epigenetic mechanisms [10]. Vitamin B12

is known to have fundamental roles in the brain func-
tion at all ages and also in the prevention of disorders
of CNS development, mood disorders and dementias
including Alzheimer’s disease and vascular dementia in
elderly people [11].
Elevated methylmalonic acid and total homocysteine

concentrations are considered as sensitive metabolic
markers for vitamin B12 deficiency [12]. Myelopathy
and neuropathy are known to be the main clinical mani-
festations of vitamin B12 deficiency [13]. Symptoms of
vitamin B12 deficiency include megaloblastic anaemia,
tingling and numbness of the extremities, gait abnormal-
ities, visual disturbances, memory loss and dementia [10].
Reports indicate that low dietary intake of vitamin B12, es-
pecially in pregnant women and in the elderly population
are associated with developmental and neurological
disorders [14, 15].
Studies indicate a need for supplementation of vitamin

B12 to improve pregnancy outcome and reduce the risk
of neurodevelopmental disorders [9]. Reports indicate a
positive association between maternal vitamin B12 status
and cognition in the offspring [16]. In contrast, a study
in Indian school children at 6–10 years of age found an
inverse association of maternal vitamin B12 concentra-
tions with cognitive performance [17]. Our recent ani-
mal study has shown that vitamin B12 supplementation
(50 μg/kg of diet) was able to maintain the levels of doc-
osahexaenoic acid (DHA) and brain derived neuro-
trophic factor (BDNF) in the hippocampus and cortex,
and sustain cognition in the adult rat offspring as com-
pared to control animals (receiving 25 μg/kg of vitamin
B12 in diet) [18]. A review by van de Rest et al. concludes
that there are limited studies examining the association
of maternal vitamin B12 with cognition and results are
inconsistent suggesting a need for more research in this
area [19].

Omega-3 fatty acids
The role of omega-3 fatty acids especially DHA in brain
development is gaining widespread attention [20]. The
dietary sources of omega-3 fatty acids are fish and sea
foods only [21] which are the rich sources of DHA.
Hence, the vegetarian population particularly Asian In-
dians are found to be deficient in omega-3 fatty acids
[22]. Further, over the past 150 years, the western diet
has altered such that the ratio of omega-3 to omega-6
fatty acids has changed from 1:1 to 1:20–25 indicating
that this diet is deficient in omega-3 fatty acids and is
rich in omega-6 fatty acids [23]. Thus, the deficiency of
omega-3 fatty acids and consumption of western diet

has been suggested to be associated with cognitive im-
pairment [24, 25].
There is increasing evidence which indicates the im-

portance of omega-3 fatty acids in brain health across
the lifespan [26]. DHA, which is the core member of
omega-3 fatty acids, is highly concentrated in the brain
and the outer segments of retinal rods and cones, consti-
tuting around 50 % of the total polyunsaturated fatty
acids [27]. DHA participates in a number of neuronal
processes including neurogenesis, neuroplasticity, neuron
differentiation and survival, membrane integrity and fluid-
ity [28]. A large body of evidence in animals has shown
that maternal supplementation of DHA during gestation
has neuroprotective effects against prenatal stress-induced
brain dysfunction [29], hyperoxic injury [30] and hypoxic
ischemic injury [31].
A recent study has reported an inverse association be-

tween intake of omega-3 fatty acids and depression [32].
DHA is well-implicated in synaptic transmission, synap-
togenesis, learning and memory processes [33]. The
density of dendritic spine has shown to be increased in
the hippocampus of the animals with the oral supple-
mentation of DHA [34]. Several evidences from animal
and human studies have shown a positive association be-
tween DHA and cognitive development [35–38]. Thus,
the role of omega-3 fatty acids in influencing brain
health and wellbeing is well established however further
investigation is required to better understand the under-
lying mechanisms and also to develop therapeutic tar-
gets for neurological disorders.

Possible mechanisms of the effects of vitamin B12 and
omega-3 fatty acids on brain development
The combined deficiency of both vitamin B12 and
omega-3 fatty acids could impair brain function and in-
crease the risk for neurological and developmental disor-
ders. The deficiency of both these nutrients can affect
neural function by mechanisms [Fig. 1] discussed below.

Homocysteine- induced oxidative stress
Elevated levels of homocysteine have been associated
with vitamin B12 deficiency [5]. Vitamin B12 is an im-
portant component of the one-carbon metabolism where
it acts as a cofactor for the enzyme methionine synthase,
which converts homocysteine to methionine [39]. Hence,
if there is a deficiency of vitamin B12, remethylation of
homocysteine via the enzyme methionine synthase is re-
duced and the plasma levels of homocysteine are ele-
vated [40]. It has also been observed that elevated
homocysteine levels are a sign of disturbed remethyla-
tion of homocysteine [41].
It has been reported that homocysteine activates glu-

tamate receptors by acting as an agonist at the glutamate
binding site of the N-methyl-D-aspartate receptor [42, 43].
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Thus, overactivation of the glutamate receptors leads to
increased intracellular calcium levels and further activa-
tion of signaling kinases resulting in neurodegeneration
and neuronal damage through a process called excito-
toxicity [44, 45]. Homocysteine also increases reactive
oxygen species generation and induce neuronal DNA
damage, triggering apoptosis and affects synaptic and
glial function [46, 47].
It is known that the brain is highly susceptible to oxi-

dative cellular damage due to high metabolic load and
poor antioxidant defense system [48]. Reports suggest
that omega-3 fatty acids are susceptible for degradation
due to increased oxidative stress [49]. Our earlier animal
study has demonstrated increased plasma homocysteine
levels in the offspring as a consequence of maternal vita-
min B12 deficiency [50]. Further, reduced plasma levels
of vitamin B12 and DHA and increased homocysteine
levels were also observed in schizophrenic patients [51]
suggesting their role in the psychological abnormality
underlying the disease. We have also observed a negative
association between maternal plasma homocysteine and
erythrocyte DHA levels in pregnancy complications like
preeclampsia [52].
Hyperhomocysteinemia through the mediation of oxi-

dative stress produces changes in structure and function
of cerebral blood vessels [53]. Animal studies have also
reported that high levels of homocysteine cause damage
and leakage to hippocampal microvasculature [54, 55]

leading to vascular remodeling which could disrupt the
blood–brain barrier [56]. Reports have also suggested
that homocysteine inhibits angiogenesis through the in-
hibition of vascular endothelial growth factor (VEGF)
and its downstream signaling pathway as demonstrated
in cultured human umbilical vein endothelial cells
[57]. A recent study has demonstrated beneficial ef-
fects of omega-3 fatty acid supplementation against
cerebral ischemia and has been shown to enhance
cerebral angiogenesis [58]. Thus, supplementation of
vitamin B12 and omega-3 fatty acids together may help
to protect against homocysteine-induced adverse neu-
rodegenerative effects.

Altered neurotrophins
Vitamin B12 has been implicated in the maintenance of
equilibrium between neurotrophic and neurotoxic fac-
tors in the central nervous system [59]. Neurotrophins
are growth factors that influence the proliferation, differ-
entiation, survival and death of neuronal and non-neur-
onal cells. A series of our animal studies have
demonstrated reduced levels of neurotrophins like
NGF (nerve growth factor) and BDNF in the brain as a
consequence of vitamin B12 deficiency [50, 60, 61]. The
reduction in the levels of neurotrophins could be at-
tributed to increased oxidative stress and decreased
DHA levels [62].
Reduced levels of BDNF have been widely implicated

in the pathophysiology of various psychiatric disorders
like schizophrenia [63] Alzheimer’s [64] and Parkinson’s
disease [65] and Huntington’s disease [66]. Studies have
also reported lower serum NGF levels in the schizo-
phrenic patients [67]. Lower levels of BDNF level in the
schizophrenic patients has been associated with cogni-
tive impairment [68]. It has been suggested that high
neurotrophin expression in the brain may act as neuro-
protective against neurological diseases [69].
Experimental evidence suggests that omega-3 fatty

acids act as neuroprotective agent against neurological
insults through the BDNF signaling pathways [70, 71].
It has been demonstrated that DHA supplementation
in aged mice improved cognitive dysfunction through
increased BDNF levels [72]. DHA is suggested to in-
crease neurotrophins in the brain by increasing
membrane fluidity, reducing oxidative stress, through
neuroprotection D1 [38]. A recent study reported by us
has demonstrated that combined supplementation of
both vitamin B12 and omega-3 fatty acids together in-
creases the levels of BDNF in the cortex and hippocam-
pus region of the brain [18]. Thus, based on all above
facts, altered neurotrophins and their downstream sig-
naling pathway could be one of the possible mecha-
nisms affected by the deficiency of vitamin B12 and
omega-3 fatty acids.

Fig. 1 Proposed mechanisms through which vitamin B12 and
omega-3 fatty acids affects brain functioning. Alerted intake/metabolism
of vitamin B12 and omega-3 fatty acids affects brain function through
multiple pathways. Increased homocysteine levels and altered
epigenetic modification influences brain neurotrophins and
neuro-vascular function directly or through increased oxidative
stress and lower brain omega-3 fatty acid levels which may increase
the risk for neurological disorders and cognitive impairment
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Altered angiogenic factors
It has been demonstrated that neurotrophins like BDNF
and NGF are involved in the regulation of angiogenic
markers in the brain [73, 74]. Studies also indicate that
neurotrophin activation of tyrosine kinase receptors
stimulates an increase in vascular endothelial growth
factor (VEGF) transcription in neuronal tissue [75].
VEGF plays a key role in promoting and coordinating
angiogenesis during development and adulthood [76].
However, both in vitro and in vivo experiments indicated
the diverse roles of VEGF-A in the brain including neur-
onal survival and migration [77]. The neurotrophin me-
diated increase in VEGF in neuronal cells is shown to be
accompanied by an increase in the hypoxia inducible
factor-1 alpha (HIF-1 alpha) levels which is dependent
on tropomyosin receptor kinase (Trk)/ phosphoinositide
3-kinase (PI-3kinase)/ serine/threonine-specific protein
kinase (AKT)/ mammalian target of rapamycin (mTOR)
pathway [78]. HIF-1α expression is known to be regu-
lated by the mTOR signaling pathway [79]. Activation of
mTOR leads to the phosphorylation of two downstream
effectors: ribosomal protein S6 kinase (p70S6K) and
eukaryotic initiation factor 4E-binding protein-1 (4E-BP1)
[80, 81]. Phosphorylation activates p70S6K and inactivates
4E-BP1 which in turn known to regulate HIF-1α expres-
sion at the translational level [79] (Fig. 2).
Thus, it is clear that there is an interaction between

neurotrophins and VEGF in the brain. Our recent study
demonstrates that maternal vitamin B12 and omega-3
fatty acids influence the levels and expression of VEGF
and NGF in the pup brain [82].

Altered one-carbon metabolism and epigenetic regulation
The dysregulation of the one-carbon metabolism is well
implicated in brain disorders like schizophrenia, bipolar
disorder, autism and depression [83]. Vitamin B12 is im-
portant cofactor in one carbon cycle and is involved in
the formation of S-adenosyl methionine (SAM). SAM is
a universal methyl donor for important methylation re-
actions including methylation of DNA, neurotransmit-
ters and phospholipids. Phospholipids utilize methyl
groups for the conversion of phosphatidylethanolamine
(PE) to phosphatidylcholine (PC). The conversion of PE to
PC in biological membranes is critical for mobilization of
DHA from liver to plasma and brain [84, 85]. A study in
the patients of Alzheimer disease demonstrated that the
high levels of circulating homocysteine and decreased
mobilization of DHA from the liver into plasma and per-
ipheral tissues may contribute to cerebrovascular and neu-
rodegenerative changes [86].
The one-carbon metabolism is known to influence epi-

genetic modifications which in turn produce long-term
changes in the brain affecting memory, learning, cogni-
tion and behavior [87]. Epigenetics induces changes in

the chromatin without disrupting the basic DNA se-
quence [88]. DNA methylation is the most widely studied
form of epigenetic modification which occurs through
one-carbon metabolism. DNA methylation/demethylation
plays an important role in learning and memory as sup-
pression of DNA methylation has been associated with
impaired long term potentiation [89] suggesting a critical
role for epigenetic modifiers in neurodevelopment [90].
Studies have demonstrated an association of memory with
changes in DNA methylation in the BDNF gene [91]. It
has been demonstrated that DNA methylation can also
control BDNF expression during development of the fore-
brain in mice [92].
It is reported that adequate supply of nutrients which

are the source of methyl groups to the brain is necessary
for proper functioning [93]. Vitamin B12 is an important
modifier of epigenetics being involved as a cofactor in
the one-carbon cycle. It has been indicated that omega-3

Fig. 2 Interaction between neurotrophins and VEGF. Binding of
neurotrophins like BDNF (brain derived growth factor) and NGF
(nerve growth factor) to their respective receptors TrkB/A triggers
PI-3kinase/AKT/mTOR pathway and leads to increased expression of
HIF-1α protein expression. Activated mTOR leads to the phosphorylation
and activation of ribosomal protein S6 kinase (p70S6K) which in turn
known to regulate HIF-1α expression at the translational level. HIF-1α
then dimerizes with HIF-1β to form HIF complex which translocate to
the nucleus and binds to hypoxia response elements and leads to the
increased transcription of VEGF (vascular endothelial growth factor) in
the brain. NGF: Nerve Growth Factor: BDNF: Brain Derived Growth
Factor; TrkB/TrkA: Tropomyosin receptor kinase B/A; PI3K:
phosphoinositide 3-kinase; Akt: serine/threonine-specific protein
kinase also called as protein kinase B; mTOR: mammalian target of
rapamycin; HIF-1α: Hypoxia Inducible Factor-α; HIF-1β: Hypoxia
Inducible Factor-β; p70S6K: ribosomal protein S6 kinase; VFGF: Vascular
Endothelial Growth Factor
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fatty acids are also known to influence epigenetic mech-
anisms regulating gene expression [94]. We have dem-
onstrated altered global methylation patterns in the
brain of the offspring as a consequence of imbalanced
(excess folate and vitamin B12 deficient) maternal micro-
nutrients in animals. We also demonstrate the important
role of prenatal omega-3 fatty acids in reversing methy-
lation patterns thereby highlighting its contribution in
neuroprotection and cognition [95].
Studies suggest that the brain has significantly higher

levels of methylated DNA in comparison to tissues like
the placenta [96]. The presence of methylated CpG di-
nucleotides is specific for each brain region and for each
stage of development [97]. In spite of this, limited stud-
ies have examined the association of nutrients, especially
those that are part of the one carbon cycle, and methyla-
tion changes in the brain of the offspring.

Conclusion
Inadequate nutrition can increase the risk of developing
neurodevelopmental and cognitive deficits. There are
number of studies and reviews which have evaluated the
neuroprotective benefits of vitamin B12 and omega-3
fatty acids in isolation, however, the combination of
these nutrients are not reported. Thus, there is a need
to study whether there exists any synergistic or antagon-
istic effects between these nutrients. Further research is
recommended to investigate the optimal dose required
to demonstrate preventive effects on cognitive function.
The current article discusses various mechanisms

through which vitamin B12 and omega-3 fatty acids can
support brain function. Initially, animal and cell-culture
studies are recommended which will help to better
understand the mechanisms involved. This may provide
important insights into the etiology of various neurode-
velopmental disorders.
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