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Abstract

Background: Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy
(dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins
affect axonal transport by reducing acetylated tubulin.

Results: We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by
Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that
they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic
resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder
mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior
compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor
nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin
section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause
reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination.
Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and
reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype
besides motor neuronal defects.

Conclusions: Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be
applied to future development of therapeutic strategies for dHMN or CMT2F.

Keywords: Heat shock 27 kDa protein 1 (HSP27 or HSPB1), Charcot-Marie-Tooth disease (CMT), Distal hereditary
motor neuropathy (dHMN), Axonopathy, Mouse model, Magnetic resonance image (MRI)

Background
Mutations in heat shock 27 kDa protein 1 (HSP27, also
called HSPB1) are associated with hereditary peripheral
neuropathy [1–4]. The clinical aspects of the patients
are heterogeneous and include motor neuropathy or
sensory neuropathy with various onset ages, resulting
in distal hereditary motor neuropathy (dHMN) type II

(OMIM 608634) or Charcot-Marie-Tooth disease (CMT)
type 2 F (OMIM 606595) [1–4].
HSP27 is located in chromosome 7q11-q21 and encodes

a 27 kDa protein possessing an α-crystallin domain [5].
HSP27 protects cells from stresses and is associated with
cell motility and cytoskeletal stabilization [6–10]. The
expression of HSP27 ameliorates neurodegenerative
diseases, such as Alzheimer’s disease [11, 12], Parkinson
disease [13], and amyotrophic lateral sclerosis [14]. On the
other hand, mutation in HSP27 deteriorates axonal trans-
port in the peripheral nervous system [15]. Mutant HSP27
protein reduces neuronal cell viability and impairs neuro-
filament assembly [1, 16]. In addition, the expression of
mutant HSP27 reduces acetylated α-tubulin in dorsal root
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ganglion cell (DRG) in mouse model, resulting in reduced
mitochondrial movement and dysfunction of axon cyto-
skeleton and axonal transport [17].
So far, eight mutations in HSP27 are reported: L99M,

R127W, S135F, R136W, R140G, T151I, P182S, and P182L.
Intriguingly, the Ser135Phe mutation, which is the best
characterized mutation, is associated with both CMT2F
and dHMN [1]. This implies that various clinical pheno-
types such as involvement of sensory neuron, onset age,
and severity caused by the same mutation, might be
dependent on the genetic background.
Currently, several mouse models (FVB/N strain) have

been developed for HSP27 mutations including Pro182-
Leu [18], Ser135Phe [18], and Arg136Trp [19]. The phe-
notypes of these mice are similar to patients who
develop late-onset motor neuropathy. Since the clinical
symptoms of patients are heterogeneous according to
genetic background, various models might be required
for further study.
In this study, we generated a transgenic mouse

(C57BL6/J strain) expressing S135F mutation in HSP27
to further investigate the clinical aspects and develop-
ment of therapeutic strategies.

Methods
Preparation of HSP27 construct
To obtain human HSP27 gene, total mRNA from HEK
293 cells was used as the template for cDNA synthesis
and PCR amplification. The amplified gene was cloned
into the pcDNA3.1(+) vector, where CMV promoter
drives the expression of the gene, for recombination and
expression in mammalian cells. To generate the S135F
mutant gene, site-directed mutagenesis was performed
using the QuikChange Site-Directed Mutagenesis Kit
(Stratagene, La Jolla, CA). All the sequences were con-
firmed by capillary sequencing.

Generation of transgenic mouse model
To establish a mouse model for HSP27-S135F mutation,
pcDNA3.1-HSP27-S135F was injected into fertilized eggs
(C57BL6/J strain). The eggs were implanted into surro-
gate female mice. Seventy-two mice were generated and
12 harbored the HSP27-S135F construct. All experi-
ments were conducted according to protocols approved
by the Institutional Animal Care and Use Committees of
Samsung Medical Center.

Rotarod test
To evaluate motor coordination and balance of HSP27-
S135F transgenic mice, the rotarod test was performed on
a 3 cm horizontal rotating rod (2 m/min). To adapt to the
test, the mice were pre-trained for one week. Testing was
for a maximum of 7 min.

Electrophysiological study
Ten control and transgenic mice, aged 7 months and
weighing 25–30 g, were used for the electrophysiological
study. The mice were anesthetized with 50 mg/kg Zoletil
(Virbac, Seoul, Korea) intraperitoneally and the fur from
the distal back and the hind limbs was completely re-
moved. Nerve conduction study (NCS) was performed
using Nicolet VikingQuest (Natus Medical, San Carlos,
CA) [20]. The compound motor action potential (CMAP)
amplitudes and motor nerve conduction velocity (MNCV)
were determined.

Magnetic resonance imaging (MRI)
In vivo monitoring of mouse hind limbs and muscle
damage was performed using a Biospec 7.0 Tesla 30 cm
horizontal bore scanner with Paravision 5.1 software
(Bruker Biospin MRI GmbH, Germany) as detailed [21].
Briefly, Bruker four-element 1H volume coil array and
Bruker 72 mm linear-volume coil were used as the re-
ceiver and the transmitter, respectively. Aaxial, mid-
sagittal, and coronal scout rapid acquisition with fast
low angle shot imaging was used to localize the leg,
and high resolution T2-weighted images in the cross-
sectional view were acquired with TR/TE (repetition
time/echo time) = 5000/32 ms, field of view = 30 ×
30 mm2, matrix size = 250 × 250, slice thickness = 0.
5 mm without a gap.

Electron microscopy
The distal sural nerve was biopsied from mice at
10 months, and pathological examinations of affected
individuals included light and electron microscopic
analyses. Specimens were individually fixed in 2 % glu-
taraldehyde in 25 mM cacodylate buffer. Semithin sec-
tions were stained with toluidine blue and ultra-thin
cut samples were contrasted with uranyl acetate and
lead citrate.

Immunohistochemistry and western blotting
Tissues from sciatic and median/ulnar nerve of the mice
were analyzed for tubulin acetylation and neurofilament
phosphorylation. Formalin-fixed sections were stained
with hematoxylin and eosin (H&E). Anti-phospho-
neurofilament and acetylated-α-tubulin antibody (Abcan,
Cambridge, UK) were used. Standard Western blotting
was performed using anti-tubulin (Abcam), anti-β-actin
antibody, anti-mouse secondary antibody, and anti-
rabbit secondary antibody (Sigma-Aldrich, St. Louis,
MO) as well as ECL plus Western blotting substrate
(Thermo Scientific, Rockford, IL). Band intensities were
calculated by Image J program (www.imagej.nih.gov)
then the ratio of the band intensity of acetylated-α-
tubulin over α-tubulin and phospho-neurofilament over
neurofilament was calculated.
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Statistical analysis
All animals were studied with a blind test. Comparison
between normal and HSP27-S135F mice were made by
Student’s t-test. P < 0.05 was considered statistically
significant.

Results
HSP27-S135F transgenic mice exhibit reduced motor
function
Wild type and S135F mutant HSP27 gene was cloned
as described in Materials and Methods. Expression of
the genes was confirmed in HEK293 and NSC34 cells
(Additional file 1: Figure S1). To generate HSP27-
S135F transgenic mice, pcDNA3.1-HSP27-S135F was
injected into fertilized eggs. Twelve transgenic mice
were confirmed to have the HSP27-S135F construct.
From 5 months, motor function was assessed using the
rotarod test. Compared with age matched control mice

group (n = 10), several transgenic mice exhibited re-
duced motor performance (Fig. 1a). Upon completion
of the tests, two mice (#11 and #26) were chosen as
founders for further studies. Rotarod testing of the
founders’ siblings also showed the same results (Fig. 1b).
Measurement of grip strength on the progeny (F1) also
demonstrated reduced motor function in the transgenic
mice (Additional file 2: Figure S2). Besides the motor
function, all the mice exhibited normal phenotype, ex-
cept that #60 had white fur on chest, which was trans-
mitted to its siblings.

MRI demonstration of fatty infiltration in lower
extremities
T2-weighted imaging and fat-suppressed imaging of leg
and thigh muscles were performed on 7 month-old
mice. Heterogeneous areas of elevated intensity were vis-
ible in all HSP27-S135F transgenic mice (Fig. 2a) in

Fig. 1 Reduced motor function in HSP27-S135F mouse. Rotarod test were applied to measure motor function of mice. Reduced performance was
observed from both the founders from 5 months of age (a) and siblings of #11 and #26 from 7 months of age (b). **, p < 0.01

Fig. 2 Fatty replacement of calf muscles in HSP27 transgenic mice on T2-weighted MRI. a. Fatty infiltration of leg muscles was observed in transgenic
mice with HSP27 mutations on MRI. b. Normal muscular findings of control mice were shown on MRI. c. Orientation and anatomy of calf cross sections.
Anterior muscle groups (anterior) include tibialis anterior, extensor halluces longus, and extensor digitorum longus. Lateral muscle groups
(lateral) include peroneus longus and peroneus brevis. Deep posterior groups (deep posterior) include tibialis posterior and flexor digitorum
longus. Superficial posterior groups (superficial posterior) include gastrocnemius and soleus. The tibial and fibular bones are marked as arrow
and arrowhead, respectively
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contrast to the more uniform and dark signal for healthy
control muscle tissue (Fig. 2b). Transgenic mice showed
marked fatty infiltration in the anterior and posterior
compartments at the calf level.

HSP27-S135F transgenic mice exhibit reduced CMAP
To determine the functional defect in hind limbs, nerve
conduction was examined in both sides of sciatic nerve
of five F1 mice of the #11 founder at 7 months of age.
Five age-matched normal mice were used as control. As
shown in Fig. 3a-c and Table 1, transgenic mice
showed significantly reduced CMAP than control mice.
However, there was no difference in MNCV between nor-
mal and HSP27-S135F mice (Table 1 and Fig. 3). These
data suggest that HSP27-S135F transgenic mice have
abnormal motor function and the phenotype is consist-
ent with CMT2 or dHMN, rather than CMT1, which is
caused by Schwann cell malfunction and shows reduced
MNCV.

Electron microscopy demonstration of reduced motor
neuron
To analyze the ultra-structure of the sciatic nerve of
HSP27-S135F mice, sciatic nerves of the founder and
their progeny mice were collected. Semi-thin sections of
sciatic nerve displayed reduced number of large myelin-
ated fibers in HSP27-S135F mice compared to control
mice (Fig. 4a and 4b). Direct counts also revealed that
the ratio of large myelinated fibers (>15 μm) was re-
duced in transgenic mice compared to control mice
(Fig. 4c). Since large myelinated fibers are motor

neurons, this result is consistent with previously demon-
strated impaired motor function and muscle integrity.
Electron microscopic analysis revealed mixed forms of
demyelinated or dysmyelinated fibers compared to nor-
mal fibers (Fig. 4d-g).

Decreased level of acetyl-tubulin in sciatic nerve
Since phosphorylated neurofilament and acetylated
tubulin have been reported as molecular pathological
markers for HSP27 mutation mediated axonopathy, we
determined their levels in the sciatic nerve. As expected,
tubulin acetylation was reduced and phosphorylated
neurofilament was elevated in sciatic nerve of HSP27-
S135F mice compared to control mice (Fig. 5a-d). Western
blotting from each of the three mice (Fig. 5e) and quanti-
tation from the data (Fig. 5f) were also consistent with the
immunohistochemical data.

Discussion
Transgenic mice overexpressing HSP27-S135F were gen-
erated and phenotypic characteristics were assessed. The
mice exhibited axonal neuropathy as expected. Electron
microscopy and toluidine blue staining revealed deterio-
rated integrity of Schwann cells and axons in transgenic
mice. However, the major pathogenesis occurred in the
axon because only CMAP rather than MNCV was af-
fected. MNCV is lowered by the aberrant myelination of
Schwann cell, which is a typical pattern of CMT1,
whereas CMAP is affected by axonal neuropathy, such
as CMT2. These axonal defects increase fatty infiltration
in the anterior and posterior compartments of the calf,
which eventually led to reduced locomotion function.
Since HSP27-S135F mutation cause both CMT2F and
dHMN, we tried to examine whether the mice exhibit
sensory neuropathy. From hot plate test, we could ob-
serve that HSP27-S135F mice show normal sensory
function on temperature (Additional file 3: Figure S3).
Thus phenotypic characteristics of our new mice might
be close to dHMN.

Fig. 3 Reduced CMAP was observed from NCS. Representative sciatic CMAP responses from HSP27-S135F (a) and normal mice (b). Sweep speed,
0.5 ms per division; Amplitude, 10 mV per division. Mean sciatic CMAP amplitudes (c) and conduction velocity (d) for each group revealed
that HSP27-S135F exhibit abnormality in only CMAP. Five mice of each group were used and data from both right and left were pooled
(n = 10). **, p < 0.01

Table 1 Summary of nerve conduction study

Control HSP27-S135F p-value

na 10 10 -

CMAP 41.27. ± 7.51 27.48 ± 8.21 0.004

MNCV 57.92 ± 14.28 56.50 ± 13.95 0.912
an = sum of left and right sciatic nerve; data expressed as
mean ± standard deviation
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Compared to previously reported mouse models, the
newly developed model exhibited early onset and more
severe phenotype. In a prior study, rotarod performance
deteriorated from 6 months of age [18]; however, the newly
developed mice showed poor performance from 5 months.
Moreover, the performance in two founders was only 55 %
and 23 % of control mice, respectively. These observations
imply that the phenotype of the mice with the same muta-
tion can be diverse according to the genetic background
and driving promoter. In addition, phenotypic diversity
could be derived by the position or copy number of the
transgene. The phenotypic variation might also be
dependent on the expression level of the transgene. We

tried to correlate the expression level and the pheno-
typic severity (Additional file 4: Figure S4), however,
further study is needed to provide clear conclusion.
MRI was used to assess muscle integrity in the CMT

mouse model. Since the pathological findings from MRI are
consistent with previous reports [4], MRI can be adopted
as a new assessment tool for CMT research. In CMT, huge
gaps still remain between preclinical study and clinical out-
comes. Although the administration of ascorbic acid can
dramatically reduce the mouse phenotype [22], the effects
remain unclear even after phase III clinical trial [23].
The HSP27-S135F missense mutation is located in the

HSP20-α-crystallin domain. This domain is related to

Fig. 4 Aberration in myelination was observed in HSP27-S135F mice. Toluidine blue staining showed normal myelination in normal mice (a) and
demyelination in HSP27-S135F mice (b). Scale bar = 20 μM. c. Distribution of diameter of myelinated axon demonstrated that the proportion of
large (>15 μm) myelinated fibers are reduced in HSP27-S135F mice. **, p < 0.01. Electron microscopy demonstrated normal pattern in normal
mice (d) and abnormal myelination in transgenic mice (e-g). Magnifications: (d) and (e), x 1000; (f) and (g), x 4000

Fig. 5 Reduced acetylated tubulin and increased phosphorylated neurofilament. a-d. Immunohistochemical analyses revealed the reduced level
of acetylated tubulin in HSP27-S135F mice (b) compared to normal mice (a) and elevated level of phosphorylated neurofilament in HSP27-S135F
mice (d) compared to normal mice (c). Scale bar = 100 μM. e. Western blotting from 3 mice from each group demonstrated the changes of the
proteins level. f. The Western blotting image were quantitated. Data are mean ± standard deviation. *, p < 0.05; and **, p < 0.01
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mitochondrial movement, which is important to maintain
the integrity of cellular cytoskeleton transport [18, 24].
HSP27-S135F mutation induces hyper-phosphorylation of
neurofilament light protein, resulting in axonal transport
defect by aggregation of phosphorylated neurofilament
proteins, which is mediated by Cyclin-dependent kinase
(Cdk5) [25]. Since elevated level of phospho-NEFL was
reduced by inhibitor or by the Cdk5-specific shRNA and
the reduced mitochondrial movement, which is mediated
by reduced acetylated-α-tubulin, was recovered by the
utilization of HDAC inhibitor [18], targeting Cdk5 or
HDAC could be the therapeutic strategies for the treatment
of axonal neuropathy caused by the mutation in HSP27.

Conclusion
In conclusion, the phenotype of the newly developed
mouse model is consistent with CMT2 or dHMN patients.
The model is a potentially useful tool for future assess-
ment of therapeutic candidates for CMT2 or dHMN.

Additional files

Additional file 1: Figure S1. Generation and expression of HSP27-S135F.
(A) Chromatograms of the sequences of wild type and S135F mutants of
HSP27. Arrows indicate the mutation site. (B) Western blotting for the
determination of the expression wild type and S135F mutant HSP27 in
HEK293 cells or NSC34 cells.

Additional file 2: Figure S2. Grip strength test for offspring of #11 and
#26. Grip strength was performed using all four limbs of the mice. *, p< 0.05.

Additional file 3: Figure S3. Hot plate test for sensory nerve function.
Mice were place on a preheated (52 °C) acrylic box. Latency of paw
withdrawal, shaking, or licking was calculated and compared (n = 7 per
each group). Trembler J mice is well-known CMT1 mouse model, which
naturally carries PMP22-L16P mutation in one allele. **, p < 0.01.

Additional file 4: Figure S4. Expression of HSP27 in the siblings. (A)
CMAP were performed to divide the sibling into moderate and severe
phenotype. #201, #243, and #293 mice showed relatively mild phenotype,
and #217, #240, and #280 mice showed relatively severe phenotype. (B)
Western blotting for determination of HSP27 expression level in the sciatic
nerve of the mice. (C) Determination of HSP27 expression in the various
organs including sciatic nerve, spinal cord, spleen, and liver from normal
and HSP27-S135F transgenic mice.

Additional file 5: Supplementary Methods.
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