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Abstract

Down syndrome (DS) is one of the commonest disorders with huge medical and social cost. DS is associated with
number of phenotypes including congenital heart defects, leukemia, Alzeihmer's disease, Hirschsprung disease etc. DS
individuals are affected by these phenotypes to a variable extent thus understanding the cause of this variation is a key
challenge. In the present review article, we emphasize an overview of DS, DS-associated phenotypes diagnosis and
management of the disease. The genes or miRNA involved in Down syndrome associated Alzheimer's disease,
congenital heart defects (AVSD), leukemia including AMKL and ALL, hypertension and Hirschprung disease are
discussed in this article. Moreover, we have also reviewed various prenatal diagnostic method from karyotyping to rapid
molecular methods - MLPA, FISH, QF-PCR, PSQ, NGS and noninvasive prenatal diagnosis in detail.

Introduction

Down syndrome is one of the most leading causes of in-
tellectual disability and millions of these patients face
various health issues including learning and memory,
congenital heart diseases(CHD), Alzheimer’s diseases
(AD), leukemia, cancers and Hirschprung disease(HD).
The incidence of trisomy is influenced by maternal age
and differs in population (between 1 in 319 and 1 in
1000 live births) [1-5]. DS has high genetic complexity
and phenotype variability [6-8]. Trisomic fetuses are at
elevated risk of miscarriages and DS people have in-
creased incidence of developing several medical condi-
tions [9]. Recent advancement in medical treatment with
social support has increased the life expectancy for DS
population. In developed countries, the average life span
for DS population is 55 years [10].

Review

Human Chromosome 21

DS complex phenotype results from dosage imbalance of
genes located on human chromosome 21(Hsa 21). The
genetic nature of DS together with the relatively small
size of Hsa 21 encouraged scientist to concentrate efforts
towards the complete characterization of this chromo-
some in the past few years. The length of 21q is 33.5 Mb
[11] and 21 p is 5-15 Mb [12]. A total 225 genes was es-
timated when initial sequence of 21q was published [11].
Hsa 21 has 40.06% repeat content out of which the repeat
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content of SINE’s, LINE’s, and LTR are 10.84%, 15.15%,
9.21% respectively. The Table 1 given below highlights
some of the genes present on chromosome 21.

Features of DS

There are various conserved features occurring in all DS
population, including learning disabilities, craniofacial ab-
normality and hypotonia in early infancy [13]. Some people
of DS are affected by variant phenotypes including atrio-
ventricular septal defects (AVSD) in heart, leukemia’s (both
acute megakaryoblastic leukemia(AMKL) and acute
lymphoblastic leukemia(ALL)), AD and HD. DS individual
have variety of physical characteristics like a small chin,
slanted eye, poor muscle tone, a flat nasal bridge, a single
crease of the palm and a protuding due to small mouth
and large tongue [14]. Other features includes big toe,
abnormal pattern of fingerprint and short fingers.

Genetics of the disease

The most common cause of having a DS babies is pres-
ence extra copy chromosome 21 resulting in trisomy.
The other causes can be Robertsonian translocation and
isochromosomal or ring chromosome. Ischromosome is
a term used to describe a condition in which two long
arms of chromosome separate together rather than the
long and short arm separating together during egg
sperm development. Trisomy 21 (karyotype 47, XX, + 21
for females and 47, XY, + 21 for males) is caused by a
failure of the chromosome 21 to separate during egg or
sperm development. In Robertsonian translocation
which occurs only in 2-4% of the cases, the long arm of
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Table 1 Some common gene present in chromosome 21

S.no. Genes Abbreviation

1. APP Amyloid beta (A4) precursor protein

2. Q21 or f59:  Chromosome 21 open reading frame 59

3. CBS Cystathionine-beta-synthase

4. CLDN14 Claudin 14

5. HLCS Holocarboxylase synthetase (biotin-(proprionyl-
coenzyme a-carboxylase (ATP-hydrolysing)) ligase)

6. KCNET1 Potassium voltage-gated channel,
isk-related family, member 1

7. KCNE 2 Potassium voltage-gated channel,
isk-related family, member 2

8. LAD Leukocyte adhesion deficiency

0. SOD 1 Superoxide dismutase 1

10. TMPRSS3 Transmembrane protease, serine 3

1. PCNT Centrosomal pericentrin

12. DSCR1 Down Syndrome critical region 1

13. DYRKTA Dual specificity tyrosine-(Y)-phosphorylation
regulated kinase 1A

14. RRPB1 Ribosomal RNA processing 1 homolog B

15. S100B Calcium binding protein

the chromosome 21 is attached to another chromosome
(generally chromosome 14). While mosaicism deals with
the error or misdivision occurs after fertilization at some
point during cell division. Due to this people with mo-
saic DS have two cell lineages which contribute to tis-
sues and organs of individuals with Mosacism (one with
the normal number of chromosomes, and other one
with an extra number 21) [15].

Genotype-phenotype correlation

Gene dosage imbalance hypothesis states that DS pa-
tients have an increased dosage or copy number of genes
on Hsa 21 that may lead to an increase in gene expres-
sion [13-15]. This hypothesis has been extended to in-
clude the possibility that specific genes or subsets of
genes may control specific DS phenotypes [16]. Ampli-
fied developmental instability hypothesis states that a
non-specific dosage of a number of trisomic genes leads
to a genetic imbalance that causes a great impact on the
expression and regulation of many genes throughout the
genome [13, 14]. Another hypothesis known as critical
region hypothesis was also added to this list. Phenotypic
analyses was done on individuals with partial trisomy for
Hsa21 identified that only one or a few small chromo-
somal regions, termed “Down syndrome critical regions”
(DSCR) a region of 3.8-6.5 Mb on 21q21.22, with ap-
proximately 30 genes responsible for the majority of DS
phenotypes [15,16]. Previously a region of 1.6 to 2.5 Mb
was recognised as sufficient cause for DS pehnotype [17,
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18]. The sequencing of Hsa 21 proved to be an import-
ant factor in the progression of DS research [19] and led
to further insight into genotype-phenotype correlations
associated with DS and precise characterizations of
DSCR regions [13]. A “critical region” within 21q22 was
believed to be responsible for several DS phenotypes
including craniofacial abnormalities, congenital heart de-
fects of the endocardial cushions, clinodactyly of the
fifth finger and mental retardation [20].

Dual-specificity tyrosine phosphorylation-regulated kin-
ase (DYRK1A) and regulator of calcineurin 1 (RCANI),
Down syndrome cell adhesion molecule (DSCAM) has
been suggested to play a critical role in the developing
brain and has also been identified as a candidate gene for
the increased risk of CHD in DS individuals [21,22].
DSCAM is a critical factor in neural differentiation, axon
guidance, and the establishment of neural networks and it
has been suggested that the disruption of these processes
contributes to the DS neurocognitive phenotype [22].
Based on thorough analyses of studies on humans and DS
mouse models, it is evident that there is not a single crit-
ical region of genes sufficient to cause all DS phenotypes.
Alternatively, it is likely that there are multiple critical re-
gions or critical genes contributing to a respective pheno-
type or group of phenotypes associated with DS [23].

Various clinical conditions associated to Down syndrome
The various clinical conditions associated with DS are
Alzheimer’s disease, heart defects, leukemia, hyperten-
sion and gastrointestinal problems (Figure 1). The mo-
lecular pathogenesis mechanism of these DS related
phenotype must be studied along with its causative
agents in order to have a better understanding of the dis-
ease. Below are some DS related phenotype discussed in
detail which are as follows:

Neurological problems

DS patients have greatly increased risk of early onset AD.
After the age of 50, the risk of developing dementia in-
creases in DS patients up to 70% [23-27]. There are vari-
ous genes reported to cause early onset AD. Some of the
genes described in the current literature are APP (amyloid
precursor protein), BACE2 (beta secretase 2), PICALM
(Phosphatidylinositol binding clathrin assembly protein)
and APOE(Apolipoprotein E) etc. APP is an integral
membrane protein which is concentrated in synapse of
neurons and trisomy of this protein is likely to make sig-
nificant contribution to the increased frequency of demen-
tia in DS individuals. The triplication of Hsa 21 along with
APP in people without DS has been recently shown to be
associated with early onset AD. A tetranucleotide repeat,
ATTT, in intron 7 of the amyloid precursor protein has
been associated with the age of onset of AD in DS in a
preliminary study [28]. Various mouse models are used to
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observe degeneration of basal forebrain cholinergic neu-
rons (BFCNs). Ts65Dn mice is dependent on trisomy of
APP expression of retrograde axonal transport [29]. Stud-
ies have also revealed that BACE2 which encodes enzyme
beta secretase 2 is also involved in AD. APP and BACE 2
genes are located on chromosome 21. The current data on
DS support the association of haplotypes in BACE2 with
AD [30]. Besides APP and BACE?2 genes, other genes like
PICALM and APOE are also found to be associated with
the age of onset of Alzheimer’s dimentia in DS [31].

Cardiac problems

The incidence of CHD in newborn babies with DS is up
to 50% [32]. Endocardial cushion defect also called as
atrioventricular cushion defect is most common form
which affects up to 40% of the patients. Ventricular sep-
tal defect (VSD) is also present in these population
which affects up to 35% of the patients [33]. The essen-
tial morphological hallmark of an AVSD is the presence
of a common atrioventricular junction as compared to
the separate right and left atrioventricular junction in
the normal heart. Other morphological features include
defects of the muscular and membranous atrioventricu-
lar septum and an ovoid shape of the common atrioven-
tricular junction. There is disproportion of outlet and
inlet dimensions of the left ventricle, with the former
greater than the latter as compared to the normal heart
where both dimensions are similar [34]. While in case of
VSD, the defect lies in ventricular septum of the heart
due to which some of the blood from the left ventricle
leaks into the right ventric leading to pulmonary hyper-
tension. Mutation in non Hsa 21 CRELD1 (Cysteine rich
EGF like domainl) gene contributes to the development
of AVSD in DS [35]. CRELD1 is located on chromosome
3p25. It encodes a cell surface protein that functions as
cell adhesion molecule and is expressed during cardiac
cushion development. CRELD1 gene contains 11 exons
spanning approximately 12 kb [36]. To the present, two
specific genetic loci for AVSD have been identified. One
was AVSD 1 locus present on chromosome 1p31-p21
[37]. Other locus was present on chromosome 3p25 and
the corresponding gene was CRELD1 [36,38]. Maslen et
al. in [33] have identified two heterozygous missense
mutation (p.R329C and p.E414K) with two subjects in
DS and AVSD. They have recruited 39 individual of DS
with complete AVSD and have found the same mutations.
In the same study, DNA of 30 individual of trisomy without
CHD was studied for both mutations, no such mutation
was identified [35]. R329C which was originally reported in
an individual with sporadic partial AVSD and now it is also
detected in individual of DS with AVSD. Interestingly, with
the same mutation (p.R329C), the severity of heart defect
was greater in patients of DS with AVSD. Thus, identifica-
tion of CRELD 1 mutation in 2/39 individual (5.1%) of DS
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with complete AVSD suggests the defects in CRELD 1
contribute to pathogenesis of AVSD in context with
trisomy 21.

Hematological problems

Patients with DS display a unique spectrum of malignan-
cies, which include leukemia’s as well as solid tumors. The
first report of leukemia in a DS patient occurred in 1930
[39] and the first systematic study in 1957 [40]. Studies
indicate that patients with DS have a 10-20 fold in-
creased relative risk of leukemia, with a cumulative risk
of 2% by age 5 and 2.7% by age 30 [41]. They constitute
approximately 2% of all pediatric acute lymphoblastic leu-
kemia(ALL) and approximately 10% of pediatric acute
myeloid leukemia (AML). Leukemogenesis of acute mega-
karyoblastic leukemia (AMKL) in DS patients is associated
with the presence of somatic mutations involving GATA 1
gene (or also called as GATA-binding factor 1) [42].
GATA 1 is a chromosome X- linked transcription factor
which is essential for erythoid and megakaryocytic differ-
entiation. Because of these GATA 1 mutations, there is a
production of shorter GATA 1 protein thereby leading to
uncontrolled proliferation of immature megakaryocytes
[42,43]. On the other hand, acquired gain of function mu-
tation in Janus Kinase 2 gene are present in approximately
30% of cases with ALL in DS [44,45].

Hypertension

People with DS have been reported to have a reduced inci-
dence of hypertension [46,47]. Trisomy of the Hsa2l
microRNA hsa-miR-155 contributes to this [48]. Hsa-
miR-155 is proposed to specifically target one allele of the
type-1 angiotensin II receptor (AGTR1) gene, resulting in
it’s under- expression, which contribute to a reduced risk
of hypertension. Further studies are required to validate
this hypothesis and determine whether other genes may
also protect people with DS against hypertension.

Gastrointestinal problems

DS patients constitute ~12% of all cases of HD. Duodenal
stenosis (DST) and imperforate anus (IA) are 260 and 33
times more likely to occur DS [23,49]. HD is a form of low
intestinal obstruction caused by the absence of normal
myenteric ganglion cells in a segment of the colon [50]. In
HD children, the absence of ganglion cells results in the
failure of the distal intestine to relax normally. Peristaltic
waves do not pass through the aganglionic segment and
there is no normal defecation, leading to functional
obstruction. Abdominal distention, failure to pass meco-
nium, enterocolitis and bilious vomiting are the predomin-
ant signs and symptoms and appear within a few days
after birth. Infants with duodenal atresia or DST present
with bilious vomiting early in the neonatal period. If left
untreated, it will result in severe dehydration and
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electrolyte imbalance. IA is a birth defects in which the rec-
tum is malformed and it is associated with an increased in-
cidence of some other specific anomalies as well, together
being called the VACTERL association: vertebral anomalies,
anal atresia, cardiovascular anomalies, tracheoesophageal
fistula, esophageal atresia, renal and limb defects.

Alterations of approximately 10 non Hsa21 genes have
been linked to this disease [51]. Several researches have
shown that HD contain the DSCAM gene which is
expressed in neural crest that give rise to enteric ner-
vous system [49]. Overlapping critical region was de-
scribed both for DST and IA [51]. No other Hsa21 genes
have been implicated so far.

Diagnostic methods

Prevention of DS depends upon offering prenatal diagno-
sis to high risk pregnancies via amniocentesis and chori-
onic villus sampling (CVS). Amniocentesis and CVS are
quite reliable but offers risk of miscarriage of between 0.5
to 1% [52]. Based soft markers like small or no nasal bone,
large ventricles and nuchal fold thickness, the risk of DS
for fetus can be identified through ultrasound generally at
14 to 24 weeks of gestation [53]. Increased fetal nuchal
translucency indicates an increased risk of DS [54]. The
other methods used for prenatal diagnosis in which
traditional cytogenic analysis is still widely used in diffe-
rent countries. However some rapid molecular assays-
FISH(fluorescent in situ hybridization), QF-PCR (quantitative
fluorescence PCR), and MLPA(multiplex probe ligation
assay)- also used for prenatal diagnosis.

Routine karyotyping

Cytogenetic analysis of metaphase karyotype remains the
standard practice to identify not only trisomy 21, but
also all other aneuploidies and balanced translocations.
Details on diagnostic methods with advantages and dis-
advantages are mentioned in Table 2.

Rapid aneuploidy testing methods

Over the past 10 years however, several other methods
have been developed and used for the rapid detection of
trisomy 21, either in fetal life or after birth. The most
widely used is FISH of interphase nuclei, using Hsa 21-
specific probes or whole-Hsa 21 [55]. An alternative
method that is now widely used in some countries is QF-
PCR, in which DNA polymorphic markers (microsatellites)
on Hsa 21 are used to determine the presence of three dif-
ferent alleles [56]. This method relies on informative
markers and the availability of DNA. Rapid diagnosis by
PCR-based methods using polymorphic STR markers may
reduce these difficulties using conventional approach. Using
STR markers method we can detect trisomy in 86.67%
cases with only two markers. Using more number of
markers can further increase the reliability of the test.
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Simultaneously parental origin of the nondysjunction can
also be detected [57,58]. Additional method to measure
copy number of DNA sequences include MLPA [59] which
was first introduced in 2002 as a method of relative quanti-
fication in DNA. MLPA offers various advantages like — a
very short time for diagnosis (2—4 days), effectiveness, sim-
plicity and relatively low costs. It is based on hybridization
and PCR method and is divided into four steps: DNA de-
naturation, hybridization of probe to the complementary
target sequence, probe ligation and PCR amplification. And
finally capillary electrophoresis of PCR amplified products
is carried out. However MLPA is unable to exclude low
level placental and true mosaicism [60].

Advancement in the diagnosis

A recent method, termed paralogous sequence quantifica-
tion (PSQ), uses paralogous sequences to quantify the Hsa
21 copy number. PSQ is a PCR based method for the de-
tection of targeted chromosome number abnormalities
termed paralogous sequence quantification (PSQ), based
on the use of paralogous genes. Paralogous sequences have
a high degree of sequence identity, but accumulate nucleo-
tide substitutions in a locus specific manner. These se-
quence differences, which are termed as paralogous
sequence mismatches (PSMs), can be quantified using py-
rosequencing technology, to estimate the relative dosage
between different chromosomes. PSQ is a robust, easy to
interpret, and easy to set up method for the diagnosis of
common aneuploidies, and can be performed in less than
48 h, representing a competitive alternative for widespread
use in diagnostic laboratories. The sequencing is quantita-
tively done by using pyrosequencing [61]. Finally, com-
parative genomic hybridization (CGH) on BAC chips can
be used for the diagnosis of full trisomy or monosomy,
and for partial (segmental) aneuploidies [62,63].

Noninvasive Prenatal diagnosis

Fetal cells in maternal ciruculation: Ever since the dis-
covery of presence of fetal lymphocytes in maternal
blood was made in 1969, the investigators are trying to
develop genetics-based noninvasive prenatal diagnostics
(NIPD) [64]. Despite several advantages offered by this
approach, the use of fetal cells for NIPD has never
reached clinical implementation because of their paucity
(on the order of a few cells per milliliter of maternal
blood) and concerns of fetal cell persistence in the ma-
ternal circulation between pregnancies.

Cell free fetal DNA from maternal serum: This novel
approach was proposed in 1997. Cell-free fetal DNA
constitutes between 5% and 10% of the total DNA in
maternal plasma and increases during gestation and rap-
idly clears from the circulation post delivery. Several
clinical applications based on the analysis of cell-free
fetal DNA have been developed like determining fetal
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Table 2 Common techniques used for diagnosis of Down’s syndrome along with its advantages and disadvantages

Method

Description

Advantages

Disadvantages

1 Cytogenetics analysis

2 FISH(Fluorescence in
situ hybridization)

3 QF-PCR (Quantitative
fluorescent-polymerase
chain reaction)

4 Paralogous sequence
quantification (PSQ)

5. MLPA (multiplex probe
ligation assay)

6. NGS (Next Generation
Sequencing)

Giemsa banding (G-banding) is
performed on fetal cells at
metaphase stage on amniocytes
(grown in vitro) or CVS.

FISH involves hybridization of
selected chromosome specific
DNA sequences that have been
labeled with fluorescent dye to
chromosome preparation. The
fluorescently labeled sequences
stick to corresponding DNA of
chromosome and can be visualized
under microscope.

Involves amplification and detection
of STR using fluorescently labeled
primers. The product is thus visualized
and quantified as peaks areas of
respective length using an automated
DNA sequencer with Gene Scan
software.

A PCR based method for detection
of targeted chromosome number
abnormalities, based on the use

of paralogous genes. Paralogous
sequences have high degree of
sequence identity but accumulate
nucleotide substitution in a locus
specific manner. These differences
are called as paralogous sequence
mismatches which can be quantified
using pyrosequencing.

MLPA is based on hybridization and
PCR method. Divided into 4 phases:

DNA denaturation, hybridization of probe
to the complementary target sequence,

probe ligation and PCR amplification
of ligated probe. These amplified
products are analysed through
capillary electropheresis.

Clonally amplified DNA templates
are sequenced in a massively parallel.
It provides a digital quantitative
information, in that each sequence
read is a countable “sequence tag”
representing an individual clonal
DNA template or a single DNA
molecule.

- Suitable for low income
countries where physician
can be presumed to have
acquired a high level of diagnostic
skill in the absence of
laboratory services.

« As it uses smaller probes thus
the signals appears to be more
distinct as dots.

- It uses higher number of
interphase nuclei for analysis,
so the problem of any suspected
mosaicism is resolved.

« Highly reliable and reproducible.

+ Chances of getting false negative
and false positive cases are rare.

« Maternal contamination is
easily detected.

- Faster approach as it can give
the diagnosis within 24 hours.

- The first generation design of
test requires 10 separate PCR
reaction per sample, which
significantly reduces the sample
throughput and increases the
probability of handling errors.

- It can handle 30-40 samples
in a day and report result in
less than 48 hours.

« Very short time for diagnosis
(2-4 days).

- Relatively low costs

- The current time for sample
processing, sequencing, and
data interpretation in experienced
hands is 5 to 8 days.

- Time consuming.

- Resolution of special importance for

the detection of structural.
abnormalities may be quite low as
the spontaneous dividing cells are
more condensed than those
obtained after cell culture in vitro.

« In CVS, occurrence of confined

placental mosaicism and occurrence
of aberrant cells that do not represent
the status of fetus.

- Chances of giving a false positive

and false negative result.

- Sometimes diffused signals are

obtained because it uses chromosome
at interphase stage which appears less
condense than those of metaphase.

- Time consuming since it involves

.

preparation of slides, fluorescent
microscopy and spot counting
(~30min per sample is expected).

Maternal and fetal XX is not
distinguished by FISH.

« Poses a challenge in the case of

nosaicism.

- While testing sex chromosome

.

abnormalities samples from normal XX
female may show homozygous
QF-PCR pattern indistinguishable from
those produced by sample with single
X as in Tumner syndrome.

Expensive when compared to others.

- Unable to exclude low level

placental and true mosaicism.

« The cost of sequencing is approximately

$700 -$1000 per sample.

- Complex data analysis.
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Rh D status in Rh D-negative women [65], sex in sex-
linked disorders [66,67], and detection of paternally
inherited autosomal recessive and dominant mutations
[68]. However, there remains the outstanding challenge
of the use of cell-free fetal DNA for the detection of
chromosomal aneuploidy, in particular trisomies 21, 18,
and 13. Several approaches have been adopted like the
origin of circulating cell-free fetal DNA is primarily the
placenta, whereas maternal cell-free DNA is derived from
maternal leukocytes [69]. The approach includes studying
differences in genomic DNA methylation between the pla-
centa and paired maternal leukocytes, investigators have
characterized placenta-specific epigenetic markers [70] and
also finding of circulating cell-free placenta-derived mRNA
allowed the identification of placenta-specific mRNA pro-
duction [71].

The concept of digital PCR was also introduced to serve
the same purpose. In digital PCR, individual fetal and ma-
ternal circulating cell-free DNA fragments are amplified
under limiting-dilution conditions and the total number of
chromosome 21 amplifications (representing maternal plus
fetal contributions) divided by the number of reference
chromosome amplifications should yield a ratio indicating
an over- or underrepresentation of chromosome 21.

Although the digital PCR approach is conceptually
solid, the low percentage of cell-free fetal DNA in the
maternal plasma sample requires the performance of
thousands of PCRs to generate a ratio with statistical
confidence. This can be overcome by using of multiple
target amplifications and enrichment of cell-free fetal
DNA which are still under research trail.

Next recent method added to the list is next gener-
ation sequencing (NGS) which is based on the principle

Page 6 of 9

of clonally amplified DNA templates (or, most recently,
single DNA molecules) are sequenced in a massively
parallel fashion within a flow cell [72,73]. NGS provides
digital quantitative information, in which each sequence
read is a countable “sequence tag” representing an indi-
vidual clonal DNA template or a single DNA molecule.
This quantification allows NGS to expand the digital
PCR concept of counting cell-free DNA molecules.

Fan et al. and Chiu et al. in 2008 described noninva-
sive detection of trisomy 21 by NGS [74]. Both groups
extracted cell-free DNA from maternal plasma samples
from both euploid and trisomy pregnancies. DNA from
each sample was sequenced on the Illumina Genome
Analyzer, and each sequence read was aligned to the ref-
erence human genome. Chiu et al. build on their earlier
work with the [llumina Genome Analyzer and demonstrate
noninvasive NGS-based trisomy 21 detection with the
sequencing-by-ligation approach on the Life Technologies
SOLID platform [75]. Cell-free DNA was extracted from 15
pregnant women, 5 of whom carried trisomy 21 fetuses and
it was clonally amplified by emulsion PCR, and sequenced
in 1 chamber of an 8-chamber SOLID slide. This process
yielded a median of 59 x 10° 50-base reads per sample. A
median of 12 x 10° reads (or 21%) were each aligned
uniquely to one location of the reference human genome
(with masking of repeat regions), for a coverage of approxi-
mately 20% of the haploid human genome. For each tri-
somy 21 case, the chromosome 21 z score value indicated a
99% chance of a statistically significant difference from the
chromosome 21 z scores for the controls. As reported earl-
ier with the Illumina Genome Analyzer, a nonuniform dis-
tribution of aligned sequence reads was observed with the
SOLID data.

APP CRELD 1
BACE.
PlCALén_/l\
APOE
Down’s Syndrome
Hsa21 gene
Gastrointestinal
Leukemia 12"p.l;ll:hlems
< 10-20 fold - 260 times DST
33 times 1A
Hypertension
GATA 1( AMKL) DSCAM
JAK2 (ALL)
miRNA hsa-miR-155
Figure 1 Various conditions associated with Downs's syndrome with its causative genes.
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The current time for sample processing, sequencing,
and data interpretation in experienced hands is 5 to 8
days for the Genome Analyzer and SOLiD platforms re-
spectively with the cost of approximately $700 — $1000
per sample. Going forward, one can expect streamlining
and automation of technical processes and data analysis,
coupled with reduced sequencing costs.

Ultimately, reduced sequencing costs and turnaround
times could pave the way for NGS-based NIPD to be con-
sidered as an alternative to serum biomarker screening,
which,while cost-effective remains prone to false positives.
Forty years after the discovery of circulating fetal cells, the
vision of NIPD appears clearer and closer.

Management of the disease

One of the hallmarks of DS is the variability in the way
that the condition affects people with DS. With the third
21st chromosome existing in every cell, it is not surprising
to find that every system in the body is affected in some
way. However, not every child with DS has the same prob-
lems or associated conditions. Parents of children with DS
should be aware of these possible conditions so they can
be diagnosed and treated quickly and appropriately. The
goal of the study is to point out the most common prob-
lems of which parents should be aware.

Timely surgical treatment of cardiac defects during
first 6 months of life may prevent from serious compli-
cations. Congenital cataracts occur in about 3% of chil-
dren and must be extracted soon after birth to allow
light to reach the retina. A balance diet and regular exer-
cise are needed to maintain appropriate weight. Feeding
problems and failure to thrive usually improve after car-
diac surgery. A DS child should have regular check up
from various consultants. These include:

e Clinical geneticist - Referral to a genetics counseling
program is highly desirable

e Developmental pediatrician

e Cardiologist - Early cardiologic evaluation is crucial
for diagnosing and treating congenital heart defects,
which occur in as many as 60% of these patients

e DPediatric pneumonologist -Recurrent respiratory
tract infections are common in patients with DS

e Ophthalmologist

e Neurologist/Neurosurgeon — As many as 10% of
patients with DS have epilepsy; therefore, neurologic
evaluation may be needed

e Orthopedic specialist

e Child psychiatrist - A child psychiatrist should lead
liaison interventions, family therapies, and
psychometric evaluations

e Physical and occupational therapist

e Speech-language pathologist

e Audiologist
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Conclusion

DS or Trisomy 21, being the most common chromosomal
abnormality among live born infants, is associated with a
number of congenital malformations. Several theories have
been put forward to increase our understanding in pheno-
type and genotype correlation. A “critical region” within
21q22 was believed to be responsible for several DS pheno-
types including craniofacial abnormalities, congenital heart
defects of the endocardial cushions, clinodactyly of the fifth
finger and mental retardation and several other features.
The primary goal of this review is to unravel the common
genes involved in DS associated phenotypes, including
APP, BACE2, PICALM, APOE, GATA 1, JAK 2, CRELD 1
and DSCAM. This reviews also provides the detailed de-
scription on the application of techniques to prenatal diag-
nosis in DS. Rapid aneuploidy testing has been introduced
in mid 1990’ in the form of FISH where testing can be
done on uncultured amniocytes. Within a couple of years,
MLPA and QF-PCR has been added in the list of rapid an-
euploidy testing. The other methods includes: NGS for cell
free fetal DNA screening for maternal plasma. Except ,FISH,
MLPA and QF-PCR other method are not commercialized
for aneuploidy diagnosis due to their running cost, labor in-
tensive protocol and complex data analysis. Since various
clinical conditions are associated with DS, hence the man-
agement of these patients requires an organized multidiscip-
linary approach and continuous monitoring of these
patients which has been discussed in this review article.
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