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Abstract

Background: Two mature miRNA species may be generated from the 5" and 3" arms of a pre-miRNA precursor. In
most cases, only one species remains while the complementary species is degraded. However, co-existence of
miRNA-5p and -3p species is increasingly being reported. In this work, we aimed to systematically investigate
co-expression of mMiIRNA-5p/3p in colon cancer cells in a genome-wide analysis, and to examine cross-targeting of
the dysregulated miRNAs and 5p/3p species.

Results: Four colon cancer cell lines were examined relative to two normal colon tissues. Of the 1,190 miRNAs
analyzed, 92 and 36 were found to be up- or down-regulated, respectively, in cancer cells. Nineteen co-expressed
miRNA-5p/3p pairs were further identified suggesting frequent 5p/3p co-accumulation in colon cancer cells. Of
these, 14 pairs were co-up-regulated and 3 pairs were co-down-regulated indicating concerted 5p/3p dysregulation.
Nine dysregulated miRNA pairs fell into three miRNA gene families, namely let-7, mir-8/200 and mir-17, which
showed frequent cross-targeting in the metastasis process. Focusing on the let-7d-5p/3p pair, the respectively
targeted IGF1R and KRAS were shown to be in a reverse relationship with expression of the respective miRNA,
which was confirmed in transient transfection assays using let-7d mimic or inhibitor. Targeting of KRAS by let-7d
was previous reported; targeting of IGF1R by let-7d-5p was confirmed in luciferase assays in this study. The findings
of let-7d-5p/3p and multiple other miRNAs targeting IGF1R, KRAS and other metastasis-related factors suggest that
5p/3p MiRNAs contribute to cross-targeting of multiple cancer-associated factors and processes possibly to evade
functional abolishment when any one of the crucial factors are inactivated.

Conclusions: miRNA-5p/3p species are frequently co-expressed and are coordinately regulated in colon cancer
cells. In cancer cells, multiple cross-targeting by the miRNAs, including the co-existing 5p/3p species, frequently
occurs in an apparent safe-proof scheme of miRNA regulation of important tumorigenesis processes. Further
systematic analysis of co-existing miRNA-5p/3p pairs in clinical tissues is important in elucidating 5p/3p contributions
to cancer pathogenesis.
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Background

MicroRNAs (miRNAs) are short (~22 nucleotides) single-
stranded post-transcriptional regulatory RNAs in major
cellular processes. In the canonical miRNA biogenesis
pathway, miRNA primary transcripts are processed and
exported to the cytoplasm where double-stranded duple-
xes are generated through the action of Dicer in the RNA-
induced silencing complex (RISC) [1,2]. Subsequently, one
of the strands, designated as miRNA or the guide strand,
is preferentially selected for maturation; the complemen-
tary miRNA* strand, or the passenger strand, is destined
to be degraded. However, recent reports have indicated
that both the miRNA and miRNA* species often co-exist
and both are functional [3-7]. The mature miRNA species
may be derived from both the 5" and 3" arms of the precur-
sor duplex, and are called the miRNA-5p and -3p species,
respectively. These findings have introduced some degree
of confusion in the miRNA nomenclature. To avoid fur-
ther confusion and ambiguity by prematurely presuming
expression levels and biological functions for a specific
miRNA strand, miRBase (http://www.mirbase.org/) has
recently retired the human miRNA/miRNA* nomen-
clature. Instead, the miRNA-5p and -3p nomenclature is
now being used based solely on 5’- or 3’-arm derivation of
the miRNA species. miRBase further advises authors to
always include the miRNA sequences being reported for
cross-referencing. In this paper, the 5p/3p nomenclature is
used, and the original miR-miR* names are also listed
alongside (see Additional file 1).

In a number of deep sequencing studies, co-existence
of 5p/3p pairs has been demonstrated in about half of
the miRNA populations analyzed and the relative con-
centrations of the 5p/3p species may be comparable or
varied extensively [4,6]. Notably, the minor miRNA spe-
cies, be they 5p or 3p, are evolutionarily conserved in
the seed sequences signifying biological significance
[5,7-9]. It is further shown that the relative expression
levels of co-existing miRNA pairs vary from tissue to
tissue hinting tissue-dependent regulatory roles for the
5p/3p miRNA species [3]. If the miRNA 5p/3p pairs are
co-expressed in normal tissues, it is then important to
explore how expression of the pairs is altered and regu-
lated in human diseases, particularly in cancers. Indeed,
miR-24-2, miR-146, miR-28 and miR-125a and miR-17,
to name just a few, have been shown to be co-expressed
in pairs in breast, thyroid, colorectal, lung and liver can-
cers, respectively [10-14]. Besides cancers, paired species
of members of the let-7 and mir-126 families also co-
exist and shown to play different roles in regulating
reprogramming and differentiation in embryonic stem
cells [15,16].

Despite reports on the involvement of specific miRNAs
in cancers, genome-wide studies focusing on the participa-
tion of miRNA-5p/3p pairs in the tumorigenesis processes
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are still lacking. This work aimed to systematically in-
vestigate co-expression and regulation of 5p/3p paired
miRNA species in cancer cells. Colon cancer, the third
most prevalent cancer worldwide [17], was used as a
study model. Although many papers have been pub-
lished on miRNA profiling in colon cancer using dif-
ferent microarray platforms [18-21], none has compared
5p/3p contributions. In this work, a nanolitre-scale real-
time reverse transcription-PCR (qRT-PCR) platform
was used for differential miRNA profiling in colon
cancer cells relative to normal colon tissues. Our data
indicate that miRNA 5p/3p pairs are frequently co-
expressed and co-regulated in colon cancer cells. Fur-
thermore, the dysregulated miRNAs and 5p/3p pairs are
frequently involved in cross-regulation of multiple tar-
gets in pathways in the tumorigenesis process.

Methods

Colon cancer cell lines and normal colon tissues

Four human colon cancer cell lines, HCT-15, HT-29,
SK-CO-1 and WiDr (ATCC, Manassas, VA) and total
RNA samples isolated from two independent sources of
non-cancerous colon tissues (Origene, Rockville, MD)
were used in this work.

Nomenclature

Throughout this work, the miRNA-5p/-3p nomenclature
as recommended by miRBase, Release 19, was used. For
cross referencing, a list of the 5p/3p designations, the
miRNA sequences and the previous names of miRNA/
miRNA* is shown in Additional file 1. All miRNAs de-
scribed in this work are human miRNA. For simplicity,
the hsa- prefix has been dropped from all miRNA desig-
nations in the text.

RNA preparation, microarray processing and data
analyses

Total RNAs were isolated from the colon cancer cells or
normal tissues using the RNeasy Plus Mini Kit (Qiagen,
Valencia, CA) according to the manufacturer’s instruc-
tions. One microgram RNA was applied to a SmartChip
Human MicroRNA Chip, Panel v2 (WaferGen Biosystems,
Fremont, CA), for high-throughput nanolitre-scale qRT-
PCR microarray analysis as described previously [22]. It is
noteworthy that at the time of writing, there were only
261 5p/3p miRNA pairs (522 miRNAs) included in the
profiling panel. The assays were performed in quadrupli-
cates and included eleven endogenous and six exogenous
data quality controls. The data obtained with the colon
cancer cell lines were normalized to those of the normal
colon tissues. Data were analyzed using the comparative
cycle threshold (AAC,) method and statistical analysis.
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MicroRNA and mRNA quantitative real-time RT-PCR
Real-time qRT-PCR was performed using the NCode SYBR
GreenER miRNA qRT-PCR kit (Invitrogen, Carlsbad, CA)
following the supplier’s instructions in a Rotor-Gene Q
real-time PCR cycler (Qiagen). Following miRNA poly(A)
tailing, first-strand cDNA was synthesized using the Super-
script III RT/RNaseOUT enzyme mix provided in the kit,
followed by real-time RT-PCR using SYBR® GreenER™
qPCR SuperMix Universal (Invitrogen) in Rotor-Gene Q
for UDG incubation at 50°C for 2 min and UDG inacti-
vation and DNA polymerase activation at 95°C for 10 min.
Amplification was carried out for 40 cycles at 95°C for
15 sec and primer annealing at 58°C for 1 min. Experi-
ments were performed in triplicates and were normalized
to the data of the small nuclear RNA (snRNA) /6. Primers
used for miRNA quantification are as in Additional file 1.
The U6 oligonucleotide 5-CACCACGTTTATACGCCG
GTG-3’ was used as the normalization control. Relative
miRNA levels were calculated using the comparative AAC,
method. Similarly, mRNA was quantified by real-time
RT-PCR using SYBR® GreenER™ qPCR SuperMix Universal
(Invitrogen) at the same RT-PCR condition as above, ex-
cept for annealing temperature of primers at 60°C for
1 min. Experiments were performed in triplicates and were
normalized to the data of GAPDH. Primers used in
RT-PCR of mRNAs were as follows: IGFIR-F: 5-CAA
GGCCTGAAAACTCCATC-3 and IGFIR-R: 5-CGCTG
ATCCTCAACTTGTGA-3; KRAS-F: 5-TGAGGACTG
GGGAGGGCTTTCTT-3 and KRAS-R: 5-AGAAGGCA
TCATCAACACCCTGTCT-3; GAPDH-F: 5-GAAATCC
CATCACCATCTTCCAGG-3, GAPDH-R: 5-GAGCCC
CAGCCTTCTCCATG-3'. Relative mRNA levels were cal-
culated using the comparative AAC, method.

miRNA stem-loop RT-PCR

Detection of miRNA by stem-loop RT-PCR was as
described previously [22]. For cDNA synthesis, the an-
nealing of the stem-loop primers (Additional file 2) was
5 min at 65°C. The stem-loop products were then used
for reverse transcription using Superscript III reverse
transcriptase (Invitrogen) as previously described [22]
followed by PCR amplification using the following incu-
bation conditions: 98°C for 5 min, followed by 40 cycles
of 98°C for 10 s, 60°C for 30 s, 72°C for 1 min. The reac-
tion was terminated after a further 70°C extension for
10 min. In the stem-loop PCR, U6 was included as an
internal control. The PCR products were displayed by
electrophoresis on a 4% agarose gel.

Preparation of cell lysates and western blot analysis

Cells were washed twice with ice cold phosphate-buffered
saline, and harvested by lysis in TGH buffer (1% Triton
X-100; 10% glycerol; 50 mM HEPES, pH 7.3; 1% deoxy-
cholic acid; 10 mM N-ethylmaleimide; 5 mM EDTA;
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1 mM EGTA and protease inhibitors, 10 mM NaF, 1 mM
sodium orthovanadate, 1 mM DTT, 2 mM phenylmethyl-
sulfonyl fluoride, 10 pg/ml aprotinin, 10 pg/ml leupeptin).
Aliquots of 35 pg protein per lane were separated on
10% SDS-PAGE, semi-dry transferred to a nitrocellu-
lose membrane and blotted with monoclonal anti-
bodies against IGF1R (05-656, Upstate, Merck KGaA,
Darmstadt, Germany) or KRAS (05-516, Upstate) and
using an monoclonal antibody against GAPDH (ab8245,
Abcam, Cambridge, UK) as a loading control, followed
by horseradish—peroxidase (HRP)-conjugated secondary
antibody. Visualization was achieved by using chemilu-
minescence (Amersham ECL, Freiburg, Germany). Band
densitometric analysis was performed by VisionWorks°LS
Image Acquisition and Analysis Software (Ultra-Violet
Products, Cambridge, UK).

Transient transfection with miRNA mimic or inhibitor
HCT-15 cells were seeded onto 6-well plate at a density of
1 x 10° cells/well and were transiently transfected with
30 nM mirVana miRNA let-7d-5p inhibitor, or let-7d-3p
mimic, or the appropriate miRNA inhibitor or mimic
negative control (Applied Biosystems, Foster City, CA)
using Lipofectamine RNAiIMAX Reagent (Invitrogen).
Forty-eight hours post-transfection, the transfected cells
were harvested for miRNA, mRNA and protein assays.

Plasmid construction and site-directed mutagenesis
Sequences harboring each of the three putative let-7d-5p
targeted sites were generated by PCR using specific
primers (Additional file 3) for cloning into the Xbal site of
the pGL3-Control vector (Promega, Madison, WI). The
cloned 3-UTR segments of IGFIR were as follows:
IGF1R-1, nucleotide (nt) 4,169-4,344 (176 bp); IGF1R-2,
nt. 6,698-6,930 (233 bp); IGF1R-3, 10,697-10.897 (201 bp),
using the accession number NM_000875 IGFIR mRNA
sequence as the reference. Mutations of the miRNA
seed sequences were performed using primers shown in
Additional file 3 and using the QuikChange® Lightning
Site-Directed Mutagenesis kit (Agilent Technologies,
Santa Clara, CA) as recommended by the supplier. The
mutations were confirmed by sequencing.

Transient transfection and luciferase assays

Transient transfection into HCT-15 cells was performed in
triplicates using the PLUS™ Reagent and Lipofectamine
2000™ (Invitrogen) as previously described [23,24]. A vali-
dated let-7d-5p mimic and the mimic negative control
(Ambion, Foster City, CA) were used in co-transfection.
Luciferase assays were performed 48 h post-transfection
using the Dual-Luciferase Reporter 1000 Assay kit (Pro-
mega) [23,24].
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Bioinformatics analyses for target prediction and gene
ontology

Hierarchical clustering and volcano plot analyses were
performed using miScript miRNA PCR Array Data
Analysis Web Portal. miRNA target transcripts were
predicted using web-based algorithms, including miR-
Base (www.mirbase.org), TargetScan Release 6.2 (http://
www.targetscan.org/) TarBase (http://diana.cslab.ece.
ntua.gr/), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/),
microRNA.org (www.microrna.org) and miRDB (www.
mirdb.org). To filter the large number of predicted targets,
criteria and parameters were set for seed-sequence match-
ing, conservation of miRNA binding sites in the targeted
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mRNA sequences across species and thermostability of
the miRNA:target duplexes. Gene ontology analysis was
performed to identify the functions of the predicted targets
by using the Gene Ontology Annotation-UniProt-GOA
database (http://www.ebi.ac.uk/GOA/) and the KEGG
pathway database (www.genome.jp/kegg/pathway.html).

Statistical analysis

Statistical analysis was performed using the SPSS soft-
ware for Windows v11.5. Results are described as aver-
ages of log, (fold change) t standard deviation (SD).
Data were analyzed by paired Student’s ¢-test (two-tailed
distribution) comparing the differences of miRNA levels
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Figure 1 MicroRNA profiling of colon cancer cells. (A) Hierarchical Clustering Analysis of differentially regulated miRNAs in the HCT-15, HT-29,
SK-CO-1 and WiDr colon cancer cells as compared to cells of two normal colon tissues. (B) Volcano plot analysis. Green circles indicate minimum
level of mMIRNA expression (log,FC < —1.5), black circles indicate average or weak miRNA expression, red circles indicate strong or maximum level
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Table 1 Altered expression of miRNA-5p and -3p pairs in colon cancer cells relative to normal cells’

Family miRNA-5p Log, (fold change) miRNA-3p Log, (fold change)
(Mean + SD) (Mean + SD)
1. 5p/3p co-upregulated (n = 14)
let-7 let-7g-5p 297 £049%* let-79-3p 212+0.13%
let-7 let-7i-5p 281£127% let-7i-3p 1.67+045%
mir-7 miR-7-5p 644 +1.14* miR-7-1-3p 3.83+0.66**
mir-8/200 miR-141-5p 3.85+0.76%* miR-141-3p 450+ 1.08**
mir-8/200 miR-200a-5p 517 £065** miR-200a-3p 8.10+ 1.58**
mir-17 miR-17-5p 6.68 + 0.69%* miR-17-3p 412 +£0.59**
mir-17 miR-18a-5p 3.94+091% miR-18a-3p 3.18+0.77%
mir-17 miR-20a-5p 7.19£0.78** miR-20a-3p 1.58+0.98
mir-21 miR-21-5p 9.13+£0.39** miR-21-3p 5.99 + 0.85**
mir-22 miR-22-5p 1.98+£0.78 miR-22-3p 322+0.76"
mir-27 miR-27a-5p 294 +1.21% miR-27a-3p 478 +0.62**
mir-28 miR-151a-5p 265 +067* miR-151a-3p 539+ 1.20 **
mir-29 miR-29b-1-5p 0.93+£0.84 miR-29b-1-3p 7.62+0.32%
mir-31 miR-31-5p 888+ 1.73%* miR-31-3p 208 +0.76**
2. 5p/3p co-downregulated (n = 3)
mir-199 miR-199a-5p —3.84+£2.16** miR-199a-3p —3.23+1.55%
mir-378 miR-378a-5p —2.60 £ 0.008** miR-378a-3p -1.04+£027
mir-574 miR-574-5p —290+0.44* miR-574-3p —394+£021**
3. 5p/3p inversed regulation (n=2)
let-7 let-7d-5p 229+101 let-7d-3p —2.78 £0.79%*
mir-8/200 miR-200b-5p —1.67+0.39 miR-200b-3p 3.15+0.25%

"Based on miRBase 19 data; a full list of alternative miRNA names is provided in Additional file 1. *p < 0.0 5, **p < 0.01.

between colon cancer cells and normal colon tissues.
Statistical significance was accepted at p < 0.05.

Results

Co-expression and concerted dysregulation of
miRNA-5p/3p pairs

To systematically investigate co-expression of miRNA-5p
and -3p pairs in colon cancer cells, global miRNA pro-
filing of four colon cancer cell lines, HCT-15, HT-29,
SK-CO-1 and WiDr, and two normal colon tissues were
first performed using a nanolitre-scale real-time RT-PCR
microarray platform which included 1,190 human miRNAs.
Hierarchical clustering analysis demonstrated separation
of normal from cancer cells although the separation was
incomplete (Figure 1A). Furthermore, the four colon can-
cer cell lines were found in two sub-clusters: sub-cluster 1
was represented by HT-29 and WiDr cells and sub-cluster
2 included HCT-15 and SK-CO-1 cells. Interestingly,
HT-29 and WiDr cells were originally derived from low
and non-metastatic colon cancers, whereas HCT-15 and
SK-CO-1 cells were derived from high metastatic or high
invasive potential colon cancer [25,26]. This observation

suggests possible association of unique miRNA expression
profiles with the metastatic and non-metastatic nature
of colon cancer cells. Volcano plot analysis was further
performed to sort out the miRNAs with statistically
significant differential expression (p <0.05) and log, (fold
change) values with cut-off point set at +1.5 (Figure 1B).
Amongst the differentially expressed miRNAs, 92 (71.9%)

miR-17 miR-21 miR-141
50 3p 5p 3p b5p 3p

U6
Normal -
- = — — —[—
w20 [ T C
wor [ I Y IE

Figure 2 Co-expression of miRNA-5p and -3p pairs in colon
cancer cells. MiRNA expression was determined by stem-loop
RT-PCR using U6 snRNA as a PCR control. The PCR products were
analyzed in 4% agarose gels.
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Table 2 Validation of microarray data of selected miRNA-5p and -3p pairs by real-time qRT-PCR

miRNA-5p Log, (fold change) miRNA-3p Log, (fold change)

(Mean * SD) (Mean + SD)

WGBS qRT-PCR WGBS qRT-PCR
miR-20a-5p 7.19£0.78** 7.74£1.07% miR-20a-3p 1.58+0.98 423+£1.01%
miR-378a-5p —2.60+0.01** -1.13+087 miR-378a-3p -1.04+027 -1.06+1.01
let-7d-5p 229+1.01 4.08 £ 0.87** let-7d-3p —2.78 +0.79** —2.96 +0.33**

The mean =+ standard deviation (SD) real-time quantitative RT-PCR (qRT-PCR) data were obtained in three independent experiments on all four colon cancer cell
lines as described in the text. WGBS, data from the WaferGen Biosystems microarray analysis. **p < 0.01.

were significantly up-regulated and 36 (28.1%) were down-
regulated, suggesting significant miRNA dysregulation in
colon carcinogenesis, which is consistent with previous re-
ports [18-21].

To focus on co-expression of the 5p/3p miRNAs, data
of 5p/3p pairs, with at least one of the pair with log,(fold
change) > 1.5 or < -1.5, were extracted from the dataset
of the 128 dysregulated miRNAs. A total of 19 pairs (38
miRNAs) that answered to this criterion were obtained
(Table 1). The alterations observed in the cancer cells
relative to the normal tissues ranged from significant up-
regulation by 9.13-fold in miR-21-5p to down-regulation
by 3.94-fold in miR-574-3p. Out of the 19 miRNA pairs
thus extracted, it is further observed that 14 (73.7%) 5p/3p
pairs were co-up-regulated and 3 (15.8%) pairs were co-
down-regulated. Only 2 (10.5%) pairs, miR-200b and let-
7d, showed reverse directions of dysregulation in the
5p/3p species. Co-expression was validated in three
randomly selected miRNA pairs, miR-17, -21, -141, in the
co-up-regulated group by stem-loop RT-PCR in all four
cervical cancer cell lines and in a normal colon tissue
(Figure 2). Up-regulated expression of the three miRNA
pairs was evident when the expression levels in the cancer
cell lines were compared with the normal tissues. Further-
more, co-expression of the 5p/3p pairs was also shown for
miR-21 and -141. However, In the case of miR-17, how-
ever, despite the observation that the 3p levels in SK-CO-1
and WiDr were much lower than the 3p species, 5p/3p
co-expression was clearly shown for HCT-15 and HT-29.
To validate co-regulation, one miRNA pair was randomly
chosen from each of the three categories of regulation in
Table 1 for direct real-time quantitative RT-PCR assays
(Table 2). The data obtained were in excellent agreement
with the microarray data, thus supporting the validity of
the miRNA profiling data presented. Reverse dysregulation
of the let-7d-5p/3p pair was also confirmed. Taken to-
gether, the data show frequent co-expression of 5p/3p
miRNAs in colon cancer cells, and that the majority
(89.5%) of the co-expressed 5p/3p pairs was co-up- or co-
down-regulated, strongly suggesting concerted dysregula-
tion of miRNA sister pairs in colon cancer cells.

Cross-targeting of dysregulated 5p/3p miRNAs on
metastasis-related functions in colon cancer cells

Nine of the 19 dysregulated miRNA pairs fell into 3 differ-
ent miRNA families, namely let-7, mir-8/200 and mir-17.
Transcripts targeted by the 5p and 3p members of the
three families were sourced from the miRBase database,
Release 19 (Table 3; see also Additional file 4). When the
number of predicted targets was examined, it is noted that
out of the 9 pairs analyzed, 7 pairs (77.78%) showed ap-
proximately equal numbers of predicted target mRNAs

Table 3 Distribution of predicted miRNA-5p and -3p
target transcripts

miRNA
(a) let-7 family

5p/3p distribution

let-7 g-5p 0446
let-7 g-3p 0.554
let-7d-5p 0.809
let-7d-3p 0.191
let-7i-5p 0816
let-7i-3p 0.184
(b) mir-8/200 family

miR-200a-5p 0485
miR-200a-3p 0515
miR-200b-5p 0.504
miR-200b-3p 0496
miR-141-5p 0485
miR-141-3p 0515
(c) mir-17 family

miR-17-5p 0496
miR-17-3p 0.504
miR-18a-5p 0476
miR-18a-3p 0524
miR-20a-5p 0.554
miR-20a-3p 0466

For full details, see Additional file 4.



Choo et al. Journal of Biomedical Science 2014, 21:95
http://www.jbiomedsci.com/content/21/1/95

for both the 5p and 3p species indicating little or no bias
in arm selection, a hint that the co-expressed 5p and 3p
miRNAs may both be functionally significant [3]. The two
exceptions were let-7d and -7i which showed approximately
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4:1 ratio in the number of predicted targets for the 5p/3p
species. Deviations from an equal ratio for the relative
concentrations of the 5p/3p species suggest uneven evo-
lutionary pressures on arm selection for let-7d and -7i,

Table 4 Metastasis-associated biological functions of selected target transcripts of miRNA-5p and -3p sister pairs’

miRNA miRNA Chrom’l Expression  Selected target  Functions®
family location mRNAs?
let-7 let-7 g-5p 3p21.1 Up-reg'd IGF1R* Angiogenesis, apoptosis
MYC* Angiogenesis, apoptosis, cancer, Jak-STAT, MAPK & Wnt signaling
let-7 g-3p Up-regd ZEB1 EMT, transcriptional misregulation in cancer
NLK Angiogenesis, MAPK & Wnt signaling
let-7d-5p 902232 Up-reg'd IGF1R* Angiogenesis, apoptosis
THBS1* Angiogenesis, cell cycle, p53 signaling, cancer
let-7d-3p Down-reg'd  KRAS Apoptosis, MAPK & VEGF signaling, cancer
PRKACB Apoptosis, MAPK, Wnt & Hedgehog signaling
let-7i-5p 12q14.1 Up-regd TLR4* Toll-like receptor signaling, inflammatory response
IL13* Cell-cell signaling, Jak-STAT, Toll-like receptor signaling,
cytokine-cytokine receptor interaction
let-7i-3p Up-regd DLX5 Cell proliferation
ACTB Focal adhesion, leukocyte transendothelial migration
mir-8/200  miR-200a-5p 1p36.33 Up-reg'd ZEB2 EMT, Wnt signaling
FGF4 Apoptosis, MAPK signaling
miR-200a-3p Up-reg'd ZEB1* EMT, transcriptional misregulation in cancer
ZEB2* EMT, Wnt signaling
miR-200b-5p  1p36.33 Down-reg'd  ZEB2 EMT, Wnt signaling
PRDM6 Chromatin modification
miR-200b-3p Up-reg'd ZEB1* EMT, transcriptional misregulation in cancer
MLH1 Mismatch repair, cancer
miR-141-5p 12p13.31 Up-regd ATM Apoptosis, cell cycle, p53 signaling, cancer
CLDN1 Cell adhesion, leukocyte transendothelial migration
miR-141-3p Up-reg'd MYC* Angiogenesis, apoptosis, cancer, Jak-Stat, MAPK & Wnt signaling
TP53* Angiogenesis, apoptosis, cell cycle, MAPK, p53 & Wnt signaling, cancer
mir-17 miR-17-5p 139313 Up-reg'd THBS1* Angiogenesis, cell cycle, p53 signaling, cancer
E2F1* Apoptosis, cell cycle, cancer
miR-17-3p Up-reg'd CD44 Angiogenesis, inflammation, cancer
MYB Cancer
miR-18a-5p 139313 Up-reg'd THBS1* Angiogenesis, cell cycle, p53 signaling, cancer
HIFTA* Angiogenesis, cell migration, VEGF signaling
miR-18a-3p Up-reg'd KRAS* Apoptosis, MAPK & VEGF signaling, cancer
CASP7 Apoptosis
miR-20a-5p 130313 Up-reg'd THBS1* Angiogenesis, cell cycle, p53 signaling, cancer
E2F1* Apoptosis, cell cycle, cancer
miR-20a-3p Up-reg'd KRAS Apoptosis, MAPK & VEGF signaling, cancer
PCNA Cell cycle, cancer

'A complete list of predicated/validated target transcripts and putative regulated biological functions is presented in Additional file 5. Asterisks in the column
indicate validated targets as tabulated in miRBase. Data were derived from the Gene Ontology Annotation Database (UniProt-GOA) and the KEGG Pathway

databases.
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echoing the findings of Griffiths-Jones et al [5]. The
mechanism and the biological significance of unbiased or
preferred arm selection remain to be elucidated.
Involvement of miRNAs in the metastasis processes
has previously been demonstrated in human cancers
(reviewed in [27]). As a study model in the present work,
targeted transcripts and the predicted biological func-
tions of the 19 dysregulated miRNA pairs were derived
in silico (see Additional file 5). For clarity in analysis,
only two better-characterized targets for the 5p/3p
members of the three miRNA families in Table 3 were
selected for further dissertation in this work (Table 4).
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On close examination of the putative metastasis-
associated functions of the miRNA targets (Table 4), many
targeted transcripts are noted to translate for proteins that
are engaged in epithelial-mesenchymal transition (EMT),
angiogenesis, apoptosis, cell cycle and various signaling
pathways. However, some 5p/3p pairs appear to target
transcripts that translate proteins of related functions.
This is best reflected in miR-200a and -200b in which both
the 5p and 3p species regulate transcripts of the metasta-
sis-associated ZEB1 and/or ZEB2 (zinc finger E-box bin-
ding homeobox 1 and 2) proteins [28,29] (Table 4). ZEB1
is also the predicted target of let-7g-3p. Regulation of the
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same transcript by sister pairs or by different miRNA fa-
milies is probably achieved through recognition of dif-
ferent binding sites of the same target transcript [3,30]. In
the let-7 family, IGFIR (insulin-like growth factor 1 recep-
tor) is the validated target of let-7g-5p and let-7d-5p and
regulates angiogenesis and apoptosis All 5p members of
mir-17 have been validated to target THBS1 (thrombos-
pondin 1), which regulates the TP53 pathway, possibly as a
result of significant sequence homology within the seed
sequences of the family members [31]. Besides mir-17,
THBSI is also targeted by the let-7 family. Hence, our
data demonstrate that both the co-expressed the 5p/3p
miRNAs often cross-regulate multiple targets of similar
functions in cancer cells. On the other hand, the same
target may be regulated by multiple miRNA families:
KRAS is simultaneously targeted by members of let-7 and
mir-17, ZEB1/2 by let-7 and mir-8/-200 and THBS1 by
let-7 and mir-17 families, respectively. It is noteworthy that
KRAS is targeted by only the 3p miRNAs whereas THBS1
is the target of 5p species of the mir-17 family (Table 4).
Taken together, our data indicate that 5p and/or 3p
miRNAs of different families may target at the same
transcript, or a miRNA may cross-regulate different tar-
get transcripts translating for proteins with related func-
tions in the metastasis processes. Such cross-targeting
suggests a fail-proof mode of miRNA regulation to
ensure survival of the cancer cell phenotype.

Let-7d-5p and -3p target IGF1R and KRAS, respectively

IGFIR and KRAS targeting by let-7d-5p and 3p was fur-
ther experimentally validated since the two miRNA spe-
cies were differentially expressed in colon cancer cells in
reverse directions: let-7d-5p was up-regulated whereas let-
7d-3p was down-regulated (see Tables 1 and 2). Hafner
et al. [32] previously demonstrated let-7d regulation of
IGF1R but which of the 5p/3p species was involved was
not specified. Bioinformatics interrogation has revealed
putative let-7d-5p targeting of the 7,088-bp 3’-untrans-
lated region (3'-UTR) of IGFIR mRNA at three different
locations (Figure 3). Likewise, let-7d-3p is predicted to

target at a unique site at the 3’-terminus of the 4,549-bp
3-UTR of the KRAS mRNA (Figure 3). The putative
miRNA sites of the two mRNAs are highly conserved in
mammals (Figure 3). To examine post-transcriptional
regulation, the IGFIR and KRAS protein levels were first
examined in the colon cancer cell line and in normal
colon tissues (Figure 4). Results showed that the IGFIR-a
and -f subunits, which are cleavage product of the same
IGF1R precursor, were 0.33- and 0.53-fold, respectively, of
the levels in normal cells, and both were significantly
down-regulated in cancer cells (Table 5). On the other
hand, the KRAS protein was significantly up-regulated in
cancer cells by up to 3.57-fold despite down-regulated
mRNA levels (Figure 4 and Table 5). A spurious band
which has never been described in the literature appeared
in the KRAS western blot of the normal colon cancer tis-
sue. The band was likely a KRAS isoform, but the exact
nature was not further determined.

To further validate let-7d-5p/3p targeting at IFG1R and
KRAS, effects of altering endogenous miRNA levels
on the target mRNAs and proteins were investigated.
When the endogenous let-7d-5p level was knockdown by
transfection of a specific let-7d-5p inhibitor sequence in
HCT-15 cells (Figure 5A), IGFIR mRNA was significantly
up-regulated by 2.58 +0.59-fold whereas transfection
of a negative control with a scrambled sequence had

Table 5 Expression levels of let-7d-5p and -3p and
associated putative target transcripts and proteins in
colon cancer cell lines

miRNA miRNA expression’  Target Protein expression?
(Mean + SD) transcript (Relative to normal)
let-7d-5p 229+ 1.01 IGF1R 0.33+£0.23** (a)
0.53 £0.37% (B)
let-7d-3p  —2.78+0.79** KRAS 3.57 £1.99%*

The colon cancer cells lines used were HT-29, SK-CO-1 and WiDr. 'Real-time PCR
was used to determine miRNA and target mRNA levels; the log, (fold change)
values are shown. ?Western blotting was used to determine protein levels and
the values were expressed relative to those of normal tissues. In both real-time
PCR and western analysis, data were derived from three independent
experiments. **p < 0.01.
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Figure 5 Effects of altered endogenous let-7d-5p and -3p levels on IGF1R and KRAS expression. In the experiments, a let-7d-5p inhibitor
(A-C) or a let-7d-3p mimic (D-F) was transfected to HCT-15 cells for 48 h before further assays. The let-7d-5p or -3p miRNA (A & D) and the IGFIR
and KRAS mRNA levels (B & E) were determined by real-time PCR; the IGF1R and KRAS protein levels (C & F) were determined by western blot
analysis. The data shown were derived from three independent experiments. In (C) & (F), a representative western blot of IGF1R or KRAS is also
shown. N.C, a validated negative control; RL, relative levels compared with the mock control. *p < 0.05, *p < 0.01 and N.S. indicates statistically
not significant relative to the mock control.

insignificant effects on the JGFIR mRNA levels (Figure 5B).
On the other hand, the IGFIR protein level was sig-
nificantly up-regulated by 1.64-fold relative to the mock
control (Figure 5C). Hence, knocking down let-7d-5p had
clearly led to up-regulation of IGF1R, consistent with let-
7d-5p regulation of IGFIR. When a let-7d-3p-specific
mimic sequence was transfected into HCT-15 cells, a
478-fold increase of the let-7d-3p level was achieved
(Figure 5D). The increased level of the miRNA was ac-
companied by significant down-regulation of the KRAS
mRNA level to 0.30-fold (Figure 5E), and also significant
down-regulation of the KRAS protein to 0.52-fold that of
the mock control (Figure 5F), supporting let-7d-3p regula-
tion of KRAS apparently via increased degradation of the
KRAS transcript.

Targeting of KRAS by let-7d has been confirmed in
a number of previous studies although the 5p or 3p
species was not specified [33,34]. Our analysis clearly
supports that it is the let-7d-3p that is targeting KRAS
(Figure 3). On the other hand, further experimental
evidences were needed to support let-7d-5p targeting
IGF1R, and to determine which, or if all, of the three

predicted target sites in the 3'-UTR of the IGFIR mRNA
(Figure 3) is targeted. To achieve this goal, luciferase
assays were performed using the pGL-3-Control vector
in which about 200-bp oligonucleotides harboring each
of the three let-7d-5p targeting sites in the IGFIR
sequence (see Methods, and Additional file 3) were
inserted at the 3’-end of the luciferase gene of the vector
as previously described [24]. Mutants in the seed se-
quences of the miRNA target sites were also created
(Figure 6A). The wild-type and the mutant constructs
were transfected into HCT-15 cells alone, or in the pre-
sence of a let-7d-5p mimic for miRNA over-expression,
or a negative control (NC) oligonucleotide (Figure 6B).
The results showed that on over-expressing let-7d-5p,
the presence of the second predicted let-7d-5p site, des-
ignated as IGFIR-2, inserted in the luciferase vector
clearly led to significant down-regulated luciferase activ-
ities to 46% of the wild-type level; on the other hand,
when the IGFIR-2 site was mutated, no appreciably ef-
fects on the luciferase activities were observed (Figure 6B,
middle panel). IGF1R-1 and -3 sites were apparently not
targeted by let-7d-5p, although the IGF1R-3 site showed
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Figure 6 Targeting of IGF1R by let-7d-5p as shown in luciferase assays. (A) The seed sequences (boxed) of the three putative let-7d-5p-targeted
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a 10% decrease in luciferase activities. Our collective
data confirmed that let-7d-5p targeted IGFIR at one of
the three predicted sites to result in down-regulated
IGF1R expression in colon cancer cells.

Discussion

MicroRNA involvement in the pathogenesis of human can-
cers has been well documented. However, co-participation
of the miRNA 5p/3p pairs in cancer cells has only recently
begun to be recognized [14,35-38]. In this global analysis,
we have identified 19 dysregulated 5p/3p pairs that are
significantly co-expressed in colon cancer cells. Many of
these miRNAs have previously been reported but without
clear identification of which of the 5p/3p species is
involved [18-21,39-42]. We further show that out of the
19 co-existing pairs, 17 pairs were either co-up- or co-
down-regulated (Table 1), indicative of concerted selection
of the 5- and 3’-arm of the pre-miRNA precursors. In-
terestingly, two 5p/3p species showed reversed directions
of expression in cancer cells.

There are increasing evidences to indicate selection of
either or both the 5p or 3p alternative species under spe-
cific temporal, spatial and physiological and pathological
conditions [3,4,7,9]. For arm selection, it has been pro-
posed, based on thermodynamic consideration, that the
strand with unstable base-pairing at the 5-end is able to
evade degradation [43,44]. Taking hints from reports
that polymorphic indentation of a miRNA may lead to
drastic shifts in arm selection to form novel miRNA

isoforms (isomiRs) [45-47], the frequent co-expression
of the 5p/3p pairs reported here in colon cancer cells
may, to some extent, be driven by undetected poly-
morphic nucleotide changes in the miRNA genes in the
cancer cells. In some cases, novel cancer-related extra-
cellular signals may also lead to changes in strand se-
lection in cancer cells [48], with reported changes in
strand selection in different tissues and in different de-
velopmental stages when there are abundant spatial- and
temporal-specific signals [3-5,7]. In different types of
cancer, Dicer expression is dysregulated [49-52], making
an impact on miRNA strand selection and maturation.
Upon loading, Ago2 cleaves the passenger strand or re-
press translation of the targeted transcript [53,54]. Al-
though Ago2 alone may be sufficient for strand selection
for some miRNAs, it is demonstrated that for others,
strand selection is also dependent on the availability of
another RISC enzyme, the double-stranded RNA binding
protein (dsRBP) [55]. Out of the eight human Ago pro-
teins analyzed in colon cancer cells, at least two mem-
bers have been found to be over-expressed in cancer
tissues [56]. Likewise, subtle changes in the steady-state
levels of dsRBP and other dsRBP-associating enzymes
[55] would have effects on 5p/3p strand selection of con-
current expression in cancer cells. In summary, co-
regulation of the 5p/3p miRNA species in cancer cells is
probably multi-faceted, and may be subjected to subtle
pathophysiological changes pre-miRNA processing en-
zymes in cancer cells.
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In an analysis of six 5p/3p pairs and four putative targets
(Figure 1), it is noted that miRNAs of the same family
may target the same (e.g. let-7g-5p and let-7d-5p both tar-
geting IGF1R), or different targets (e.g. let-7g and let-7d
targeting IGF1R, KRAS and THBS1) of the metastasis
process, and that a target transcript in this process may
also be regulated by different miRNA species (e.g. KRAS
is targeted by let-7d-3p, miR-18-3p and miR-30-3p)
(Figure 1 and Tables 4 and 5). miRNA cross-regulation of
targets of related biological function suggests a fail-proof
mode of miRNA regulation in cancer cells to ensure that
when any one of the regulatory miRNAs is disabled by
mutations or by transcriptional or post-transcriptional
suppression, other miRNA species in the regulatory circuit
are still available to exert the affected biological function.
Co-participation of the 5p/3p species adds further advan-
tages to the fail-proof execution of miRNA regulation.
Our proposition is consistent with numerous experimen-
tally validated 5p/3p pairs that often suppress transcripts
in related cancer pathways (e.g. see [14,37,38]).

The let-7 family miRNAs is a group of key regulators of
differentiation processes in development; changes in let-7
expression could lead to dedifferentiation via EMT and
tumor progression [57]. Let-7 down-regulation is associa-
ted with the development of a number of human cancers;
let-7 is, hence, designated as a tumor suppressive miRNA.
In this work, we present evidences to indicate targeting of
IGFIR by let-7d-5p in the regulation of IGFIR in colon
cancer cells. IGFIR, a transmembrane tyrosine kinase, is
an integral component of the insulin-like growth factor
system that regulates apoptosis, cell proliferation and
transformation [58-61]. IGF1R is abundantly expressed in
normal colorectal cells and in early-stage colon cancers
but the expression is down-regulated in advanced-stage in-
vasive colorectal cancers [62-65]. Besides let-7, a flurry of
recent papers has reported no fewer than ten miRNAs
down-regulate IGFIR in various types of cancers (see
Additional file 6 for a list of references). IGFIR has be-
come a crucial receptor protein in understanding tumor
metastasis, and, hence, a therapeutic target. Let-7d regula-
tion of KRAS has also previously been shown [66-68].
KRAS is a key signalling protein involved in apoptosis,
proliferation and differentiation. In KRAS-transformed
cells, the oncoprotein results in changes in cell adhesion
and migration properties, and, thus, the metastatic poten-
tial of the cancer cells [69-71]. In this report, we show that
it is let-7d-3p that is regulating KRAS. KRAS has also been
experimental validated to be regulated by about a dozen
other miRNAs (Additional file 6). Taken together, the ob-
servation of let-7d-5p/3p and multiple-miRNA targeting of
IGFIR and KRAS is consistent with the safe-proof me-
chanism of miRNA regulation of crucial factors in cancer-
related pathways to warranty continued advantages in the
promotion and maintenance of the cancer phenotype.
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Conclusions

In this work, frequent co-expression and concerted regu-
lation of miRNA-5p/3p pairs is demonstrated in colon
cancer cells. Some 5p/3p species were found to target the
same transcript and the same miRNA may cross-target
different transcripts of proteins of the same biological
process in a fail-proof scheme of miRNA regulation. Our
data suggest the importance in further elucidation of pos-
sible clinical significance of co-existing miRNA-5p/3p
pairs in cancers and other human diseases.

Additional files

Additional file 1: Old and new nomenclatures and sequences of
miRNAs described in this work. According to miRBase Release 19, the
old and new nomenclatures and sequences of miRNAs are listed.

Additional file 2: Oligonucleotides used in stem-loop RT-PCR. The
sequences of the oligonucleotide primers used in the stem-loop RT-PCR
validation of 5p/3p co-expression are shown.

Additional file 3: Oligonucleotide primers for luciferase constructs
and mutagenesis. Two sub-tables are shown: A. Primers for luciferase
constructs harboring let-7d-5p putative target sites in IFG1R. B.
Oligonucleotides used for site-directed mutagenesis.

Additional file 4: Number of predicted miRNA-targeted transcripts.
The number of target sites of the listed miRNA was calculated based on
microRNA.org, DIANA-microT and miRDB database.

Additional file 5: Sister strands of miRNAs and affected target
transcripts of factors involved in the metastasis-associated
processes in colon cancer cells (n = 19 pairs). The affected target
transcripts by both miRNA strands. The miRNA algorithms used in data
derivation included microRNA.org (www.microrna.org); miRBase
(www.miRBase.org), DIANA LAB - DNA Intelligent Analysis - TarBase Web
Server and microT v4.0 Web Server; miRWalk (www.ma.uni-heidelberg.de/
apps/zmf/mirwalk/); KEGG pathway database (www.genome jp/kegg/
pathway.html).

Additional file 6: Experimentally-validated miRNAs that have been
reported to regulate KRAS and IGF1R. The references of the reported
miRNAs targeting KRAS and IGF1R are listed.
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