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Lysine lactylation (Kla) might be a novel
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therapeutic target for breast cancer
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Abstract

BC-related KEGG pathways.

Background Histone lysine lactylation (Kla) is a newly identified histone modification, which plays a crucial role in
cancer progression. Hence, we determined the prognostic value of Kla in breast cancer (BC).

Methods We obtained RNA expression profiles of BC from The Cancer Genome Atlas (TCGA), following screening
out Kla-specific genes. Furthermore, we determined the prognostic value of Kla by constructing a cox model based
on Kla-specific genes. Subsequently, we identified expression of lactate accumulation-related genes and prognostic
Kla-specific genes through Human Protein Atlas (HPA), and further performed a correlation analysis based on their
expression. Meanwhile, we explored the effects of Kla on BC tumor microenvironment (TME), drug therapy and
immunotherapy. Moreover, we predicted the pathways influenced by Kla via gene set enrichment analysis (GSEA).
Results A total of 1073 BC samples and 112 normal controls were obtained from TCGA, and 23 tumor samples were
removed owing to inadequate clinical information. We identified 257 differentially expressed Kla-specific genes
(DEKIaGs) in BC. A cox model involved with CCR7, IGFBP6, NDUFAF6, OVOLT and SDCT was established, and risk score
could be visualized as an independent biomarker for BC. Meanwhile, Kla was remarkably associated with BC immune
microenvironment, drug therapy and immunotherapy. Kla was identified to be related to activation of various

Conclusion In conclusion, Kla contributes to drug resistance and undesirable immune responses, and plays a crucial
role in BC prognosis, suggesting that Kla was expected to be a new therapeutic target for BC.
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Introduction

Breast cancer (BC) is a heterogeneous disease with high
level of mortality, and it is the fifth leading reason of
cancer-associated death [1]. BC has surpassed lung can-
cer as the most prevalent malignancy in 2020 [2], and it is
characterized by local recurrence, distant metastasis and
chemotherapy resistance, which are the major causes that
lead to the high mortality of BC patients [3]. Although
advances in BC prevention, diagnosis and personalized
therapy in accordance with molecular classification [4, 5],
therapeutic targets for BC are still lacking, which contrib-
utes to unfavorable prognosis. Therefore, it is crucial to
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determine more effective therapeutic targets for improv-
ing the overall survival of BC patients.

Histone posttranslational modifications have been
identified to play a vital role in cancer progression, anti-
tumor immunity and therapy [6-8]. Feng et al. indicated
that histone posttranslational modifications can contrib-
ute to maintaining genome stability, transcription, DNA
repair, and chromatin modulation in BC [9]. Recently,
Zhao et al. identified a new histone posttranslational
modification type, called histone lysine lactylation (Kla)
[10], which could stimulate or inhibit gene transcrip-
tion from chromatin directly. Lactate is predominantly
derived from aerobic glycolysis, a characteristic of can-
cer cells [11], and always accumulates in the tumor
microenvironment (TME). Studies showed that lactate
could promote cancer local invasion, metastasis [12],
and inhibit immune response [13]. Lactate in TME pro-
moted the development of myeloid-derived suppressor
cells (MDSCs) [13] and modulated dendritic cell activa-
tion, which might remarkably contribute to tumor escape
[14]. Moreover, lactate derived from tumor could inhibit
tumor surveillance by T and NK cells, which led to tumor
immune escape [15]. Recently, the roles of Kla on malig-
nancies have attracted more attention since identified by
Zhao et al [16]. Majority of researches showed that aber-
rant Kla level was associated with tumorigenesis and
malignant progression [17, 18]. In addition, inhibition
of histone Kla could impair the tumorigenicity of cancer
stem cells [19]. BC is characterized by activation of aero-
bic glycolysis [20, 21], leading to accumulation of lactate
in the TME. However, there is no study to evaluate the
carcinogenic role of Kla in BC.

In our study, we downloaded gene expression pro-
files from The Cancer Genome Atlas (TCGA), following
screening out differentially expressed Kla-specific genes
(DEKlaGs). Subsequently, DEKlaGs were enrolled in uni-
variate and multivariate cox regression analyses to build
a risk model. Furthermore, we evaluated the prognos-
tic value of Kla-specific genes, and then determined the
contribution of Kla to BC TME, drug therapy and immu-
notherapy. Finally, gene set enrichment analysis (GSEA)
revealed the potential mechanisms of Kia in BC.

Materials and methods

Data preparation

In 2019, Zhao et al. identified the newly posttransla-
tional modification histone Kla, and then determined the
Kla-specific genes via ChIP-seq. Hence, we downloaded
all of the Kla-specific genes from Zhao’s study [10]. BC
RNA expression profiles and their corresponding clinical
data were downloaded from TCGA (https://portal.gdc.
cancer.gov/), including 1073 BC samples and 112 nor-
mal controls. All of the IHC image data were obtained
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from Human Proteins Atlas (HPA) database (Table S1)
(https://www.proteinatlas.org/).

To identify prognostic value on Kla

The expression levels of Kla-specific genes were
extracted, following differentially expressed analysis
in R software limma package, with the cut-off criteria
|log,(Fold-Change)| >=1 and p-value<0.05. To identify
the prognostic value of Kla, univariate cox analysis was
used to screen prognostic genes, following construct-
ing cox model via multivariate cox analysis according to
prognostic Kla-specific genes. According to cox model,
BC patients were divided into high- and low-risk groups
on basis of risk score median. And we further validated
the accuracy of cox formula via survival analysis and
independent prognostic analysis. In addition, the prog-
nostic value of genes enrolled in cox model was also
determined.

Correlation analysis between lactate accumulation related
genes and Kla specific genes

According to previous study, E1A binding protein p300
(P300) was regarded as a writer of Kla. In addition, Zhao
et al. indicated that lactate dehydrogenase A (LDHA),
lactate dehydrogenase B (LDHB) and hypoxia inducible
factor 1 subunit alpha (HIF1A) also played a crucial role
in Kla process. Therefore, we evaluated the expression of
these four genes, and the correlation analyses between
these four genes and prognostic Kla-specific genes were
determined in BC.

Tumor microenvironment (TME) analysis

Firstly, immune cells’ levels of BC patients were calcu-
lated via “CIBERSORT” in R software. The correlations
between prognostic Kla-specific genes and immune
cells were performed. In addition, immune scores of
BC patients in TCGA were gained through single sam-
ple gene set enrichment analysis (ssGSEA) in packages
“GVSA” and “GSEAbase” of R software. Then, we further
explored the relationship of immune cell scores, immune
function and Kla-specific genes. Subsequently, we down-
loaded the stemness score data according to DNA meth-
ylation (DNAss) and RNA (RNAss) from UCSC Xena
database (http://xena.ucsc.edu/). Stemness score correla-
tion analysis was further determined.

Tumor mutation burden (TMB) correlation analysis

Tumor mutation burden (TMB), the number of muta-
tions which exist in a tumor and are related to the emer-
gence of neoantigens that trigger antitumor immunity, is
identified as a new indicator for prediction of response to
immunotherapy [22]. Hence, we downloaded the TMB
data from UCSC Xena (https://xena.ucsc.edu/), and then
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explored the relevance between TMB and Kla-specific
genes in BC.

Immunotherapy and immune checkpoint analysis

To further explore the relationship between Kla and
immunotherapy, we obtained the immunotherapy data
from the TCIA database (https://tcia.at/home). Subse-
quently, we analyzed the correlation between prognostic
Kla-specific genes and immunotherapy in BC. In addi-
tion, we acquired the immune checkpoint data from
previous publications [23], and then we explored the rel-
evance of Kla and checkpoints.

Drug susceptibility analysis

Drug susceptibility data were downloaded from the
CellMiner database (https://discover.nci.nih.gov/
cellminer/home.do). Furthermore, the effects of Kla on
BC drug therapy were evaluated via correlation analysis.

Gene set enrichment analysis (GSEA)

To evaluate the potential mechanism of Kla in BC, we
explored the potential KEGG pathways influenced by
Kla-specific genes via Gene Set Enrichment Analysis
(GSEA), and the top 3 pathways of each prognostic Kia-
specific gene were listed.

Statistical analysis

The software SPSS (Version 23.3, IBM) was used to per-
form statistical analyses. Pearson’s Correlation Tests,
Student’s T-test and long-rank p test were carried out
in this study. Significance difference was considered at
p<0.0001**** p<0.001***; p<0.01 **; p<0.05 *.

Results

Identification of prognostic value

According to differentially expressed analysis, we
screened out 257 differentially expressed Kla-specific
genes (DEKlaGs) with the cut-off criteria |log,FC| >=1
and p-value<0.05 (Fig. 1A, Table S2) in BC. To explore
the prognostic value of DEKIaGs, we selected prognostic
Kla-specific genes via univariate cox analysis (Table 1),
and then built a cox model through multivariate cox
regression analysis (Fig. 1B). Furthermore, risk score of
each patient was calculated based on C-C Chemokine
Receptor 7 (CCR?), insulin like growth factor binding
protein 6 (IGFBP6), NADH: ubiquinone oxidoreductase
complex assembly factor 6 (NDUFAF6), ovo like tran-
scriptional repressor 1 (OVOLI) and syndecan 1 (SDCI)
expression level, following dividing into low- and high-
risk groups on basis of risk median, respectively. Survival
analysis showed that high-risk patients had unsatisfied
overall survival compared to low-risk group (Fig. 1C,
Figure S1). In addition, prognostic value analysis indi-
cated that risk score in accordance with Kla might be an
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independent prognostic biomarker for BC (Fig. 1D, E).
Risk score combined with gene expression profiles, sur-
vival time were visualized in R (Fig. 1F, G, H). Further-
more, the prognostic value of Kla-specific genes enrolled
in cox formula was also identified (Fig. 1I-M).

Identification of Kla-specific genes expression

According to Kla-specific genes enrolled in cox model,
we further evaluated their RNA and protein expression
in BC. As the results shown, CCR7 RNA expression level
in TCGA was overexpressed in tumor samples. However,
the protein expression based on IHC in HPA was oppo-
site (Fig. 2A). And patients with high CCR7 expression
had favorable overall survival (Fig. 1G). The potential
mechanism should be further explored. The RNA levels
of IGFBP6, a tumor suppressor gene in BC, were down-
regulated in BC samples. Meanwhile, the protein expres-
sion of IGFBP6 was nearly not detected in tumor tissues
(Fig. 2B). NDUFAF6, OVOLI and SDCI, as oncogenes,
were all upregulated in BC samples (Fig. 2C, D, E).

Identification of lactate-related genes in BC

Zhao et al. indicated that the 4 genes P300, LDHA, LDHB
and HIF1A were related to lactate accumulation and Kla
modification [10]. Therefore, we explored the expression
of these 4 genes in BC. The results showed that P300,
LDHA and LDHB were all overexpressed in tumor sam-
ples (Fig. 3A, B, C). Although RNA level had no signifi-
cance between normal controls and BC patients, HIFIA
protein was significantly upregulated in BC (Fig. 3D).

Correlation analysis between lactate accumulation-related
genes and Kla -specific genes

Lactate accumulation-related genes were all identified to
overexpression in BC. We further explored the relevance
between lactate accumulation-related genes and prog-
nostic Kla-specific genes. As the figure shown, P300 was
positively related to NDUFAF6 and OVOLI, and nega-
tively related to tumor suppress gene IGFBP6 (Fig. 4A).
HIFIA was associated with CCR7, IGFBP6 and SDCI
(Fig. 4B). LDHA, overexpression in BC, was positively
relevant to oncogenes NDUFAF6, OVOL1 and SDCI,
while negatively relevant to CCR7 and IGFBP6 (Fig. 4C).
LDHB only played a promoted role in CCR7 expression,
and played an inhibited role in other 4 genes (Fig. 4D).
Taken together, the expression of tumor suppressor gene
IGFBP6 in BC was negatively associated with Kla pro-
duction, suggesting that IGFBP6 might be a crucial Kla
target for BC.

Kla was associated with immunity in BCTME

To evaluate the role of Kla on immunity, we determined
the relevance between Kla-specific genes and various
immune cells. CCR7 expression was significantly related
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Fig. 1 Identification prognostic value of Kla-specific genes. A, Differentially expressed Kla-specific genes (DEKIaGs) in BC, with the cut-off criteria [log-
2FC|>=1, p-value <0.05. B, Cox regression model in accordance with DEKlaGs. C, Survival analysis according to risk score calculated by Kla-specific genes
expression. D;E, Independent prognostic analysis of risk score. T represents the tumor size in tumor TNM classification, N represents the lymph node
metastasis in TNM classification, and M represents distant metastasis in TNM classification. F, Visualization of risk level combined with gene expression.
Heatmap represents the prognostic gene expression profiles. Blue stands for low expression, while red stands for high expression. The type means risk
level. G, Distribution of each risk score according to Kla-specific genes. Green represents low-risk group, while red represents high-risk group. H, Visualiza-
tion of survival time and risk score. Patients with high-risk score tend to have shorter survival time. I-M, Survival analysis of prognostic Kla-specific genes.
FC, Foldchange
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Table 1 _Prognostic Kla-specific genes in BRCA to majority of immune cells level. The most positively
Gene HR HR.95L HR.95H coxPvalue and negatively relevant immune cell type were T cell
CCR7 1.0038 1.0008 1.0068 00133 CD8 and Macrophage M2 which was identified to con-
IGFBP6 0.9900 09812 0.9989 00272 tribute to cancer progression, respectively (Fig. 5A). And
IL27 12274 1.0094 14926 0.0400 IGFBP6 expression was most positively related to Mast
NDUFAF6 1.0095 1.0021 10169 00119 cells resting, and negatively related to T cells CD4 mem-
ovoLt 10284 10022 10554 0.0336 ory activated (Fig. 5B). NDUFAF6, OVOLI and SDC1, as
SDC1 10008 10003 10012 0.0007 oncogenes in BC, were all positively related to Macro-
phage M2, while negatively related to NK cells activated
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Fig. 2 Identification of Kla-specific genes expression. RNA and protein expression of CCR7 (A), IGFBP6 (B), NDUFAF6 (C), OVOLT (D) and SDCT (E) in BC were
obtained from TCGA and HPA database, respectively
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Fig. 3 Identification of lactate accumulation related genes in BC. The expression of P300 (A), LDHA (B), LDHB (C) and HIF 1A (D) in BC cases
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Fig. 4 Correlation between Kla-specific genes and lactate accumulation related genes. Correlation between P300 (A), LDHA (B), LDHB (C), HIF1A (D) and

Kla-specific genes including CCR7, IGFBP6, NDUFAF6, OVOLT and SDCT.

(Fig. 5C, D, E). Furthermore, according to the immune
cell scores and immune function from ssGSEA, we deter-
mined the difference between high and low expression
group of there 5 genes (Figure S2). In addition, NDU-
FAF6, OVOLI and SDCI were positively related, while
CCR7 and IGFBP6 were negatively related to stemness
score in BC (Fig. 5F).

Kla was related to BCTMB

TMB was regarded as a new indicator for the response
to immunotherapy. Therefore, we explored the rela-
tionship between TMB and Kla. As the results shown,
CCR?7 had no effect on TMB in BC (Fig. 6A), while high
IGFBP6 expression always meant low level of TMB
(Fig. 6B). Oncogenes NDUFAF6, OVOL1 and SDCI
were all positively related to TMB level in BC (Fig. 6C,
D, E), indicating that Kla might play a crucial role in BC
immunotherapy.
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Kla was related to BC immunotherapy

To further determine the role of Kla on BC immuno-
therapy, we downloaded the immunotherapy informa-
tion of BC samples from TCIA. The results showed
that BC patients with high CCR7 and IGFBP6 expres-
sion had more favorable immunotherapy response than
low expression (Fig. 7A, B). Conversely, as oncogenes,
NDUFAF6, OVOL1 and SDCI played an inhibited role
in immunotherapy process (Fig. 7C, D, E). Further-
more, we explored the correlation between Kla-specific
genes and immune checkpoints. The results showed that
CCR7 and IGFBP6 were positively relevant to nearly all
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checkpoints, while NDUFAF6, OVOLI and SDCI were
opposite (Fig. 7F).

Drug susceptibility analysis

To determine the effects of Kla on BC drug therapy, we
obtained drug susceptibility data, and then analyzed the
correlation between drug susceptibility and prognostic
Kla-specific genes (Tables 2, 3, 4, 5 and 6). High CCR7
presented high susceptibility in majority of drugs, such
as Nelarabine and Chelerythrine (Fig. 8A). Similarly,
tumor suppressor gene IGFBP6 was also associated with
the response of drug therapy (Fig. 8B). NDUFAF6, as an
oncogene, was positively related to drug susceptibility
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Fig. 7 Immunotherapy analysis on basis of Kla. A-E, CCR7 and IGFBP6 were positively related to immunotherapy response, while NDUFAF6, OVOLT and
SDC1 were opposite. F, the correlation between Kla and immune checkpoint expression
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Table 2 Drug susceptibility analysis according to CCR7
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Table 4 Drug susceptibility analysis according to NDUFAF6

Drug cor pvalue Drug cor pvalue Drug cor pvalue
Nelarabine 09164 <0.0001 Cytarabine 0.3359 0.0087 Nelarabine 04567 0.0002
Fluphenazine 06381 <0.0001 Melphalan 0.3317 0.0096 Chelerythrine 04561 0.0002
Dexamethasone 06148 <0.0001 Decitabine 03291 0.0102 Vorinostat 0.3993 0.0016
Decadron Ifosfamide 03457 0.0068
Chelerythrine 05764 <0.0001 Thiotepa 0.3289 0.0103 PX-316 0.3379 0.0083
PX-316 0.5061 <0.0001 Digoxin 03234 0.0117 Belinostat 0.3048 00179
Asparaginase 04518  0.0003 Triethylene- 0.3189 0.0130 Amonafide 0.2746 0.0338
melamine
Fludarabi 04292 0.0006 XK-469 03164 0.0138 g . .
ucarabine , Table 5 Drug susceptibility analysis according to OVOL1
Hydroxyurea 04201 0.0008 Etoposide 0.3140 0.0146
T Drug cor pvalue
Cyclophospha-  0.4063 0.0013  Seliciclib -0.3042 0.0181
mide Elesclomol 0.4850 0.0001
Pipobroman 03800  0.0027 Cladribine 0.2983 0.0206 5316157 o i ) 04267 0.0007
Fenretinide 03724 00034 Calusterone 02963 00215 bisacodyl, active ingredient of viraplex 04052 0.0013
Chlorambucil 03641 00042 LMP-400 02791 00308 Huorouracil 03687 00037
Dexrazoxane 03573 00051 Nitrogen 02770 00321 Fulvestrant 0.3632 00043
mustard By-Product of CUDC-305 0.3595 0.0048
Ifosfamide 03486 00063 Carmustine 02724 00353 Acetalax 03547 00054
Arsenic trioxide 03481 00064 LY-294002  -0.2651 0.0407 Carboplatin -03364 0.0086
Idarubicin 03423 00074 Teniposide 02647 00409  Simvastatin -0.3099 00160
Batracylin 03401 00079 Raltitrexed 02594 00453 ~  >taurosporine -0.2887 00253
Uracil mustard  0.3365 00086 kahalide f 0.2852 0.0272
Arsenic trioxide -0.2836 0.0281
Table 3 Drug susceptibility analysis according to IGFBP6 Bleomycin 02795 00306
Tegafur 0.2792 0.0307
Drug cor pvalue Drug cor pvalue Raloif 09723 00353
Midostaurin ~ 0.3823 0.0026 Tyrothricin -~ -02775 00318 Ba oxtrene i o ose
Bleomycin 03698 0.0036 Dolastatin 10 -02817  0.0292 N‘igz‘mate. oo S
Staurospo- 03524 00058 Cyclophos- 02867  0.0264 dostaurin - ‘
fine phamide Pyrazoloacridine 0.2671 0.0391
Dasatinb 03448 00070 Hypothemy- -03047 00179 ~ Cisplatin -0.2656 00403
cin Cordycepin 0.2624 0.0428
Floxuridine 03374 00084 Lapachone  -03080 00167 Testolactone -0.2562 0.0481
Simvastatin -~ 03141 0.0145 Actinomy- -03160 00139 Carmustine -0.2552 0.0491
cnD
Irofulven 02921 0.0236 Tamoxifen 03222 00121 Enrichment pathway of prognostic kla-specific genes
Ibrutinib 0.2810 00296 Eribulin -03315  0.0097 To explore the potential KEGG pathways influenced by
mesilate Kla, we carried out GSEA, and showed that CCR7 was
S—ﬂuorov 0.2740 0.0341 Vinblastine -0.3343  0.0090 related to immune response pathways, such as B cell
jienoexﬁl(;:;r receptor signaling pathway. And it also played a negative
traconazole 03572 00472 Nilotinib 03514 00059 role in BC cancer cell oxidative phosphorylation process
Imatinib 09548 0.0494 Vinorelbine 03553 0.0053 (Fig. 9A). IGFBP6 inhibited the activity of cell cycle and
Cobimetinib 02570 0.0474 Bafetinib 03693 0.0037 alanine aspartate and glutamate metabolism pathways.
(isomer 1) But as a tumor suppressor gene, /[GFBP6 was associated
Raloxifene  -0.2578 00468  Pipamperone -03736 00033  With activation of MAPK signaling pathway (Fig. 9B).
Selumetinib  -0.2605 0.0444 Arsenic 03763 00030 NDUTFAFG6 played a crucial role in the activation of cell
trioxide cycle and oxidative phosphorylation (Fig. 9C). OVOLI
Paclitaxel -0.2664 0.0396 and SDCI were also related to activation of several can-

(Fig. 8C). The potential mechanism was unclear. OVOLI
and SDCI displayed a remarkably inhibited role in BC
drug therapy, such as Carboplatin, Cisplatin, Nilotinib,
Imexon, etc. (Fig. 8D, E).

cer related pathways, such as NOTCH, WNT signaling
pathways and focal adhesion (Fig. 9D, E).

Discussion

Normal cells always produce energy via mitochon-
drial oxidative phosphorylation, while cancer -cells,
owing to massive energy demands, are characterized by
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Table 6 Drug susceptibility analysis according to SDC1

Drug cor pvalue Drug cor pvalue
Imexon  -0.4446 0.0004 Dacarbazine -0.2953  0.0220
Nilotinib  -0.4434 0.0004 Pipamperone -0.2896  0.0248
Chelery-  -0.4260 0.0007 Ixazomib -0.2896 0.0248
thrine citrate

Arsenic  -04180 0.0009 Selumetinib  -0.2820  0.0290
trioxide

Bafetinib  -0.4174 0.0009 XK-469 -0.2782  0.0314
Cyclo- -04149 0.0010 ABT-199 -0.2765 0.0325
phospha-

mide

Hypothe- -0.4078 0.0012 Bendamus-  -0.2728 0.0349
mycin tine

Lapa- -0.3699 0.0036 Imatinib -0.2618  0.0433
chone

Dimeth-  -0.3690 0.0037 BN-2629 -0.2584  0.0462
ylami-

nopar-

thenolide

Carmus-  -0.3545 0.0055 Oxaliplatin -~ -0.2571  0.0474
tine

Nelara-  -0.3522 0.0058 Irofulven 0.2683  0.0382
bine

Vorinostat -0.3501 0.0061 Dasatinib 02746 0.0337
Ifos- -0.3475 0.0065 Itraconazole 02772 0.0320
famide

Bortezo-  -0.3459 0.0068 Everolimus 02965  0.0214
mib

Lomus-  -0.3113 0.0155 kahalide f 03064 0.0173
tine

reprogramming metabolic pathways such as aerobic gly-
colysis [12]. Activation of aerobic glycolysis plays a cru-
cial role in BC tumorigenesis and progression [24, 25].
Chen et al. indicated that aerobic glycolysis was associ-
ated with drug resistance of BC [26]. Generally, aerobic
glycolysis leads to accumulation of lactate in the TME,
which is related to histone Kla and plays a vital role in
cancer progression and tumor immunity [27, 28]. How-
ever, whether lactate produced by aerobic glycolysis and
histone Kla play a carcinogenic role in BC is unclear.
Therefore, we determined the role of Kia in BC.

In present study, we built a cox model to predict BC
patient prognosis, and the risk score in accordance with
prognostic Kla-specific genes could be regarded as an
independent prognostic biomarker. 2 tumor suppressor
genes including CCR7, IGFBP6 and 3 oncogenes includ-
ing NDUFAF6, OVOL1, SDC1 were involved in cox
model. CCR7 was one of chemokine receptors identified
be upregulated in BC. Signals mediated by CCR7 can
activate T and B lymphocytes, and regulate the migra-
tion of immune cells to inflamed tissue [29]. In 2001, A
Miiller et al. demonstrated that CCR7 was upregulated in
BC and played a vital role in determining the metastatic
destination of tumor cell [30]. In addition, in a BC mouse
model, downregulation of CCR7 might impair the tumor
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cell proliferation and invasive properties, indicating that
CCR7 might promote distant metastasis via promoting
tumor cell proliferation and invasion at the metastatic
site [31]. Philippe A Cassier et al. demonstrated that
CCR7 was expressed by spindle shaped stromal cells in
BC, but its expression showed no difference on patient
overall survival [32]. Taken together, although studies
suggest that CCR7 seems to reliably predict the lymph
node metastases of BC, it is unclear whether CCR7 can
be associated with BC patient survival. In our study, RNA
expression of CCR7 was elevated in TCGA BC samples.
However, patients with high CCR7 expression had favor-
able prognosis. High CCR7 expression always meant
high immune cell and immune function scores. Patients
with high CCR?7 level had better responses to drug ther-
apy and immunotherapy. The potential mechanism is
unclear. More studies, of course, should be carried out
to explore the function of CCR7 in BC. In the future,
it will be important to correlate the types of cells that
express CCR7 in BC with stage of progression. /IGFBP6
was associated with cell migration and positive regula-
tion of stress-activated MAPK cascade [33]. IGFBP6
was regarded as a biomarker of BC [34]. Knockdown of
IGFBP6 was more resistant to apoptosis and increased
the proliferation of cancer cells. Meanwhile, BC with low
IGFBP6 expression had a high probability of metastasis
due to a more efficient invasion of tumor cells [35]. In
our study, we identified IGFBP6 as a tumor suppressor
gene, which played a positive role in BC drug therapy and
immunotherapy. BC patients with high /IGFBP6 expres-
sion always meant lower risk level and high overall sur-
vival rate. It was also found that upregulation of IGFBP6
was positively related to high immune cell scores, such as
NK cells and TILs. Elevation of IGFBP6 also promoted
the immune process, especially Type-II-IEN response,
and responses to immunotherapy, suggesting that
IGFBP6 might be a candidate immunotherapeutic target
for BC. We identified that Kla production was negatively
related to IGFBP6 expression, but Lucia Longhitano et
al. indicated that lactate could enhance the expression
of IGFBP6, and then induce the microglia M2 polariza-
tion in glioblastoma [36], and IGFBP6 induced by lactate
promoted glioblastoma cells migration and colony for-
mation. Meanwhile, stimulation with lactate in BC cells
led to upregulation of IGFBP6, which was controversial
with our study. IGFBP6 could also induce expression of
various genes related to mitochondrial biogenesis, and
then promote cancer cell proliferation [37], which was
controversial with previous studies [35, 38]. Moreover,
Shkurnikov MY showed that IGFBP6 could correctly pre-
dict the emergence of BC relapse with sensitivity of more
than 80%, and poor prognosis was related to low expres-
sion IGFBP6 (39, 40]. In conclusion, the role of IGFBP6
in BC was controversial, and more studies should be
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Fig. 8 Drug susceptibility analysis. The role of CCR7 (A), IGFBP6 (B), NDUFAF6 (C), OVOL1 (D) and SDCT (E) on BC drug resistance
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Fig. 9 Gene set enrichment analysis. KEGG pathways influenced by CCR7 (A), IGFBP6 (B), NDUFAF6 (C), OVOLT (D) and SDCT (E) in BC. The horizontal axis
represents the sequenced genes, while the vertical axis represents the corresponding running enrichment score (ES). The peak is the ES of this gene set.
The black vertical lines are the target genes in the gene set. The genes before the peak were the core genes in the gene set, indicating the genes that
contributed the most to the final ES of the pathway. The red meant bigger logFC, while blue is opposite
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performed to evaluate its biological function and effect
on drug therapy and immunotherapy. NDUFAF6 is rel-
evant to assembly of complex I (NADH-ubiquinone
oxidoreductase) in the mitochondrial respiratory chain
via regulation of subunit NDI biogenesis [41]. Recently,
Lu HJ et al. indicated that NDUFAF6 was identified as
a potential prognostic gene in hepatocellular carcinoma
(HCC) via bioinformatics analysis, and showed promise
to be a new therapeutic target. In BC, Lu et al. suggested
that NDUFAF6, as a lactate metabolism gene, was most
related to BC prognosis, and played a crucial role in NK
cells activation [42], which was similar to our study. We
also suggested that NDUFAF6 contributed to cell cycle
and oxidative phosphorylation in BC. NDUFAF6 might
inhibit the function of various immune cells and immune
responses. Meanwhile, overexpression of NDUFAF6 was
associated with high TMB level and undesirable immu-
notherapy response. NDUFAF6 was also negatively
related to various immune checkpoint expression in BC,
indicating that it showed promise to be an immunother-
apy target for BC. OVOLI was identified to overexpres-
sion in BC, and related to activation of several BC-related
pathways, such as NOTCH and WNT signaling pathways
[43, 44]. However, Drug susceptibility analysis showed
that it correlated with drug response, such as Elesclomol
and SR16157. Fan CN et al. identified that OVOLI could
impair TGF-3/SMAD signaling and maintain the epithe-
lial identity of BC cells [45]. Therefore, OVOLI might act
as a tumor suppressor gene in BC, and it is necessary to
carry out more studies to further explore its effect on BC
immunotherapy. SDCI, an integral membrane protein,
participates in cell proliferation, cell migration and cell-
matrix interactions through its receptor for extracellular
matrix proteins [46]. Yang et al. suggested that target-
ing SDCI might be a new opportunity for cancer ther-
apy [46]. In pancreatic ductal adenocarcinoma (PDAC),
serum SDCI level was remarkably elevated, and receiver
operating characteristic (ROC) analysis area under the
curve was 0.847 [47], suggesting that serum SDCI served
as a promising novel biomarker for PDAC early diagnosis.
It was found that SDCI was associated with malignant
tumor metastasis and drug resistance [48]. In our study,
we identified that SDCI contributed to focal adhesion of
BC, and negatively correlated with immune responses,
especially Type-II-IFN response. Meanwhile, high SDCI
level meant high Macrophage M2 and low NK cell activa-
tion, which all played a crucial role in BC metastasis and
immunotherapy [49-51]. Our further TMB correlation
analysis, drug susceptibility and immunotherapy analy-
sis validated the results, which were similar to previous
studies [52]. In addition, Juliana Maria Motta et al. indi-
cated that SDCI showed promise to be a candidate tar-
get for therapeutic strategies against BC [53]. However,
fewer studies focused on SDCI to explore its mechanism
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and effect on BC immunotherapy. In conclusion, these
Kila-specific genes were associated with the initiation and
progression of BC, and also played a crucial role in BC
TME, drug therapy and immune process, indicating that
histone Kla might be a potential therapeutic target for
BC.

Conclusion

In present study, we investigated the prognostic value of
Kla in BC by cox regression analysis, and showed that Kla
might be a potential independent prognostic biomarker
for BC. It was also found that Kla production was asso-
ciated unfavorable prognosis of BC patients, and played
a crucial role in BC TME, drug resistance and immuno-
therapy responses. Finally, we suggested Kla production
might induce the activation of various BC-accociated
KEGG pathways. These findings showed that Kia was
expected to be a new therapeutic target for BC.
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