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Abstract
Background Intervertebral disc cell fibrosis has been established as a contributing factor to intervertebral disc 
degeneration (IDD). This study aimed to identify fibrosis-related diagnostic genes for patients with IDD.

Methods RNA-sequencing data was downloaded from Gene Expression Omnibus (GEO) database. The diagnostic 
genes was identified using Random forest based on the differentially expressed fibrosis-related genes (DE-FIGs) 
between IDD and control samples. The immune infiltration states in IDD and the regulatory network as well as 
potential drugs targeted diagnostic genes were investigated. Quantitative Real-Time PCR was conducted for gene 
expression valifation.

Results CEP120 and SPDL1 merged as diagnostic genes. Substantial variations were observed in the proportions 
of natural killer cells, neutrophils, and myeloid-derived suppressor cells between IDD and control samples. Further 
experiments indicated that AC144548.1 could regulate the expressions of SPDL1 and CEP120 by combininghsa-miR-
5195-3p and hsa-miR-455-3p, respectively. Additionally, transcription factors FOXM1, PPARG, and ATF3 were identified 
as regulators of SPDL1 and CEP120 transcription. Notably, 56 drugs were predicted to target these genes. The down-
regulation of SPDL1 and CEP120 was also validated.

Conclusion This study identified two diagnostic genes associated with fibrosis in patients with IDD. Additionally, 
we elucidated their potential regulatory networks and identified target drugs, which offer a theoretical basis and 
reference for further study into fibrosis-related genes involved in IDD.
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Introduction
Intervertebral disc degeneration (IDD) is one of the lead-
ing causes of low back pain (LBP) affecting ~ 40% of adults 
worldwide [1]. This condition is frequently linked to cer-
vical spondylosis, lumbar disc herniation, lumbar spinal 
stenosis, and lumbar spondylolisthesis [2]. Patients with 
IDD often experience high disability rates, which signifi-
cantly affects their quality of life and imposes substantial 
economic burdens [3]. The intervertebral discs consist 
of the annulus fibrosus (AF), the nucleus pulposus (NP), 
and the hyaline cartilage plates of the upper and lower 
vertebral bodies. IDD mainly involves structural dam-
age to the intervertebral disc and is characterized by an 
imbalance between catabolic and anabolic processes [4]. 
This encompasses myeloid nucleus senescence and apop-
tosis, progressive degradation of the extracellular matrix 
(ECM), fibro-annular fibrosis culminating in disc bulg-
ing, loss of NP and water content, and diminished disc 
height [5, 6]. Therefore, assessment frameworks like the 
Pfirrmann grading criteria are employed, relying on disc 
height, structure, and magnetic resonance imaging signal 
intensity to clinically classify degeneration levels as stages 
I–V [7, 8]. Besides, the etiology and pathogenesis of IDD 
are complex. On the one hand, factors such as age, genet-
ics (e.g., polymorphisms in proteoglycan and collagen-
encoding genes), and lifestyle (e.g., occupation, smoking, 
lack of physical activity, and night work) play contribu-
tory roles [9]. On the other hand, cellular processes such 
as apoptosis, autophagy, and the release of pro-inflam-
matory factors are involved. Moreover, the pathogenesis 
of IDD is also heritable, although the exact genetic and 
molecular mechanisms are still under investigation.

Fibrosis, a pathological process that occurs in vari-
ous organs, is usually caused by dysregulation of tissue 
repair in response to chronic inflammation. This can 
lead to ECM remodeling and excessive accumulation of 
ECM components [10], consequently altering tissue bio-
mechanical properties. It has been found that alterations 
in the concentration and morphology of types I and II 
collagen, and fibronectin during disc fibrosis are closely 
associated with the progression of disc degeneration [11, 
12]. Moreover, myofibroblasts (MF) and macrophages are 
the main triggers for the progression of fibrosis [10, 13]. 
Within fibrotic tissues, the regulation of MFs allows for 
collagen deposition in the ECM, which in turn alters the 
structure and function of the tissue [14–16]. Also, it was 
found that MFs were involved in AF repair during IDD 
[17]. Macrophages can regulate cellular fibrosis through 
transglutaminases and matrix metalloproteinases 
(MMPs), which are present in herniated discs and have 
been widely reported; however, only MMP12 has been 
identified as a fibrosis marker in IDD [14, 18–22].

In this study, we downloaded two datasets (GSE150408 
and GSE124272) from the Gene Expression Omnibus 

(GEO) database and analyzed them separately to obtain 
336 differentially expressed genes (DEGs). Concurrently, 
we obtained a total of 2,539 fibrosis-associated genes 
(FIGs) from the GeneCards database. By intersecting 
these with the 336 DEGs, we obtained 29 differentially 
expressed FIGs (DE-FIGs). Next, using the random for-
est (RF) model with a fold number of 3, we successfully 
screened out two diagnostic genes—CEP120 and SPDL1. 
The expressions of these genes were validated within both 
the GSE150408 dataset (training set) and the GSE124272 
dataset (validation set), and their predictive potential 
was confirmed through receiver operating characteris-
tic (ROC) curve analysis. Further exploration included 
single-sample gene set enrichment analysis (ssGSEA), as 
well as the construction of miRNA-mRNA-transcription 
factor (TF) networks and competing endogenous RNA 
(ceRNA) networks. These networks shed light on the 
underlying mechanisms relevant to the diagnostic genes. 
Additionally, diagnostic genes-associated drug predic-
tion was also performed. Finally, we verified the signifi-
cance of the DEGs in blood samples of healthy subjects 
and patients with IDD using quantitative real-time poly-
merase chain reaction (qRT-PCR). These efforts culmi-
nated in the identification of two diagnostic genes, which 
provide a theoretical basis and reference value for the 
study of fibrosis-related genes in IDD.

Materials and methods
Data sources
The GSE150408 and GSE124272 data sets were down-
loaded from the GEO database (http://www.ncbi.nlm.
nih.gov/geo/). GSE150408 contains whole blood sam-
ples from 17 patients with IDD and 17 controls, whereas 
GSE124272 includes 8 pairs of whole blood samples from 
patients with lumbar disc prolapse and healthy controls. 
Additionally, 8,621 FIGs were obtained from the Gen-
eCards database (http://www.genecards.org/) (Additional 
file 1). After a screening process based on a relevance 
score greater than 1, the selection was narrowed down to 
2,539 FIGs for subsequent analyses (Additional file 2).

Identification of DE-FIGs
Limma package 3.44.3 [23] was employed to screen DEGs 
between IDD samples and controls in GSE124272 and 
GSE150408 respectively, which were defined as DEGs1 
and DEGs2. Then, the common DEGs between DEGs1 
and DEGs2 were obtained by overlap analysis and func-
tional enrichment analyses by clusterProfiler v3.16.0 [24] 
was subsequently conducted with a threshold of p < 0.05 
[25–27]. Furthermore, the DEGs that intersected with 
the 2,539 FIGs were classified as DE-FIGs.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.genecards.org/
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Selection of diagnostic genes and nomogram construction
To obtain diagnostic genes for IDD, eight machine learn-
ing algorithms were used, including Logistic Regression 
(LR), RF by randomForest v4.6-14, Gradient Decision 
Tree (GBDT), eXtreme Gradient Boosting (XGB) by 
xgboost v1.4.1.1, Support Vector Machine (SVM) by 
e1071 v1.7-3 [28], Artificial Neural Network (ANN) 
by neuralnet v1.44.2 [29], Decision Tree (DT), Ada-
boost v4.2 [29], and MultinomialNB (MNB) by kalR. 
For detecting the most suitable model for DE-FIGs, all 
the samples in the GSE150408 dataset were randomly 
divided into training sets and validation sets according 
to an n-fold from 1 to 7. The regression analysis of the 
eight algorithms was conducted in the training set, and 
the verification was performed in the validation set. The 
most suitable algorithm was selected according to the 
comprehensive effects of the n-fold and each algorithm. 
Moreover, the diagnostic genes for IDD were identified 
based on the area under the ROC curve (AUC) values of 
the model under different numbers of variables. Finally, 
a nomogram consisting of the diagnostic genes was con-
structed, which was validated by the C-index, slope of 
the calibration curve, and decision curve analysis (DCA) 
curve.

Diagnostic effectiveness of the diagnostic genes
To investigate whether the diagnostic genes as a whole 
could successfully distinguish IDD samples from healthy 
controls, principal component analysis (PCA) was per-
formed on both the GSE150408 and GSE124272 datasets. 
Also, ROC curves were drawn for each diagnostic gene as 
well as collectively for all the diagnostic genes to differen-
tiate between their diagnostic potential in IDD samples 
in the GSE 150,408 dataset. Simultaneously, similar ROC 
curves were plotted for the GSE124272 dataset to vali-
date the results.

ssGSEA
ssGSEA analysis was performed for the diagnostic genes 
by clusterProfiler v3.16.1, using GSE150408 as the input 
dataset. The correlation coefficient between a single diag-
nosis gene expression and each gene in the GSE150408 
dataset was calculated and ranked. Then, according to 
the correlation coefficient sorting, GSEA was applied 
with the filter conditions: | NES | > 1; adjusted p < 0.05; 
q < 0.25 for Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analyses.

Immune infiltration analysis
The GSE150408 dataset was used as input in the MCP-
counter algorithm (http://github.com/ebecht/MCP-
counter) to calculate the content of eight immune cells 
(CD8+ T cells, T cells, cytotoxic lymphocytes, B lineage, 
natural killer cells, monocytic lineage, myeloid dendritic 

cells, and neutrophils), one fibroblast, and one epithelial 
cell in IDD samples and controls. In addition, single-
sample gene set enrichment analysis (ssGSEA) analysis 
was performed to compute the proportions of 28 types 
of immune cells in IDD samples and controls in the 
GSE150408 dataset.

Construction of miRNA-mRNA-TF and ceRNA regulatory 
networks
The level of mRNA is regulated by both miRNAs and 
TFs. Therefore, both miRNAs and TFs for diagnostic 
genes were predicted. First, the miRWalk website (http://
mirwalk.umm.uni-heidelberg.de/) was used to pre-
dict miRNAs of diagnostic genes, and the miRNAs with 
energy < − 25 were selected. ChEA3 (http://amp.pharm.
mssm.edu/chea3/) was subsequently utilized to predict 
TFs of the diagnostic genes, and the TFs with chip-seq 
were selected. The gene-TF relationship pairs and gene-
miRNA relationship pairs were integrated into a miRNA-
gene-TF network.

Meanwhile, the selected miRNAs of diagnostic genes 
acquired above were used to predict their target long 
non-coding RNAs (lncRNAs) from the Star base website 
(http://starbase.sysu.edu.cn/) with the selection criteria 
of clipExpNum > 5. After combining gene-miRNA and 
miRNA-lncRNA regulation pairs, the ceRNA network 
was established.

Afterwards, target drugs of diagnostic genes were pre-
dicted through the Comparative Toxicogenomics Data-
base (CTD) (http://ctdbase.org/), and a drug-mRNA 
network was constructed. All the networks were visual-
ized by Cytoscape v3.7.2.

Validation by qRT-PCR
The qRT-PCR analysis was performed peripheral blood 
mononuclear cells (PBMCs) isolated from 24 whole 
blood samples (12 IDD samples vs. 12 Controls) to fur-
ther investigate the gene expression pattern of signa-
ture genes. TRIzol reagent was first used to extract total 
RNA following the manufacturer’s procedure (Thermo 
Fisher Scientific, Waltham, MA, USA). After detection of 
concentration and purity, 1  µg total RNAs were reverse 
transcribed to synthesize cDNAs using the SureScript-
First-strand-cDNA-synthesis-kit (Servicebio, Wuhan, 
China). A 20 µL reaction system, including 3 µL diluted 
cDNAs, 5 µL of 2×Universal Blue SYBR Green qPCR 
Master Mix, and 1 µL each of forward and reverse primer 
were combined for qRT-PCR reaction with a BIO-RAD 
CFX96 Touch TM PCR detection system (Bio-Rad, Her-
cules, CA, USA). The primer sequences of signature 
genes are shown in Table 1. The amplification conditions 
included the following parts: 95 °C for 60 s, 40 cycles at 
95 °C for 20 s, 55 °C for 20 s, and 72 °C for 30 s. For sub-
sequent melting curve analysis, a single peak represented 

http://github.com/ebecht/MCPcounter
http://github.com/ebecht/MCPcounter
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
http://amp.pharm.mssm.edu/chea3/
http://amp.pharm.mssm.edu/chea3/
http://starbase.sysu.edu.cn/
http://ctdbase.org/
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the reliability of the primer, and gene expression was 
computed with the 2−ΔΔCt method.

Results
A total of 336 common DEGs were identified
According to the differential analysis between IDD and 
healthy samples, 4,489 DEGs1 and 1,832 DEGs2 were 
screened out from the GSE124272 and GSE150408 data-
sets, respectively (Additional files 3–5). After compar-
ing these datasets, 336 common DEGs emerged, which 
included 230 up-regulated and 106 down-regulated genes 
(Fig.  1A). The functional enrichment analyses indicated 
that these 336 common DEGS were associated with 9 

KEGG pathways and 9 GO terms (Fig.  1B C). Involve-
ment in the KEGG pathways included, among others, 
neutrophil extracellular trap formation, acute myeloid 
leukemia, and transcriptional misregulation in cancer; 
while for the GO terms it included, amongst others, posi-
tive regulation of phagocytosis, complement receptor-
mediated signaling pathway, regulation of phagocytosis, 
secretory granule membrane, and immune receptor 
activity.

CEP120 and SPDL1 were selected as diagnostic genes for 
IDD
A total of 29 DE-FIGs were obtained from the overlap 
analysis between 336 common DEGs and 2,539 FIGs 
(Additional file 6, Fig. 2A). Moreover, the results of eight 
machine learning algorithms showed that the optimal 
fold number was 3 and RF was the most suitable model. 
As a result, an n-fold of 3 for the RF model was selected 
to construct a diagnostic model (Table  2; Fig.  2B). Sub-
sequently, the RF model generated importance values 
for each variable, denoted as %IncMSE. Based on these 
value, the 29 DE-FIGs were ranked from highest to low-
est. Using this ranking, the predicted AUC values of the 

Table 1 Primers for qRT-PCR used in the current study
Primer Sequence
CEP120 F AGTTGGCTACTGATCCTGTGG
CEP120 R GGAGTTTGATAGGAGTACGCTGT
SPDL1 F TGATGACCATGACTGAGCAGA
SPDL1 R ATAACTCTTACTGCTTCTGTGCC
internal reference-GAPDH F CCCATCACCATCTTCCAGG
internal reference-GAPDH R CATCACGCCACAGTTTCCC
F: forward; R: reverse

Table 2 The n-fold of random forest model
n-fold LR RF XBG SVM ANN DT ADABOOST MNB Average
1 0.75 0.50 0.75 0.50 1.00 0.75 0.75 0.75 0.72
2 0.75 1.00 0.75 1.00 0.75 0.75 0.75 1.00 0.84
3 0.67 1.00 1.00 1.00 1.00 0.83 1.00 1.00 0.94
4 1.00 1.00 1.00 0.75 0.75 0.50 1.00 0.75 0.84
5 1.00 1.00 1.00 1.00 0.50 0.50 0.75 0.50 0.78
6 0.50 1.00 0.50 1.00 0.50 0.50 0.50 0.50 0.63
7 0.50 1.00 0.50 1.00 0.50 0.50 0.50 0.50 0.63
Average 0.74 0.93 0.79 0.89 0.71 0.62 0.75 0.71 0.77

Fig. 1 Identification and evaluation of common DEGs between the GSE124272 and GSE150408 datasets. (A) Venn diagram of common DEGs. (B) The 
enriched GO terms for 336 common DEGs. The horizontal coordinates represent the gene ratio, and the vertical coordinates represent the GO term. 
Bubble plots are arranged from smallest to largest p-value. (C) KEGG bubble chart for 336 common DEGs. The horizontal coordinates represent the gene 
ratio, and the vertical coordinates represent the terms enriched by KEGG. Bubble plots are sorted by p-value from smallest to largest. DEGs, differentially 
expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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RF model under different variables were displayed in 
a line chart (Fig.  2C). Notably, it can be observed that 
when the number of variables reached 2, the AUC value 
reached 1 and remained at 1 as the number of variables 
increased. Therefore, these two genes, namely CEP120 
and SPDL1, were considered diagnostic genes.

Further, a nomogram comprising CEP120 and SPDL1 
was constructed (Fig.  2D) with a C-index of 0.7681661 
and a corrected C-index of 0.7326992, indicating that 
the prediction of the nomogram was accurate (Fig.  2E). 
Moreover, within the high-risk threshold range from 0 to 
1, the nomogram for CEP120 and SPDL1 could provide 
benefit, with the net benefit higher than the curve of each 
single-gene. This indicated that the overall effectiveness 
of the nomogram exceeded that of a single gene, affirm-
ing the selection of these diagnostic genes as reasonable 
and effective (Fig. 2F).

The diagnostic effectiveness of the diagnostic genes
The PCA results for both the GSE150408 and GSE124272 
datasets showed that these two diagnostic genes, when 
considered together, could effectively distinguish IDD 
samples from healthy controls (Fig. 3A B).

Furthermore, the ROC curve for each diagnostic gene 
in both datasets showed AUC values greater than 0.75, 
which illustrated the diagnostic efficacy of each gene 
(Fig.  3C D). Simultaneously, the ROC curves for the 
combination of CEP120 and SPDL1 also had AUC values 

greater than 0.75 in both datasets, which also suggests 
the overall diagnostic effectiveness of the diagnostic 
genes was similar to their individual effects, confirming 
their substantial diagnostic power (Fig. 3E F).

ssGSEA
The top 10 enriched GO terms and KEGG pathways of 
CEP120 and SPDL1 are displayed in Fig. 4A D. Both diag-
nostic genes were found to participate in significant bio-
logical processes, including cellular nitrogen compound 
catabolic processes, corporation organization, cytoplas-
mic translation, DNA conformation change, and DNA-
dependent DNA replication. Additionally, common 
KEGG pathways of both diagnostic genes included cell 
cycle, neuroactive ligand-receptor interaction, olfactory 
transduction, peroxisome, ribosome, spliceosome, and 
ubiquitin-mediated proteolysis.

Immune infiltration between IDD and control samples
The MCP-counter algorithm results of the GSE150408 
dataset for both IDD and control samples showed that 
CD8 T cells were most abundant, while fibroblasts and 
epithelial cells were the least prevalent (Fig. 5A). Among 
the eight cell types analyzed, the proportion of natural 
killer cell was significantly lower in IDD samples, while 
neutrophils represented a larger percentage in IDD sam-
ples (Fig. 5B).

Fig. 2 Identification and evaluation of diagnostic genes for IDD. (A) Venn diagram of differentially expressed fibrosis genes. (B) ROC curves for the eight 
models at n-fold = 3. (C) Predicted area under the curve values of RF models with different numbers of variables. (D) Nomogram to predict the survival 
rate of patients with IDD. (E) Calibration curve of the nomogram. (F) RF modeling for decision. IDD, intervertebral disc degeneration; RF, random forest; 
ROC, receiver operating characteristic
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In addition, it can be seen from the ssGSEA results 
that the proportions of myeloid-derived suppressor 
cells (MDSCs) and neutrophils varied between IDD and 
healthy samples, with both cell types being more abun-
dant in IDD samples (Fig. 5C-D).

The miRNA-mRNA-TF and ceRNA regulatory networks and 
drug prediction
The miRNA prediction result from the miRwalk web-
site indicated that CEP120 and SPDL1 are predicted to 
target 17 miRNAs. Further, 120 TFs were predicted to 
interact with these two diagnostic genes. Consequently, 
a complex miRNA-mRNA-TF regulatory network was 
constructed, consisting of 139 nodes (comprising the 
two diagnostic genes, 17 miRNAs, and 120 TFs) and 
156 edges (Fig. 6A). For instance, miRNAs such as hsa-
miR-5195-3p, hsa-miR-6801-5p, hsa-miR-671-5p, hsa-
miR-4707-5p, hsa-miR-3651, along with TFs including 
FOXM1, PPARG, ATF3, ZNF217, and ZBTB33, were 
identified as potential regulators of SPDL1. On the other 
hands, the transcription of CEP120 was regulated by 
hsa-miR-150-3p, hsa-miR-4709-3p, hsa-miR-455-3p, 
hsa-miR-6836-5p, hsa-miR-6742-5p, hsa-miR-4776-3p, 
hsa-miR-1538, hsa-miR-7112-5p, hsa-miR-12,115, hsa-
miR-663a, hsa-miR-4469, hsa-miR-6803-5p, along with 

TFs including GATA2, ELF1, PPARD, GATA1, ELK4, 
SP4, and TET1.

Besides, based on the 17 target miRNAs of the two 
diagnostic genes, 31 lncRNAs were predicted to inter-
act. However, these lncRNAs were only predicted by 
four miRNAs (hsa-miR-455-3p, hsa-miR-663a, hsa-
miR-671-5p, and hsa-miR-5195-3p). Therefore, a ceRNA 
network was constructed consisting of 37 nodes (31 
lncRNAs, 4 miRNAs, and the 2 diagnostic genes) and 42 
edges. For example, AC144548.1 was identified as a reg-
ulator of SPDL1 and CEP120 through hsa-miR-5195-3p 
and hsa-miR-455-3p, respectively (Fig. 6B).

Finally, a total of 56 drugs were predicted to be 
associated with the two diagnostic genes. D014028, 
D000077210, D000077185, D004317, D001564, and 
D014212 were identified as common drugs for both diag-
nostic genes (Fig.  6C). These findings provide insights 
into potential therapeutic interventions and the regula-
tory mechanisms of these diagnostic genes in the context 
of the disease.

Validation of two diagnostic genes
To confirm the reliability of the two diagnostic genes 
obtained, the expressions of CEP120 and SPDL1 were 
verified by qRT-PCR. It can be seen from the results that 

Fig. 3 The diagnostic accuracy of the diagnostic genes. (A) PCA results of GSE150408. (B) PCA results of GSE124272. (C) ROC curves for diagnostic genes 
of GSE150408. (D) ROC curves for diagnostic genes of GSE124272. (E) Logistic regression ROC curve of GSE150408. (F) Logistic regression ROC curve of 
GSE124272. PCA, principal component analysis; ROC, receiver operating characteristic
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Fig. 5 Immune-related analysis of diagnostic genes. (A) Heat map of different cell contents derived by MCP-counter analysis. The first row indicates the 
sample grouping, with blue for healthy samples and red for disease samples. Each row indicates the quantity of each cell in different samples, while each 
column indicates the total cell counts in each sample. The tree on the left side represents the results of cluster analysis, grouping different cell types from 
various samples. (B) Box plot of cell content between groups as derived by MCP-counter analysis. (C) Heat map of the different cell contents derived from 
ssGSEA analysis. The first row indicates the sample grouping, with blue for healthy samples and red for disease samples. Each row indicates the quantity of 
each of the 28 cell types in different samples, while each column indicates the cell counts in each sample. The tree on the left side represents the results 
of the cluster analysis of different cell types from different samples. (D) Box plot of cell content between groups as derived by ssGSEA analysis

 

Fig. 4 Single-sample GSEA analysis. (A) The top 10 results for GO enrichment of CEP120. The vertical coordinates represent the ES: positive ES indicates 
that the functional gene set is enriched in the front of the sequence; negative ES indicates that the functional gene set is enriched at the back of the 
sequence. The horizontal coordinates represent genes, and each small vertical line represents a gene. Overall, all genes in the top 10 are up-regulated. (B) 
The top 10 results for GO enrichment of SPDL1. Overall, 9 genes are up-regulated, and 1 gene is down-regulated. (C) The top 10 results for KEGG enrich-
ment of CEP120. Overall, 8 genes are up-regulated and 2 are down-regulated. (D) The top 10 results for KEGG enrichment of SPDL1. Overall, 8 genes are 
up-regulated and 2 are down-regulated. ES, enrichment score; GO, Gene Ontology; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of 
Genes and Genomes
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CEP120 expressions were lower in IDD samples com-
pared to controls (p < 0.0058); similarly, SPDL1 expres-
sion was down-regulated in IDD samples (p < 0.0073) 
(Additional file 7, Fig. 7). These findings provide experi-
mental validation of the gene expression differences 
observed between healthy and IDD samples, supporting 
the diagnostic significance of CEP120 and SPDL1.

Discussion
The intervertebral disc, a complex cartilaginous tissue, 
connects adjacent vertebral bodies and maintains the 
mechanical load that allows the spine to move. In healthy 
intervertebral discs, homeostasis between assimilation 
and catabolic processes maintains the state of the ECM. 
Unfortunately, aging and constant mechanical stress 
can disrupt the metabolic environment of disc cells. 
This leads to the dysregulation of various factors in the 
surrounding environment, potentially resulting in the 
breakdown of macromolecules and the subsequent devel-
opment of IDD [30].

Current treatments for IDD are either surgical inter-
ventions or the relief and management of individual 
symptoms. Nevertheless, various innovative approaches 
have been developed, including therapeutic protein or 
stem cell injections, gene therapy, molecular therapy, 
and tissue engineering. These approaches have shown 
promising results in animal models and hold promise for 
clinical applications [31, 32]. To expedite their clinical 
application, it is necessary to conduct in-depth research 
into the underlying mechanisms of IDD, examining key 
biomarkers, signaling pathways, and immune infiltra-
tion. In the study, through various bioinformatics analy-
ses, we preliminarily identified two diagnostic genes and 
the associated regulatory networks, along with potential 
drugs that could be relevant to the progression of IDD.

The integration of bioinformatics has significantly 
enriched our study. We performed differential analysis on 
two datasets, GSE150408 and GSE124272, sourced from 
the GEO database, to obtain 336 DEGs, 230 up-regulated 
and 106 down-regulated. In particular, we focused on 
two promising diagnostic candidate genes, CEP120 and 

Fig. 7 Comparison of differences in expression of diagnostic genes between healthy (n = 12) and IDD (n = 12) samples by qRT-PCR (p < 0.01)

 

Fig. 6 Construction of diagnostic genes-related regulatory networks. (A) The miRNA-mRNA-TF network diagram. The red circles indicate mRNAs; the 
pink triangles indicate TFs; the green diamonds indicate miRNAs. (B) The mRNA-miRNA-lncRNA network diagram. The red circles indicate mRNAs; the 
blue arrow shapes indicate lncRNAs; the green diamond indicates miRNAs. (C) Drug-diagnostic gene network diagram. The red circles indicate mRNAs; 
the blue hexagons indicate drugs
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SPDL1, which were selected through the RF model with 
a fold of 3. These genes were evaluated in the GSE150408 
dataset and validated in the GSE124272 dataset.

CEP120 is a sub-centromere enrichment protein 
involved in centromere elongation, including centro-
mere replication, assembly, elongation, and maturation 
[33–38]. During the cell cycle, CEP120 levels gradu-
ally increase from the early S phase to the M phase and 
decrease significantly at the end of mitosis. Its over-
expression not only leads to centriole overgrowth but 
also generates atypical redundant centrioles [36]. On 
the other hand, the lack of CEP120 results in delayed 
or stalled cell cycles in vivo. It is worth noting that disc 
fibrosis has been associated with telomere shortening 
and DNA damage response (DDR) [39–41]. In patients 
with IDD, the ends of DNA strands are incompletely 
replicated during continuous cellular replication, caus-
ing gradual shortening, decreased telomerase activity, 
and activation of aging-related pathways [42]. In this 
context, intracellular DDR is activated in response to 
changes in telomere length, suggesting a potential corre-
lation between the DDR process and down-regulation of 
CEP120 [43]. In addition, the activation of cellular senes-
cence in NP cells can arrest the cell cycle and elevate 
reactive oxygen species (ROS) concentrations. DDR trig-
gered by oxidative activation further induces senescence, 
degeneration, and fibrosis of intervertebral disc cells [44]. 
Additionally, various inflammatory factors such as TNF-
α, IL-1α, IL-1β, IL-6, IL-17, and various chemokines can 
enhance the catabolism of disc ECM and promote the 
inflammatory response, exacerbating the disease [45–48].

SPDL1 is a functional glycosylated protein that has an 
inhibitory effect on activated T cells [49, 50].It is gener-
ated through selective splicing and translation of PD-L1 
precursor mRNA [51–53]. SPDL1 is also an active cir-
culating protein that induces apoptosis of CD8+ T cells 
and impairs the ability of these effector cells to kill tumor 
cells [54, 55]. Patients with high levels of SPDL1 tend to 
benefit more from anti-PD-L1 treatment. However, it is 
noteworthy that SPDL1 expression does not always cor-
relate with immunosensitivity, especially in lung cancer 
[56, 57]. Whether PD-L1 positively or negatively regu-
lates SPDL1 remains controversial. Besides, the SPDL1 
level is elevated in many inflammatory diseases and is 
thus considered to be an inflammatory marker reflecting 
the widespread expression of mPD-L1 in an inflamma-
tory environment. Based on the findings of our current 
research, we believe that CEP120 can slow down mitosis 
and bring tissue development to a near-standstill, result-
ing in qualitative changes such as cell apoptosis. Mean-
while, the high SPDL1 expression could alter the immune 
microenvironment, inhibiting immune responses and 
making the disc tissue less resistant to external stimuli or 
tolerant thereof. This cascade of events eventually leads 

to fibrosis, which may serve to stabilize the disc. How-
ever, the association between IDD and CEP120 as well 
as SPDL1 is relatively unexplored in existing literature. 
Therefore, our findings may indeed provide a new avenue 
for the diagnosis and treatment of IDD.

For the immune microenvironment of patients with 
IDD, the MCP-counter algorithm was used to quan-
tify immune cells, fibroblasts, and epithelial cells in the 
GSE150408 dataset. This analysis revealed that the con-
tent of natural killer cells and neutrophils differed sig-
nificantly between groups. The observed increase in 
neutrophils aligns with previous literature, where stimu-
lation of IL-1β led to activated disc cells and the secretion 
of neutrophil-initiated cytokines, which are associated 
with inflammatory response in IDD [58]. This is con-
sistent with the involvement of neutrophils in the cel-
lular NLRP3/caspase-1 pathway and IL-1β secretion, 
as reported in earlier studies [59]. Simultaneously, NP 
cell damage caused by disc degeneration leads to a mas-
sive proliferation of natural killer cells, which induces 
hypersensitivity reactions [60, 61]. Furthermore, the 
ssGSEA results show higher infiltration of MDSCs and 
neutrophils in the IDD samples. Persistent inflamma-
tion during tissue aging is associated with a compensa-
tory anti-inflammatory response that prevents excessive 
tissue damage. This response includes the activation of 
an associated immunosuppressive network that involves 
an increase in the number of MDSCs, regulatory T cells, 
and macrophages [62]. MDSCs, in particular, have been 
implicated in the development of cellular fibrosis by pro-
ducing immunomodulatory mediators that stimulate the 
disposition of fibroblasts and stromal proteins a process 
aimed at limiting harmful inflammation [63].

The ssGSEA enrichment results for the two diagnostic 
genes repeatedly highlighted specific biological processes 
and signaling pathways. These include DNA conforma-
tion change, DNA-dependent DNA replication, as well 
as the KEGG singling pathways like the spliceosome, 
ubiquitin-mediated proteolysis, and cell cycle. These 
repeated enrichments indicate a strong relationship 
between these diagnostic genes and IDD progression, 
particularly in processes related to cell cycle, DNA dam-
age, repair, replication, and degradation. Furthermore, 
upon literature review, we found that several molecular 
biomarkers are widely used to detect cellular senescence 
and degeneration. These include oncogene p53, cell cycle 
kinase-dependent (CDK) inhibitors p16 and p21, cell 
cycle regulators (retinoblastoma protein Rb), p38, and 
telomere length [64]. There is evidence that the central 
signaling pathways mediating disc cell fibrosis are the 
p53-p21-retinoblastoma protein (Rb) pathway and the 
p16-Rb pathway, but the exact role of each signaling mol-
ecule has not been fully elucidated [65].
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In the p53-p21-Rb pathway, p53 plays an irreplaceable 
role in inducing cell senescence by responding to telom-
erase shortening and DDR (i.e., it initiates the irreversible 
process that brings the cell cycle to a standstill) [64]. At 
the site of DNA damage, following the direct phosphory-
lation of p53, p21 (a crucial downstream regulator of p53 
signaling) inhibits CDK2 activity. This, in turn, prevents 
Rb phosphorylation, thus blocking the activation of E2F 
factors and delaying the cell cycle transition from the G1 
to S phase ultimately leading to cell cycle arrest [66, 67]. 
This mechanism may be one of the potential reasons why 
CEP120 expression is not elevated in this context. Nota-
bly, in NP and AF specimens of IDD, the expression of 
p53, p21, and Rb genes were significantly up-regulated, 
while telomere shortening and decreased telomerase 
activity could be detected [68, 69], confirming the oxida-
tive activation of this pathway in NP cells.

In the p16-Rb signaling pathways, oxidative activation 
of p16 can inhibit the expression of CDK4 and CDK6, 
thereby inhibiting the phosphorylation of Rb and delay-
ing or halting cell cycle progression [69, 70]. The num-
ber of p16-positive cells in intervertebral disc tissue was 
positively correlated with Pfirrmann grading as well [68]. 
This correlation is attributed to that the p16-Rb pathway 
mediates mitochondrial damage with high glucose con-
centration, exacerbating the production of ROS in the 
intervertebral disc [71].

Given that the level of mRNA is regulated by both miR-
NAs and TFs, we predicted 17 target miRNAs and 120 
TFs relevant to the two diagnostic genes. This prediction 
allowed us to construct a miRNA-mRNA-TF regulatory 
network. According to the existing studies, we found that 
p53 can regulate the expression of hsa-miR-663a, which 
in turn has a positive effect on cell proliferation, colony 
formation, and targeted invasion during the cell cycle, 
with E2F2 as the key TF target [72]. By acting on CCND1 
and CDC34, miR-671-5p not only inhibits cell prolifera-
tion, cell cycle progression, as well as cloning in vitro and 
in vivo, but also promotes cell apoptosis [73]. Overex-
pression of hsa-miR-5195-3p, a potential regulator of the 
TGFβ signaling pathway, can significantly down-regulate 
c-MYC and cyclin D1, concomitantly affecting p21 levels 
by increasing its expression [74]. Besides, the deletion of 
p16 suppresses the down-regulation of TF E2F1/2 lev-
els and regulates oxidative stress, thereby slowing down 
disc degeneration [75]. According to the results of the 
miRNA-mRNA-TF regulatory network, CEP120 was 
considered to be involved in this process as well.

It was also found that NRF1 induces autophagy and 
inhibits apoptotic responses by promoting Atg7 expres-
sion in compressed NP cells, delaying disc degeneration 
[76]. Phosphorylation of STAT3 accelerates NP apoptosis 
and IDD by degrading ECM [77]. Our forecast results for 
TF also confirm this view.

The prediction of potential drugs for CEP120 and 
SPDL1, as target genes, revealed 56 potential drugs or 
molecular compounds. After review, we found that 
D014028 (tobacco smoke pollution) and D001564 
(benzo(a)pyrene), both components of cigarette smoking, 
accelerated the degradation of collagen and proteogly-
can in rat intervertebral discs thereby causing apoptosis 
of NP cells and eventually IDD. The therapeutic effect of 
D000077185 (resveratrol) on IDD is related to its anti-
oxidant and anti-inflammatory activity, while resveratrol 
also affects NP cell apoptosis, autophagy, and ECM bio-
synthesis through various signaling pathways [78–80]. 
However, the specific mechanism of action of the two 
genes in IDD requires further experimental studies. 
These findings suggest that once the specific mechanisms 
of CEP120 and SPDL1 in IDD are elucidated, these drugs 
and molecular compounds could offer new therapeutic 
avenues for the treatment of IDD.

In summary, this study has elucidated the diagnostic 
genes-related biological processes and pathways associ-
ated with the development of IDD through comprehen-
sive bioinformatics analysis. These findings contribute to 
our understanding of the etiology of IDD and shed light 
on potential diagnostic genes (i.e., CEP120 and SPDL1) 
and therapeutic agents. Notably, the study predicted vari-
ous therapeutic agents, including tobacco smoke pollu-
tion, benzo(a)pyrene, and resveratrol, which may play 
roles in the development and progression of IDD. How-
ever, research on these drugs is currently in the animal 
stage, and further clinical studies are needed to investi-
gate their effects in patients with IDD.

Our study is not without limitations. First, all results 
were derived by bioinformatics algorithms without 
raw data from clinical samples to assess the quality of 
sequencing samples, such as Pfirrmann grading. Second, 
fibrosis-related genes in IDD still need to be explored in 
depth by various in vivo or in vitro experiments. We sub-
sequently need more studies to validate and reveal fur-
ther mechanisms, which could lead to the discovery of 
new potential therapeutic targets for IDD.

Conclusion
In summary, CEP120 and SPDL1 were identified as key 
fibrosis-related diagnostic genes for patients with IDD. 
Additionally, a potential regulatory network and thera-
peutic agents targeting these two key genes were prelimi-
narily predicted. These findings provide a reference for 
further study of IDD in fibrosis-related genes.
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