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Abstract 

Tumor Metabolism is strongly correlated with prognosis. Nevertheless, the prognostic and therapeutic value 
of metabolic-associated genes in BCa patients has not been fully elucidated. First, in this study, metabolism-related 
differential expressed genes DEGs with prognostic value in BCa were determined. Through the consensus clustering 
algorithm, we identified two molecular clusters with significantly different clinicopathological features and survival 
prognosis. Next, a novel metabolism-related prognostic model was established. Its reliable predictive performance 
in BCa was verified by multiple external datasets. Multivariate Cox analysis exhibited that risk score were inde-
pendent prognostic factors. Interestingly, GSEA enrichment analysis of GO, KEGG, and Hallmark gene sets showed 
that the biological processes and pathways associated with ECM and collagen binding in the high-risk group were 
significantly enriched. Notely, the model was also significantly correlated with drug sensitivity, immune cell infiltration, 
and immunotherapy efficacy prediction by the wilcox rank test and chi-square test. Based on the 7 immune infiltra-
tion algorithm, we found that Neutrophils, Myeloid dendritic cells, M2 macrophages, Cancer-associated fibroblasts, 
etc., were more concentrated in the high-risk group. Additionally, in the IMvigor210, GSE111636, GSE176307, or our 
Truce01 (registration number NCT04730219) cohorts, the expression levels of multiple model genes were significantly 
correlated with objective responses to anti-PD-1/anti-PD-L1 immunotherapy. Finally, the expression of interested 
model genes were verified in 10 pairs of BCa tissues and para-carcinoma tissues by the HPA and real-time fluorescent 
quantitative PCR. Altogether, the signature established and validated by us has high predictive power for the progno-
sis, immunotherapy responsiveness, and chemotherapy sensitivity of BCa.

Keywords  Bladder cancer, Metabolism, Prognostic model, Tumor microenvironment, Immune therapy

†Chong Shen, Yuxin Bi, and Wang Chai contributed equally to this work.

*Correspondence:
Zhenqian Fan
fanzhenqian2003@163.com
Hailong Hu
huhailong@tmu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-023-01678-6&domain=pdf


Page 2 of 25Shen et al. BMC Medical Genomics          (2023) 16:264 

Introduction
The prevalence and mortality rates of bladder cancer 
(BCa) are high. It is estimated that currently > 1.6 mil-
lion individuals have BCa worldwide, with approxi-
mately 550,000 new cases annually [1]. It is anticipated 
that the incidence of BCa will be extremely rapid with 
increasing life expectancy and the increase of risk  fac-
tors such as smoking in the developing countries. 
Despite research in recent years has made remarkable 
progress in our understanding of cancer, the burden of 
it is increasing.

Tumor cells reprogram the  metabolic  pathway to 
meet the bioenergetic, biosynthetic, and redox demands 
of malignant cells [2]. The Warburg effect shows that 
a unique metabolic phenotype was identified for  can-
cer cells, featuring that compared to normal tissues, they 
are characterized by a high rate of glycolytic metabolism. 
Recent evidence suggests that metabolic deregulation 
may not only be a characteristic feature of human cancers 
but also a potential underlying factor [3]. The model of 
metabolic genes have been reported in pancreatic can-
cer [4], prostate cancer [5], hepatocellular carcinoma [6], 
colon cancer [7], and other cancer. However, the effects 
of metabolic changes on BCa progression are unknown. 
Recently, the new  biomarkers  used  in drug screen of 
immunotherapy were introduced into clinical prac-
tice, which has shown favorable prospects in treating to 
some degree. However, the reaction to  immunotherapy 
remains poorly elucidated.

In the current study, we first analyzed metabolism-
associated prognostic DEG genes in bladder cancer, then 
constructed and validated a new signature across multi-
ple datasets, and finally explored the prognostic value of 
the model and its relationship with the clinicopathologi-
cal features, immune microenvironment, and the thera-
peutic effect of chemotherapy agent and immunotherapy 
of patients with BCa. We also confirmed the mRNA and 
protein expression of interested model-related genes 
from the Human Protein Atlas (HPA) and 10 paired BCa 
tissues collected by us. The most valuable aspect of the 
research is that our developed model provides more 
information for the selection of clinical treatment options 
and prognostic prediction.

Materials and methods
Clinical specimens
From September 2021 to October 2022, a total of 10 
cases of BCa and its matched adjacent non-tumor tis-
sues were collected in the Second Affiliated Hospital of 
Tianjin Medical University (China). The final diagnosis 

of each patient was confirmed by histopathology. In 
this study, the written informed consent of each patient 
or their guardian was obtained following the guidelines 
approved by the Medical Ethics Committee of the Sec-
ond Hospital of Tianjin Medical University.

Data collection and processing
The datasets used to construct or validate metabolism-
relevant gene signatures for BCa come from five differ-
ent platforms: Cancer Genome Atlas (TCGA, https://​
portal.​gdc.​cancer.​gov/​repos​itory) and Gene Expression 
Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
According to the TCGA database, 406 BCa samples 
were downloaded, including mRNA expression profile 
data and clinical information. Gene annotation is made 
possible through the Ensemble database. The microar-
ray expression data of GEO datasets such as GSE13507, 
GSE32894, GSE48075, GSE31684, GSE111636, and 
GSE176307 were quantified and positiveized. IMvigor210 
dataset, a cohort of 348 MIBC patients treated with ate-
zolizumab (PDL1 inhibitor), is also used to verify metab-
olism-related gene signatures.

Notably, in our single-arm phase 2 trial (term_id, 
TRUCE-01; registration number, NCT04730219), tisleli-
zumab (200 mg) combined with low-dose nab-paclitaxel 
(200 mg) also preliminary confirmed clinical benefits and 
safety in the therapy of muscle-invasive urothelial blad-
der carcinoma patients. Therein, tislelizumab is a novel 
humanized monoclonal antibody programmed death 
receptor-1 (PD-1) inhibitor and shows a predictable and 
manageable safety/tolerability profile in patients with 
PD-L1+ UC.

Extraction of metabolism‑related prognostic genes, 
identification of BCa subclasses, and its association 
with infiltration of immune cells
We used cancer versus normal differential analysis to 
find metabolism-associated genes differentially expressed 
(DEGs) in tumor tissue and tumor surrounding tissues, 
and set |log(fold change, FC)|> 1, false-discovery rate 
(FDR) < 0.05 as the threshold to construct the heat map. 
Then, we performed a univariate Cox regression analysis 
on these DEGs.

NMF was used to identify subtypes of molecules and 
obtained the molecular subtypes C1, and C2 for BCa, 
and the log-rank test was applied. Kaplan–Meier survival 
analysis was used to compare the overall survival curves 
(OS), progression-free survival (PFS), disease-free sur-
vival (DFS), and disease-specific survival (DSS) between 
C1 and C2.

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://www.ncbi.nlm.nih.gov/geo/
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To analyze the immune status of each sample, Cell-type 
Identification By Estimating Relative Subsets Of RNA 
Transcripts (CIBERSORT) was used to calculate the 
relative proportions of 22 immune cells in BCa patients, 
which include seven T cell types, naïve and memory B 
cells, plasma cells, NK cells, and myeloid subsets. CIB-
ERSORT was applied to convert mRNA data into the 
proportions of infiltrating non-tumor cells in the tumor 
microenvironment using standard annotation files to 
organize gene expression characteristics. Afterward, 
correlation analysis was conducted between the above 
molecular typing and immune cell infiltration estimated 
by CIBERSORT.

Establishment and validation of the metabolism‑related 
prognostic prediction model
Then, the TCGA BCa cohort was randomly divided into a 
training set (n = 285) and a testing set (n = 121) at a ratio 
of 7:3. Chi-squared tests were employed to compare base-
line characteristics between the training set and external 
validation set. Ten prognostic DEGs were screened out 
using univariate Cox regression and the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression 
analysis. Genes with P < 0.05 have prognostic signifi-
cance. Then we constructed a risk prediction model with 
the following formula: risk score = 0.267*PLOD1 + 0​.16​
7*S​ERP​INB7 +​ ​0.1​60*​TSPAN7 + 0.291*HSD17B1 + 0.132
*PYCR1 + 0​.26​6*P​DGFRA + 0.107*EGR1 + 0.537*AHCY 
+ 0.121*ATP6V1B1 + 0.202*SCD. Next, we divided BCa 
patients into high-risk and low-risk groups according to 
the median risk score. Across TCGA-training set, inter-
nal TCGA-testing and multiple external GEO validation 
(including GSE13507, GSE32894, GSE48075, GSE31684, 
and IMvigor210), Kaplan–Meier (KM) survival and time-
dependent receiver operational feature (ROC) curves 
were plotted through “survival”, and “timeROC” R pack-
ages to estimate the discrimination of the metabolism-
related 10-gene signature. Then, calibration curves were 
also generated to assess the stability of the models. The 
metabolism-related gene model was established by refer-
ring to previous studies [8]. Subsequently, the some fur-
ther analytic strategy on this model, such as the pathway 
enrichment analysis, and immune infiltration-related 
analysis were also similar to a previously published 
researchs [8, 9].

Correlations between the model and clinical features
Kaplan–Meier survival analyses for BCa patients of the 
high- and low-risk groups were carried out in the dif-
ferent clinical subgroups. In addition, univariate and 
multivariate Cox regression analyses confirmed that risk 

score was an independent prognostic predictor of OS. A 
combined nomogram model was further constructed to 
predict the 1-, 3- and 5-year OS rates of BCa patients. 
This nomogram included the risk scores and common 
clinical information such as grade, gender, age, and 
stage.

Predictive combined nomogram model construction
Using the “rms” package of the R software, a calibration 
chart was generated to verify the predictive power of the 
nomogram. Nomogram accuracy was evaluated using 
ROC curve analysis. A decision curve analysis (DCA) 
was then performed to assess the clinical usefulness of 
the predictive model. Furthermore, we compared the 
predictive power of our risk model with the previous two 
human models, including the tumor immune dysfunction 
and exclusion (TIDE) TIDE and the tumor inflammation 
signature (TIS).

GO, KEGG, and Hallmark genesets enrichment 
analyses via GSVA method based on TCGA, GSE13507, 
and GSEA32894
We explored the GO, KEGG, and Hallmark enrichment 
differences between the high- and low-risk groups by 
GSVA algorithm based on the TCGA dataset [10–13]. Of 
them, GO analysis includes molecular function (MF), cel-
lular component (CC), and biological process (BP). Path-
ways with p < 0.05 were considered significantly enriched. 
Additionally, two additional different datasets (i.e., 
GSE13507 and GSEA32894) were interrogated to identify 
enriched functional and pathway terms.

Correlation analyses between the metabolism‑related 
gene model and the tumor microenvironment 
and expression of immune checkpoint genes
We also used ESTIMATE’s algorithm to evaluate 
immune and stromal fractions to reflect the ratio of 
immune cells to stromal cells. Pearson’s correlation 
was used to analyze the correlation between the risk 
score of the signature and above immune or stromal 
scores. We evaluated also the expression differences of 
the multiple immune checkpoint genes, such as PD-1, 
PD-L1, CTLA4, etc., between high- and low-risk groups. 
Immune cell infiltration of tumor samples was identified 
using TIMER 2.0 (cistrome.shinyapps.io/timer/) via the 
MCPCOUNTER, CIBERSORT, QUANTISEQ, TIMER, 
CIBERSORT-ABS, EPIC, and XCELL algorithms. Wilcox 
rank sum test was used to analyze the difference in the 
level of each immune cell between the two risk groups. 
Spearman rank correlation analysis was applied to ana-
lyze the correlation between risk scores and immune 
infiltrating cell scores.
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Association analyses of the model with additional 
immunological characterization
The tumor immune dysfunction and exclusion (TIDE) algo-
rithm [14] based on the simulation of tumor immune eva-
sion mechanism was used to analyze the expression level of 
relatively more important immunological checkpoint genes 
(including PD1, PDL1, VISTA, TIGIT, and CTLA4, etc.), 
which have been identified and developed for the treat-
ment of cancer. Moreover, the TIDE was employed to ana-
lyze multiple signatures to estimate tumor immune evasion, 
such as exclusion, or CAF signatures. The immunotherapy 
response of cancer patients was predicted by the above 
multiple TIDE scores via the Wilcox test. PD1 and CTLA4 
immune therapy agents can be predicted using the immu-
nophenoscore (IPS). In addition, we also analyzed associa-
tions of the model with tumor mutation burden (TMB) and 
immunophenoscore (IPS), which are all superior predictors 
of the response to immune checkpoint blockades (anti-PD1, 
anti-CTLA4, etc.). Hence, we could predict the immuno-
therapy response of each BCa patient using our model.

Screening potential chemotherapy agents based on our 
prediction model
First, we downloaded the drug sensitivity information 
from the CellMiner database to explore the connection 
between modeled gene expression levels and drug sus-
ceptibility. Drugs approved by the FDA or clinical trials 
were selected for analysis. Next, the “pRRophetic” pack-
age was applied to analyze and compare the half-maxi-
mal inhibitory concentration (IC50) between two risk 
score groups to Doxorubicin, Docetaxel, Paclitaxel, and 
Vinblastine.

Correlation analysis of ten modeled genes with clinical 
immunotherapy efficacy across four independent cohorts
We drew a boxplot of model-related gene expression lev-
els in the responder vs. non-responder groups based on 
Imvigor210, GSE111636, GSE176307, and Truce01 data-
sets. Notely, we also conducted a comparison of model-
related gene expression differences after vs. before the 
treatment using a paired Wilcoxon test based on our 
Truce01 sequencing data. The statistical difference was 
set at p ≤ 0.05.

The expression validation of the model genes by Human 
Protein Atlas (HPA) and quantitative real‑time PCR 
(qRT‑PCR)
The protein expression levels of the ten model genes 
were verified through the HPA databases (HPA: https://​

www.​prote​inatl​as.​org/), and the consistency between 
the transcriptome described above and proteome levels 
was observed.

RNA extraction, quantitative reverse-transcription 
PCR, and human protein atlas (HPA) analysis. Total 
RNA was extracted from 10 paired BCa tumors and 
adjacent tissues via E.Z.N.A.TM Hp total RNA Kit 
(OMEGA); and was reversed into cDNA using RevertAid 
First Strand cDNA Synthesis Kit (Thermo Fisher Scien-
tific, Rockford, IL, USA). Quantitative reverse-transcrip-
tion PCR (qRT-PCR) was used to determine the relative 
expression of EGR1, PLOD1, and PYCR1 mRNAs in 10 
BCa tissues compared to matched paracancerous tissues. 
The EGR1 primer sequences were: forward, 5’-GGT​CAG​
TGG​CCT​AGT​GAG​C-3’; reverse, 5’-GTG​CCG​CTG​AGT​
AAA​TGG​GA-3’. PLOD1 primer: forward, 5’-AGA​CCA​
AGT​ATC​CGG​TGG​TGT-3’; reverse, 5’- CTT​GAG​CAC​
GAC​CTC​ATC​CAA-3’. PYCR1 primer: forward, 5’-CTT​
CAC​AGC​AGC​AGG​CGT​C-3’; reverse, 5’-TCT​CCT​TGT​
TGT​GGG​GTG​TC-3’. GAPDH was used as a control 
gene: forward primer, 5’-CGG​AGT​CAA​CGG​ATT​TGG​
TC-3’; reverse primer, 5’-TTC​CCG​TTC​TCA​GCC​TTG​
AC-3’. The final results were analyzed using the 2−ΔΔCT 
method.

Statistical analysis
R software version 4.1.0 was used for all statistical anal-
yses. Using Wilcox’s test, we compared the two groups’ 
variables. Chi-square tests have been used to examine 
the association of risk groups with clinicopathologi-
cal features. The survival data were assessed using the 
Kaplan–Meier curve. The ROC analysis was conducted 
using the R package time. An univariate and multivari-
ate Cox regression analysis was conducted to evaluate 
independent prognostic factors. P ≤ 0.05 was consid-
ered to be statistically significant. Furthermore, p-value 
summaries were as follows: P > 0.05 (ns); P ≤ 0.05 (*); 
P < 0.01 (**); P < 0.001 (***); P < 0.0001 (****).

Result
Differentially expressed metabolism‑related prognostic 
genes in BCa
This study’s general step-by-step process is illustrated 
in Fig.  1. We collected 1314 metabolism-associated 
genes from TCGA, and 406 metabolism-associated 
genes with differential expression were identified using 
the R project “Limma” (| logFC |> 1, FDR < 0.05) 
(Fig.  2A). Subsequently, a total of 68 OS-related 
genes were detected via the univariate Cox regression 
(P < 0.05).

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Molecular typing based on metabolism‑related prognostic 
DEGs
BCa patients were clustered into two distinct subtypes 
using the ‘NMF’ algorithm, which is an effective method 
for reducing dimension in cancer subtype identification 
(Fig. 2C). The optimal number of clusters was determined 
as k = 2 after the NMF rank survey (Fig. 2B; Supplemen-
tary Figure  S1). The results showed that patients with 
the C1 subtype had a more favorable prognosis of OS, 
DSS, and PFS than those with the C2 subtype (Fig. 2D-
G). To explore the differences in immune cell infiltration 
between the two subtypes, we also evaluated 22 kinds of 
immune cells by the CIBERSORT algorithm. There were 
significant differences in infiltration levels between the 
two groups for many types of immune cells. For exam-
ple, cluster 1 presented higher infiltration of naive B 
cells, plasma cells, CD8 + T cells, follicular helper T cells, 

Tregs, and activated dendritic cells, and cluster 2 exhib-
ited greater infiltration of memory B cells, CD4 + mem-
ory resting T cells, M0 Macrophages, M2 Macrophages, 
resting dendritic cells and neutrophils (Fig. 2H, I).

Construction and validation of a prognostic prediction 
model of metabolism‑related genes
We randomly divided the TCGA BCa cohort into train-
ing and internal testing sets at a ratio of 7:3 (n = 286, 
and n = 120, respectively). Based on the chi-square 
test, there were no significant differences between the 
training and testing sets (Table  1). Then, the prognos-
tic model of ten metabolism-related genes (PLOD1, 
SERPINB7, TSPAN7, HSD17B1, PYCR1, PDGFRA, 
EGR1, AHCY, ATP6V1B1, and SCD) was success-
fully constructed using the lasso and multivariate cox 
regression based on TCGA dataset (Fig.  3A, B). It can 

Fig. 1  Flowchart of this study. MetaGs, Metabolism-Associated Genes; MsigDB, The Molecular Signatures Database; OS, Overall survival curves; 
PFS, Progression free survival; DFS, Disease freesurvival; DSS, Disease specific survival; LASSO, Least absolute shrinkage and selection operator; KM, 
Kaplan–Meier method; ROC, Receiver operating characteristic; GSEA, Gene set enrichment analysis; GO, Gene ontology; KEGG, Kyoto encyclopedia 
of genes and genomes; TIDE: The tumor immune dysfunction and exclusion; IPS: Immunophenoscore
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be seen that the C2 subtype had a higher risk score 
than the C1 subtype (Fig.  3C). BCa patients with high 
risk survived significantly shorter times than low-risk 
patients, regardless of whether in a training group, a test 
group, or an entire group (Fig.  3D). The  performance 
of  the KM survival curves was further validated in the 
external validation cohorts (GSE13507, and GSE32894) 
(Fig. 3G, J). Through the use of ROC curves, the model’s 
performance was evaluated. The area under the ROC 
curve (AUCs) of 1-, 3-, and 5-year were 0.752, 0.659, 

and 0.671, respectively, in the TCGA-entire set; 0.775, 
0.687, and 0.705, respectively, in the TCGA-training 
set; 0.717, 0.629, and 0.623, respectively, in the TCGA-
testing set; 0.750,0.670 and 0.648, respectively, in the 
GSE13507 validation set; and 0.723, 0.819, and 0.809, 
respectively, in the GSE32894 validation set (Fig. 3E, H, 
K). Additionally, the calibration curves of the predic-
tion model were close to the standard curves in TCGA-
entire, TCGA-training, TCGA-testing, and two external 
geo-validation cohorts, separately (Fig. 3F, I, L).

Fig. 2  Identification of metabolism-related molecular subtyping, and its correlation with immune cells infiltrating based on TCGA database. 
A A heat map of metabolism-related differentially expressed genes in bladder cancer versus pericarcinoma tissues. B-C The NMF rank survey 
and consensus matrix heatmap were presented. Rank = 2 is the optimal number of clusters. D-G Differences of two subclasses (C1 and C2) were 
determined by log-rank test in OS, DSS, PFS, and DFS. H The relative percentage of 22 immune cells was estimated by the CIBERSORT algorithm 
for each BCa sample. I Comparison of the difference in the number of each immune-cell infiltration between the two clusters by Wilcoxon tests. N, 
normal sample; T, tumor sample
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Correlations of the prognostic model established by 10 
metabolism‑related genes with clinical characteristics
Subgroup analysis results showed that the model had 
good predictive efficacy in different age, stages, gender, 
or stage_T groups (P < 0.05) (Supplementary Figure  S2). 
Our univariate and multivariate Cox regression analysis 
exhibited that the risk score of the model can serve as 
an independent prognostic factor (p < 0.0001; Table  2). 
According to the TCGA cohort, the risk scores for each 
BCa sample were ranked from low to high, with a higher 
risk score indicating a higher risk of death (Fig.  4A, B). 
Expression levels of ten model genes  showed a trend of 
increase with the risk score from low to high (Fig.  4C). 
To investigate the relationship between the gene signa-
ture and clinical features, we compared the risk scores 
between different clinical features using chi-square or 
Wilcoxon nonparametric tests across the TCGA and 
GEO datasets. As illustrated in Fig.  4D, patients older 
than 65  years have a higher risk score than patients 
younger than 65  years of age. Moreover, patients with 
high grades exhibited higher risk scores than patients 
with low grades. BCa patients with M1, N1-3, or T3-4 
displayed a higher risk score than M0, N0, or T1-2, 
respectively. Furthermore, immunotyping of wound 
healing (C1) and interferon-gamma dominant (C2) 

may happen in patients with the high-risk score, while 
the inflammatory (C3), and lymphocyte depleted (C4) 
are more likely to appear in those with low-risk score 
(p < 0.05, Fig. 4D).

The risk scores, survival status, and heatmap of model 
gene expression were also performed using the GSE13507 
and GSE32894 datasets, and the results were almost 
consistent with the above analysis findings of TCGA 
(Fig. 4E-J). The correlation results between risk score and 
clinicopathological parameters in GSE13507 (Fig. 4K) or 
GSE32894 datasets (Fig. 4L) were nearly consistent with 
the above analysis from the TCGA datasets. Additionally, 
we also compared the risk score among Sjodahl et  al.’s 
five molecular classifications and found that the SCC-like 
group had a higher risk score (Fig. 4L).

Based on risk group, age and stage, we established a 
combined nomogram model for predicting the 1-, 3-, 
and 5-year OS incidences of BCa patients (Fig.  5A). 
We also utilized calibration plots to assess and confirm 
the concordance between the nomogram-predicted 
and actual 1-, 3-, and 5-year OS (Fig.  5B). The con-
cordance index (C-index) for the nomogram was 0.698 
(95% CI: 0.658–0.7372). Furthermore, Decision Curve 
Analysis (DCA) of 1-, 3-, and 5-year OS for the model 
further demonstrated our expectations. It was found 

Table 1  Chi-square tests were used to compare frequencies of clinicopathological variables between the train and test groups

T T-stage, N stage of lymph node metastasis, M metastatic stage

Clinical traits Type Total (n = 406) Train (n = 286) Test (n = 120) P value

Age  <  = 65 160(39.41%) 114(39.86%) 46(38.33%) 0.8603

 > 65 246(60.59%) 172(60.14%) 74(61.67%)

Gender Female 107(26.35%) 74(25.87%) 33(27.5%) 0.8291

Male 299(73.65%) 212(74.13%) 87(72.5%)

Grade High Grade 383(94.33%) 269(94.06%) 114(95%) 0.8384

Low Grade 20(4.93%) 15(5.24%) 5(4.17%)

unknown 3(0.74%) 2(0.7%) 1(0.83%)

Stage Stage I-II 131(32.27%) 97(33.92%) 34(28.33%) 0.201

Stage III 140(34.48%) 91(31.82%) 49(40.83%)

Stage IV 133(32.76%) 97(33.92%) 36(30%)

unknown 2(0.49%) 1(0.35%) 1(0.83%)

T T1-2 122(30.05%) 89(31.12%) 33(27.5%) 0.1039

T3 193(47.54%) 127(44.41%) 66(55%)

T4 58(14.29%) 46(16.08%) 12(10%)

unknown 33(8.13%) 24(8.39%) 9(7.5%)

M M0 195(48.03%) 143(50%) 52(43.33%) 0.7226

M1 11(2.71%) 7(2.45%) 4(3.33%)

unknow 200(49.26%) 136(47.55%) 64(53.33%)

N N0 236(58.13%) 164(57.34%) 72(60%) 0.4069

N1-3 128(31.53%) 95(33.22%) 33(27.5%)

unknow 42(10.34%) 27(9.44%) 15(12.5%)
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that compared to a single clinical factor, the model 
and combined nomogram showed the highest clini-
cal net benefit (Fig. 5C). Multivariate time-dependent 
ROC curve according to age, gender, grade, stage, 
nomogram, and risk score, is presented in Fig.  5D. 
Notely, compared to TIDE, Exclusion, and TIS predic-
tion models from previous studies, the signature con-
structed by us presented a better sensitivity (Fig. 5E).

Function enrichment analysis of the model
To explore the underlying molecular mechanism of the 
metabolism-related gene model, we next conducted 
GSEA for GO, KEGG, and HALLMARK gene sets, and 
further identified differences in biological function and 
pathways between the high- and low-risk groups based 
on the TCGA, GSE13507, or GSE32894 cohort (Fig.  6, 
Supplementary Table  S1). For GO analysis results, 

Fig. 3  Construction and validation of a metabolism-associated prognostic model. A, B The tenfold cross-validation for variable selection 
with minimal lambda value in the LASSO regression. C Differences in risk score between subtype C1 and C2. D-F KM survival analysis, 
time-dependent ROC curves, and calibration curves for OS were all performed in the high- and low-risk groups based on TCGA_entire, TCGA_
training, and TCGA_testing datasets. G-L Similarly, ROC, KM, and calibration curves of two additional datasets are shown
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‘immunoglobulin complex circulation’, ‘complement acti-
vation’, ‘immunoglobulin receptor binding’, ‘complement 
activation’, and ‘spliceosomal snRNP assembly’ were 
enriched in the high-risk group (Fig.  6A, D, G). KEGG 
pathways enrichment analysis revealed that ‘ECM recep-
tor interaction’, ‘systemic lupus erythematosus’, ‘focal 
adhesion’, ‘melanoma’, ‘arrhythmogenic right ventricu-
lar cardiomyopathy arvc’, ‘neuroactive ligand-receptor 
interaction’, ‘regulation of actin cytoskeleton’, ‘leukocyte 
transendothelial migration’ and ‘taste transduction’ were 
particularly significant in the high-risk group (Fig.  6B, 
E, H). Among them, the most significantly enriched 
HALLMARK terms (‘epithelial-mesenchymal transition’, 
‘angiogenesis’, ‘apical junction’, ‘myogenesis’, ‘hypoxia’, 
‘inflammatory response’, etc.) is shown in Fig. 6C, F, I.

The external validation of the metabolism‑associated gene 
signature based on additional three cohorts
To evaluate the validity and accuracy of the 10 gene 
prognostic model in clinical practice, in addition to the 
GSE13507 and GSE32894 datasets mentioned above, 
we further conducted a series of analyses for three addi-
tional external validation datasets, including GSE48075, 
GSE31684, and IMvigor210 (Figs.  7 and 8. Based on 
GSE48075 and GSE31684 cohorts, the findings from the 
KM, ROC, and calibration curve analysis were highly 
congruent with the analyses of the model performance 
described above (Fig.  7A-C, F–H). No correlation was 
detected between risk groups and several clinical traits 
(chi-square test, P > 0.05; Fig. 7D, I). It could be seen that 
patients with positive lymph nodes had a higher risk 
score than those with lymph node metastasis negative 
via the Wilcox test, which meant that a higher risk score 
indicated a worse prognosis; whereas risk scores were not 
significantly different between the presence and absence 
of FGFR3, P53, RB1, or Ras mutation, distant metastasis, 
high grade (Fig. 7E, J).

Notably, the IMvigor210 cohort, which is a cohort of 
348 MIBC patients treated with Atezolizumab (PD-L1 

inhibitor), was included to further evaluate the predictive 
power of the model in the BCa immunotherapy cohort. 
For the IMvigor210, the OS of high-risk patients is worse 
than that of low-risk patients according to the Kaplan–
Meier curve (Fig.  8A, P < 0.05). Calibration curves for 
predicting the 10- and 20-month OS showed good per-
formance (Fig.  8B). The predictive performance of OS 
risk scores was determined using a time-dependent ROC 
curve with an AUC of 0.580 at 10  months and 0.602 at 
20  months (Fig.  8C). We also found that the risk score, 
survival status, and heatmap of model-gene expression 
in the validation set were nearly consistent with those in 
the training set (Fig.  8D). The chi-square test and Wil-
cox rank test were used to evaluate the correlation of the 
risk score group with existing clinical variables (Fig. 8E). 
There was a significant correlation between risk score/
groups and treatment response or TCGA_subtype. It is 
worth mentioning that almost all patients with high risk 
were in the PD/SD cohort (83%) (Fig.  8F), and patients 
with PD/SD had higher risk scores than those with CR/
PR (Fig.  8G). The analysis results of all these validation 
datasets also suggested that the 10 gene signature is an 
important prognostic predictor for BCa patients who 
received or did not receive immunotherapy.

The correlation analysis between risk score and immune 
score, stromal score, expression of immune checkpoint 
genes, immune‑cell infiltration, or the immunotherapy 
response of BCa patients
Based on TCGA cohorts, we demonstrated that the 
risk score was positively associated with stromal score 
(p = 1.6e-12), and so is the immune score (p = 0.0072) 
(Fig.  9A). The results are also verified in GSE13507 
and GSE32894 datasets (Fig. 9B, C). To further under-
stand better the relationship between the risk score 
and immune response, we also explored the correla-
tion between risk score and immune checkpoint gene 
expression. The results showed that in the high-risk 
group, CD27, CD80, CD86, TNFRSF9, PD-1, and CD48 

Table 2  Univariate and multivariate Cox regression analysis of  exosome-associated prognostic model (risk score) and clinical 
characteristics in patients with BCa

OS overall survival, HR hazard ratio, CI confidence interval, Conti. Vari. continuity variables, Histo. gr. histologic grade

Variables Univariate analysis (OS) Multivariate analysis (OS)

HR (95% CI) p-value HR (95% CI) p-value

Age (Conti. vari.) 1.034 (1.018–1.051) 2.11E-05 1.029 (1.013–1.045) 0.0003

Gender (Male/Female) 0.894 (0.644–1.241) 0.504

Histo. gr. (High/Low) 2.881 (0.713–11.647) 0.138

Stage (III-IV/II/I) 1.743 (1.436–2.115) 1.95E-08 1.578 (1.296–1.923) 5.84E-06

Risk score (Conti. Vari.) 1.338 (1.260–1.422) 2.58E-21 1.298(1.216–1.385) 4.59E-15
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checkpoint genes were all highly expressed in TCGA, 
GSE13507, and GSE32894 datasets (Fig. 9D, E, F).

The degree of immune cell infiltration in the 
tumor microenvironment affects tumor occurrence, 

progression, and therapeutic effect, especially immuno-
therapy. Based on the 7 immune infiltration algorithms 
(TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, 
MCPCOUNTER, XCELL, and EPIC), we investigated the 

Fig. 4  A-C Based on the TCGA_BCa cohort, it was displayed from top to bottom including risk score curves, survival status, and model gene 
expression heatmap with the correlation between risk group and clinical features. The horizontal axis of these graphs is sorted by risk score value. 
D The scatter diagram demonstrated that risk scores were statistically significant in different groups by age, tumor grade, M_stage, T_stages, or N_
stages. E-L The analyses mentioned above were also implemented in the validation sets GSE13507 and GSE32894
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correlation between risk scores and immune cell infiltra-
tion. Heat map of 45 significantly different immune cells 
in high-risk vs. low-risk groups, including CD8 + T cell, 
Neutrophil, Myeloid dendritic cell, M2 Macrophage, 

Tregs, Endothelial cell, Cancer-associated fibroblast, etc., 
was plotted in Fig. 10A (Wilcoxon test, P < 0.01). Accord-
ing to the Tumor Immune Dysfunction and Exclusion 
(TIDE) [10] tool, the results exhibited that the Exclusion 

Fig. 5  The nomogram construction and validation are based on the TCGA database. A The nomogram of risk scores and clinical characteristics 
with independent prognostic prognosis (i.e., age and stage) were established to forecast the probability of 1-, 3-, and 5-year OS. B The 1-, 3-, 
or 5-year calibration curves for nomogram model. C The clinical net benefit decision curve of the nomogram for the 1-, 3-, and 5-year OS. D The 
1-year OS ROC curves of risk score, multiple clinical features, and nomogram. E Comparison of ROC curves among TIS, TIDE, Exclusion, and our risk 
model. C-index, the concordance index; CI, confidence interval; DCA, decision curve analysis; AUC, area under the curve; TIDE, the tumor immune 
dysfunction and exclusion; TIS, the tumor inflammation signature. T. ***P < 0.001
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score, CAF score, PD-1, CTLA4, IDO1, and TIGIT score 
of the high-risk group were higher than those of the low-
risk group (Fig.  10B). To further strengthen this result, 
we applied the IPS method to predict the response of 
BCa patients to immune checkpoint blockade (PD-1 and 
CTLA4 therapy). The IPS score of the low-risk group 
was significantly higher than that of the high-risk group 
(Fig. 10E). Meanwhile, we performed a correlation anal-
ysis between risk scores and immune infiltrating cells 
using the Spearman test (Fig. 10C, D); this result is con-
sistent with that of the above.

Screening potential chemotherapeutics drugs
To study the relationship between these model genes and 
the sensitivity of chemotherapeutic agents, we deter-
mined their expression level and IC50 of the drug across 
the NCI-60 cell lines. Next, we examined the association 
of 10 model gene expressions with IC50 for each drug 
type (Supplementary Table S2) and screened out the top 
25 most significant model-gene-related drugs (Fig. 11A). 
Furthermore, several commonly used clinical drugs 
(including oxaliplatin, doxorubicin, cisplatin, docetaxel, 
gemcitabine, and paclitaxel) were analyzed and pre-
sented in Fig. 11B. It can be seen that high expression of 
TSPAN7 has a significant association with the resistance 
to Nelarabine, Pipobroman, Cytarabine, Asparaginase, 

Fludarabine, Dexamethasone Decadron, Thiotepa, and 
Bendamustine (p < 0.001); whereas, PDGFRA is sensi-
tive indicators to Aliopurinol (p < 0.001). Similarly, the 
high expression of PYCR1 is significantly associated 
with Fluorouracil and Seliciclib resistance; on the other 
hand, its high expression exhibited a sensitivity to the 
drugs Chelerythrine and Depsipeptide. The high expres-
sion of SERPINB7 is a resistant indicator of Rebimas-
tat and Simvastatin; conversely, it is a sensitive marker 
for Mithramycin and Homoharringtonine. AHCY is 
the resistance factor of Dabrafenib, Fludarabine, and 
XL-147. Besides, the high expression of PLOD1 is sensi-
tive index to Dexrazoxane, Palbociclib, Oxaliplatin and 
Nelarabine; HSD17B1 is sensitive index to Docetaxel 
and Eribulin mesylate; EGR1 is sensitive to Palbociclib 
and AFP464; ATP6V1B1 is sensitive to Ixazomib cit-
rate and 3-Bromopyruvate (acid). SCD is sensitive to 
Panobinostat, while it is insensitive to Salinomycin and 
SR16157.

Furthermore, through the ‘pRRophetic’ algorithm, we 
identified that the IC50 of four common chemotherapeu-
tics drugs (Docetaxel, Vinblastine, Paclitaxel, and Doxo-
rubicin) differed between the high- and low-risk groups 
of the model (p < 0.05). The high-risk group compared 
to the low-risk group had higher IC50 values for Doc-
etaxel, Vinblastine, and Doxorubicin (P < 0.05, Wilcox 

Fig. 6  GSEA enrichment analysis for GO, KEGG, and Hallmark genesets in different risk groups based on the TCGA (A-C), GSE13507 (D-F), 
and GSE32894 (G-I). Risk_H, Risk_high; Risk_L, Risk_low
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test; Fig. 11C-E); on the contrary, Paclitaxel IC50 values 
in the high-risk group were higher than low-risk group 
(Fig.  11F). In addition, we performed a Spearman cor-
relation analysis between the risk scores and IC50 of 
the above chemotherapy agents. These results verify the 
above analysis of Wilcox variance (P < 0.05; Fig. 11C-F).

Prediction value of the model for clinical 
immunotherapeutic efficacy among four BCa 
immunotherapy cohorts
The association analysis between model-gene expres-
sion and immunotherapy effectiveness was per-
formed based on four independent real datasets (i.e., 

Fig. 7  The KM, ROC, calibration curves, and the correlation of clinical traits for the model were also analyzed in two external verification sets, A-E 
GSE48075 and F-J GSE31684. AUC, area under the curve; OS, overall survival; T, T-stage; N, stage of lymph node metastasis; M, metastatic stage; 
fustat, survival status
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Imvigor210, GSE111636, GSE176307, and Truce01) 
(Fig. 12). We found that the expression levels of PYCR1 
were higher and EGR1 was lower in the response 
group than in non-response across Imvigor210 and 
GSE176307 datasets. Moreover, TSRAN7 had higher 
expression levels in BCa patients with non-response 
according to Imvigor210 and Truce01; and AHCY 
was highly expressed in the non-response group from 
GSE111636 and Truce01. Additionally, ATP6V1B1 
and SERPINB7 had low expression (P = 0.03 and 0.13, 
respectively); whereas PLOD1 and SCD were high 
expression (P = 0.067 and 0.2, respectively) in the 
response group from GSE111636 cohort.

In addition, in our ongoing single-arm phase II clini-
cal study (TRUCE01), we also found that in BCa cases 
that responded to tislelizumab in combination with nab-
paclitaxel, expression levels of PYCR1, AHCY, SCD were 
significantly decreased after treatment, and expression 
levels of TSPAN7, PDGFRA were significantly elevated 
after treatment. In non-responsive cases, the expres-
sion level of TSRAN7 and SERPINB7 was increased 
after treatment (Fig.  13). Of the other model genes, no 
other significant correlations were found (Supplemen-
tary Figure  S3). Together, these results suggest that the 
expression of some model genes can help predict immu-
notherapy response.

Fig. 8  External verification from IMvigor210 cohorts. A-C KM, ROC, and calibration curves of our signature were plotted. D Top to bottom, 
the risk score curves, survival status, and model gene expression heatmap are shown. E–G The correlation between the risk group and clinical 
characteristics (including the immunotherapy efficacy, TCGA_subtype, sex, etc.) was carried out by chi-square or Wilcox test. AUC, area 
under the curve; OS, overall survival; Met_status, metastatic status; Curr_or_Pre, current or previous. *P < 0.05; ***P < 0.001
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Validation of model‑related gene expression by HPA 
database and qRT‑PCR
We then analyzed the protein expression levels of these 
ten prognostic genes using the Human Protein Atlas 
(HPA). Compared with normal bladder samples, the 
protein expression of PLOD1, ATP6V1B1, HSD17B1, 
SERPINB7, and PYCR1 in bladder cancer tissues was 

upregulated, while EGR1 in cancer tissues was down-
regulated (Fig. 14A-J). Subsequently, mRNA expression 
levels of EGR1, PLOD1, and PYCR1 were detected in 10 
pairs of BCa tissues and corresponding adjacent normal 
tissues. The qRT-PCR results of these genes were simi-
lar to the protein expression results described above 
(Fig. 14K-M).

Fig. 9  Relationships of the signature with immune score, stromal score (A-C) or the expression of immune checkpoint genes (D-F) in TCGA, 
GSE13507, GSE32894 datasets. *P < 0.05; **P < 0.01; ***P < 0.001

Fig. 10  Correlations between the metabolism-associated gene signature and immune-cell infiltration, immune checkpoint immunotherapies. 
A There were significant differences in immune cell infiltration between the high- and low-risk groups. B TIDE algorithm was used to predict 
the immune response of BCa patients to immune checkpoint therapy based on risk score. C, D Spearman correlation analysis of risk score 
with infiltrating immune cell abundance was estimated by seven algorithms. E We evaluated the predictive value of the model for the anti-PD1/
anti-CTLA4 immunotherapy response by the immunophenoscore (IPS). TIDE, the tumor immune dysfunction and exclusion. *P < 0.05, **P < 0.01, 
***P < 0.001

(See figure on next page.)
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Fig. 10  (See legend on previous page.)
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Discussion
In this study, we identified two molecular subtypes from 
metabolism-related prognostic DEGs through NMF algo-
rithm based on TCGA datasets. And, we found that 
the two  subgroups of patients had different progno-
sis (C1 was better than C2). Next, we constructed and 
verified the signature of 10 metabolism-related  genes 
(including PLOD1, SERPINB7, TSPAN7, HSD17B1, 
PYCR1, PDGFRA, EGR1, AHCY, ATP6V1B1 and SCD) 
through LASSO, and multivariate Cox regression analy-
ses using TCGA, GSE13507, GSE32894, GSE48075, 

GSE31684, and Imvigor210 datasets. Furthermore, we 
systematically investigated and analyzed the correlation 
of the model with clinical traits, immune infiltration, 
and sensitivity prediction of chemotherapeutic drugs 
or immunotherapy. Notely, most genes of the model are 
closely related to the metabolism of malignant tumors 
and cancer development.

In January 2021, Wang Z et al. discovered that hypoxia-
induced PLOD1 overexpression promotes the malignant 
phenotype of glioblastoma through NF-κB signaling 
[15]. In October 2022, Qiongjing Zeng et al. established 

Fig. 11  Correlation analysis between the model and chemotherapy agents sensitivity. A Scatter plot of relationship between model-genes 
expression and drug sensitivity IC50. B The a significant correlation between commonly used clinical chemotherapeutic drugs IC50 for BCa 
and the expression of model genes. C-F The correlation analysis of risk score with the four commonly used chemotherapy drugs IC50, by the Wilcox 
and Spearman correlation analyses. Cor, correlation
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a prediction model for cervical cancer with five signals 
including SERPINB7 indicating that SERPINB7 is highly 
expressed in cervical cancer patients [16]. As early as 
September 2012, Wuttig D determined that TSPAN7 

is a promising prognostic marker for clear cell renal 
cell carcinoma and indicated that patients with higher 
expression of the TSPAN7 gene or those with TSPAN7-
positive blood vessels in both cores of tissue microarray 

Fig. 12  Correlation analysis of each modeled gene expression with immunotherapy response status was performed based on A Imvigor210, B 
GSE111636, C GSE176307, and D our Truce01 datasets
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studies had significantly longer DFS and tumor-specific 
survival (TSS) [17]. Yu X et al. observed the downregu-
lation of TSPAN7 in BCa tissue samples and cell lines 
and found that this downregulation was associated with 
relatively high tumor staging and tumor grade. Western 
blotting shows that overexpression of TSPAN7 activates 
Bax, and cleaves caspase-3 and PTEN, but inactivates 
Bcl-2, p-PI3K, and p-AKT, thereby inhibiting BCa cell 
growth via the PTEN/PI3K/AKT pathway [18]. HSD17B1 
is a steroid-metabolizing enzyme. Previous studies have 
shown that it is closely related to the occurrence and 
development of breast and endometrial cancer. PYCR1 is 
a key enzyme in proline synthesis. In August 2022, Kay EJ 
et  al. discovered that cancer-associated fibroblasts need 
to synthesize proline by PYCR1 to deposit prototrophic 
extracellular matrix [19]. Numerous studies have shown 
that PYCR1 is closely related to the prognosis of various 
cancers such as bladder cancer, pancreatic ductal adeno-
carcinoma, renal adenocarcinoma, gastric cancer, pros-
tate cancer, hepatocellular carcinoma, colorectal cancer, 
etc. Platelet-derived growth subunit A (PDGFA) plays a 
key role in the development of glioblastoma (GBM). Guo 
L [20], Gao Z [21], and others also support the high cor-
relation between PDGFRA and the prognosis of patients 
with bladder cancer. Tao T et  al. showed that AHCY 
showed high potential as a prognostic factor for bladder 

cancer as a core gene of the co-expression network of 
lncRNA/mRNA and circRNA/mRNA constructed 
by WGCNA [22]. The study of Bai S et  al. showed that 
ATP6V1B1 showed excellent prognostic value as one of 
the nine genes in the hypoxia prognosis model for colo-
rectal cancer.

The BCa samples in the TCGA dataset were then 
divided into high-risk and low-risk groups based 
on the median risk score. By analyzing the clus-
tering and  risk  score, we could find that  C2 had a 
higher risk score and C1 had a lower risk score. K-M sur-
vival analysis showed that the OS of the low-risk group 
was better than the low-risk group. According to the 
multivariate Cox regression results, the histogram of 
TNM stage risk score including age and sex was estab-
lished. The ROC curve was shown to provide favorable 
predictive performance, and the calibration indicated 
good agreements between prediction and observation. 
The nomogram showed that the model was a valid and 
accurate tool. Our results show that this model can well 
distinguish BCa patients and predict prognosis, thus 
helping to formulate the best treatment plan based on 
risk score. Notably, the signature is well validated in 
several external BCa datasets (GSE13507, GSE32894, 
Imvigor210, GSE48075, and GSE31684). To further 
investigate the underlying mechanisms in the differences, 

Fig. 13  In our Truce01 data, partial model-genes expression, including A TSRAN7, B SCD, C PYCR1, D PDGFRA, E AHCY, and F SERPINB7, 
was significant changes after immunotherapy in all, response, or non-response cases by paired wilcox test. Res., response; Non-Res., Non-response
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we then performed pathway enrichment analyses for 
GSEA in each group.

GO analysis showed immunoglobulin receptor binding 
enrichment in the high-risk group. KEGG pathway enrich-
ment analysis showed that ECM receptor interaction, focal 
adhesions, actin cytoskeletal regulation, and Leukocytes 

transendothelial migration were particularly significant 
enrichment in high-risk groups. Hallmark’s GSEA analy-
sis shows epithelial-mesenchymal transition, angiogen-
esis, apical junction, myogenesis, hypoxia, inflammatory 
response, etc. gathering. Although immunoglobulins are 
about 90% similar at the amino acid level, each subclass 

Fig. 14  Validation of model gene expression. A-J Protein expression of 10 model genes in bladder cancer tissues and normal bladder tissues 
from the HPA database. K-M qRT-PCR was used to detect the mRNA expression of EGR1, PLOD1, and PYCR1 in 10 pairs of BCa and adjacent tissues. 
BCa, bladder cancer
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has a unique way of antigen binding and immune com-
plex formation. Triggering FcγR-expressing cells leads to a 
wide range of reactions, includes phagocytosis, antibody-
dependent cell-mediated cytotoxicity, and complement 
activation. Tumor cell-derived IgG may hinder the cyto-
toxicity of antigen-dependent cells by binding antigens 
while lacking the ability to activate complement. These 
findings recommend tumor cell-derived IgG as a poten-
tial therapeutic target [23]. CCL2 binds to the homologous 
receptor CCR2, a signaling pair that has been shown to 
have a variety of protumorigenic effects, from mediating 
tumor growth and angiogenesis to recruiting and usurp-
ing host stromal cells to support tumor progression [24]. 
Wei Y et  al. elucidate the molecular and cellular basis of 
KIR3DL3 inhibitory function, demonstrating that the 
KIR3DL3-HHLA2 pathway is a potential cancer immu-
notherapy target [25]. However, immunoglobulin binding 
studies for bladder cancer need to be further studied.ECM 
plays an important role in tumor shedding, adhesions, 
degradation, motility, and hyperplasia [26]. Pathology is 
characterized by abnormal neovascularization and dif-
fuse infiltration of tumor cells. Their role in other cancers 
has been proven. The expression of ECM is upregulated in 
prostate cancer tissues [27], and it is involved in the pro-
cess of tumor invasion and metastasis in gastric cancer 
[28]. ECM in colorectal cancer promotes epithelial-mesen-
chymal transformation of cancer cells [29]. Glioblastoma is 
the deadliest adult brain tumor. The interaction between 
the ECM and the glioblastoma microenvironment is 
important in this development [30]. Focal adhesion (FA) is 
a group of macromolecular proteins that connect special-
ized actin ends with the extracellular matrix (ECM) and 
achieve cell migration, which is essential for the process 
of tumor metastasis [31]. Studies have shown that lncRNA 
ITGB8-AS1 as ceRNA promotes colorectal cancer growth 
and migration through integrin-mediated plaque signal-
ing [32]. The hippo component YAP promotes adhesion 
plaque and tumor aggressiveness by transcriptionally acti-
vating THBS1/FAK signaling in breast cancer [33]. Abnor-
mal actin cytoskeletal dynamics have been implicated in 
a variety of diseases, including cancer [34]. These may be 
potential targets for future treatments.

Immune cells in the tumor microenvironment (TME) 
play an important role in tumorigenesis, tumor progres-
sion, and metastasis. The tumor microenvironment con-
sists of a heterogeneous population, including the cancer 
cells themselves, infiltrating immune cells, and stromal 
cells such as fibroblasts [35]. Correlation analysis showed 
that risk scores were positively correlated with stromal 
scores and immune scores. Moreover, the risk scores 
in the TCGA and several GEO cohorts were positively 
correlated with PD-L1, POLE2, FEN1, MCM6, MSH6, 
MSH2, FAP, and TAGLIN.

PD-L1 expression in colorectal cancer tissues was neg-
atively correlated with FOXP3 + cell density, suggesting 
that PD-L1-expressing cancer cells may affect regulatory 
T cells in the tumor microenvironment [36]. Based on the 
results so far, we can define the expression of PD-L1 as a 
prognostic factor for immunotherapy and a predictor for 
pembrolizumab [37]. FGFR3 disrupts PD-L1 via NEDD4 
to control T cell-mediated immune surveillance of blad-
der cancer [38]. Overexpression of PD-L1 and PD-1 on 
tumor cells and tumor-infiltrating lymphocytes, respec-
tively, is associated with poor prognosis in certain human 
cancers [39]. POLE2 promotes the malignant phenotype 
of glioblastoma by promoting AURKA-mediated stabili-
zation of FOXM1 [40]. None in bladder cancer. Upregula-
tion and downregulation studies have shown that MCM6 
regulates the cell cycle, proliferation, metastasis, immune 
response, and maintenance of DNA replication systems. 
MCM6 can also regulate downstream signals, such as 
MEK/ERK, to promote carcinogenesis [41]. In many can-
cer cells, MCM6 expression is enhanced and can be used 
as a therapeutic target. Such as hepatocellular carcinoma 
[42], breast cancer [43] and gastric cancer [44], and so 
on. The RR for any cancer was 3.3 (95% CI 2.9 to 3.7) and 
2.5 (95% CI 1.7 to 3.2) for path_MSH2 and path_MSH6 
carriers, respectively. Older path_MSH2 carriers had a 
particularly high incidence of urinary tract and prostate 
cancer. Compared with path_MLH1 and path_MSH2 
carriers, we found that path_MSH6 carriers had a lower 
risk of early-onset cancer and a lower risk of late-onset 
cancer in addition to an intermediate risk of urinary tract 
or prostate cancer [45]. MSH6 and bladder cancer (OR, 
5.63 [95% CI, 2.75–11.49]) [46]. CircLIFR can interact 
with MSH2 to positively regulate CDDP sensitivity in 
bladder cancer through the MutSα/ATM-p73 axis. Cir-
cLIFR and MSH2 may be promising therapeutic targets 
in CDDP-resistant bladder cancer [47]. There is evidence 
that MSH2 protein levels may contribute to the chemo-
therapy resistance observed in muscle-invasive bladder 
cancer. MSH2 has potential as a biomarker to predict 
response to platinum-based therapy [48]. CAFs express 
the IL-6 cytokine, and its receptor IL-6R was found in 
RT4 bladder cancer cells. CM iCAF culture of RT4 blad-
der cancer cells resulted in significantly enhanced cell 
growth, migration, and invasion. Importantly, inhibition 
of CAFs-secreted IL-6 by neutralizing antibodies signifi-
cantly reversed the IL-6-induced EMT phenotype, sug-
gesting that this cytokine is essential for CAF-induced 
EMT in human bladder cancer progression. IL-6 expres-
sion is upregulated in invasive bladder cancer and cor-
relates with the CAF marker ACTA2 [49]. TAGLN is an 
antitumor gene in the human bladder. The expression 
level in normal bladder epithelial cells is higher than that 
in cancer cells [50].
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In addition, immune interactions between tumors and 
TME play a key role in tumorigenesis and can be used as 
therapeutic targets for BCa [51]. The composition and 
abundance of immune cells in TME influence tumor pro-
gression and the efficacy of immunotherapy [52]. CD8 + T 
cells have been recognized as major effector cells of cell-
mediated anti-tumor immunity, which kill tumor cells 
by releasing perforin [53]. Interestingly, we found that 
CD8 + T cells were significantly higher in the high-risk 
group. We speculate that this may be related to its dysfunc-
tion in a depleted state [54]. A recent study has indicated 
that the lack of innate inflammatory signaling in tumors 
leads to the inability to induce transcription factor-regu-
lated functional effector differentiation, further impairing 
effector function and induced TOX expression and multi-
ple other negative regulators of T cell signaling and func-
tion via persistent tumor antigen/TCR stimulation and/
or other negative regulatory signals, ultimately leading to 
dysfunction of tumor-specific CD8 + T cells even before 
undergoing cell division [55]. Studies have shown that 
immunosuppressive factors such as Tregs, and cancer-
associated fibroblasts evade surveillance and clearance by 
the immune system through different mechanisms [56]. In 
peripheral lymphoid organs, Treg cells are classified into 
resting and effector types, with effector Treg cells secret-
ing IL-10 as an important characteristic [57, 58]. Treg cell 
physiology is dependent on the expression of GATA3 dur-
ing inflammation [59]. CD39 and CD73, which are highly 
expressed on the surface of Treg cells, increase intracellu-
lar AMP levels by breaking down ATP into adenosine and 
binding to adenosine receptor A2A (ADORA2A), activat-
ing the CREB pathway, thereby resulting in an anti-inflam-
matory milieu [60]. Extensive research has been conducted 
on the role of cancer-associated fibroblasts (CAFs) in solid 
tumors, particularly in relation to their production of solu-
ble factors such as IL-1α, IL-1β, CXCL1, CXCL12, G-CSF, 
and IL-6. These factors play a crucial role in recruiting 
monocytes and myeloid cells, thereby influencing the 
polarization of immune cells within the tumor micro-
environment. Notably, the presence of CAFs has been 
found to induce the transformation of macrophages into 
an IL10-mediated tumor-promoting M2 phenotype [61]. 
Neutrophils recruited to the site of inflammation promote 
cancer development primarily by increasing DNA damage, 
angiogenesis, and immunosuppression [62]. Neutrophils 
can sustain tumor growth through different mechanisms, 
including inhibiting T cell activation and promoting the 
proliferation of genetically unstable tumor cells, angio-
genesis, and metastasis. These mechanisms include the 
induction of genetic instability through the production of 
reactive oxygen species (ROS) and the release of micro-
particles containing microRNAs miR-23A and miR-155, 
etc. [63]. Macrophages contribute to tumor progression 

at different stages, from initiation to distant metasta-
sis formation. Evidence suggests that tumor cells induce 
macrophages to produce iconic acid and that acidosis in 
TME promotes immune escape [64]. The research demon-
strated by Nixon et al. [65] the immunosuppressive role of 
pTAMs, which is linked to their capacity to present tumor-
associated antigens to CD8 + T cells and induce T cell 
exhaustion. A recent narrative review [66] proposed that 
mononuclear macrophages in tumor parenchyma and per-
itumoral regions of human hepatocellular carcinoma spec-
imens exhibit heightened glycolytic activity, implying that 
TAMs’ glucose uptake facilitates tumor advancement. Sev-
eral metabolites produced in glucose and lipid metabolism 
pathways, as well as those derived from amino acids, can 
also function as signaling molecules, promoting scaveng-
ing and anti-inflammatory functions in tumor-associated 
macrophages (TAMs). The pro-tumor activities exhibited 
by TAMs hinder patient responses to conventional chemo-
therapy, radiotherapy, and immunotherapy. Cancer cells 
can promote the formation and survival of endothelial 
cell tubes, at least in part through the PI3KAkt signaling 
pathway, thereby altering the microenvironment in favor 
of tumor growth [67]. This is consistent with our findings 
of abundant CD8 + T cells, Neutrophils, Myeloid dendritic 
cells, M2 macrophages, Tregs, Endothelial cells, and Can-
cer-associated fibroblasts in patients in the BCa high-risk 
group. Therefore, we speculate that metabolic prognostic 
models may influence survival outcomes for BCa by alter-
ing ECM and immunosuppressive cells.

Despite this work were also similar to the  previ-
ous  study [68, 69], thereby lacking a certain amount of 
innovation, the model built by us was more streamlined 
and validated by multiple datasets, and its association 
analyses from multiple angles were performed. Although, 
a series of integrative analysis of multiple datasets from 
open databases (i.e., TCGA, GEO, TIDE, CellMiner, and 
TIMER) and our mRNA sequencing data (TRUCE01), as 
well as validation by immunohistochemistry and qRT-
PCR were carried out, the main limitation of the research 
is that it lacks some functional experiments in vivo and 
in vitro to clarify the relevant molecular mechanisms of 
these modeled genes. Furthermore, further prospective 
studies are required to validate the clinical value of this 
metabolism-based molecular subtype and its signature.

Notably, our study showed unique immune landscapes, 
immune checkpoint gene expression, and immuno-
therapy responses between the high-risk and low-risk 
groups. In addition, we also calculated IC50 values to 
explore the chemotherapy drug’s sensitivity for BCa and 
screened candidate small molecule compounds. Fur-
thermore, the TIDE and IPS algorithms were all used to 
predict the immunotherapy response of our model. Com-
pared with the low-risk group, the high-risk BCa patients 
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may be non-responsive and advanced for the immuno-
therapy. Additionally, the research also found that these 
model genes may act as a promising biomarker for pre-
dicting the efficacy of immunotherapy in BCa patients 
based on four independent real immunotherapy datasets, 
including IMvigor210, GSE111636, GSE176307, and our 
Truce01. These findings may provide suitable treatment 
options for patients with BCa. The proteins and mRNA 
expression of EGR1, PLOD1, and PYCR1 were also 
detected by the HPA database and qRT-PCR.

Conclusions
In summary, we developed and validated a new signature 
based on metabolism-related genes that may serve as a 
predictor for BCa prognosis, chemotherapy, or immuno-
therapy sensibility. Therefore, there are direct implica-
tions for guiding clinical oncology practice.
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