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Abstract 

Background  Chronic lung diseases are characterized by impaired lung function. Given that many diseases have 
shared clinical symptoms and pathogenesis, identifying shared pathogenesis can help the design of preventive 
and therapeutic strategies. This study aimed to evaluate the proteins and pathways of chronic obstructive pulmonary 
disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and mustard lung disease (MLD).

Methods and results  After collecting the data and determining the gene list of each disease, gene expression 
changes were examined in comparison to healthy individuals. Protein–protein interaction (PPI) and pathway enrich-
ment analysis were used to evaluate genes and shared pathways of the four diseases. There were 22 shared genes, 
including ACTB, AHSG, ALB, APO, A1, APO C3, FTH1, GAPDH, GC, GSTP1, HP, HSPB1, IGKC, KRT10, KRT9, LCN1, PSMA2, 
RBP4, 100A8, S100A9, TF, and UBE2N. The major biological pathways in which these genes are involved are inflamma-
tory pathways. Some of these genes activate different pathways in each disease, leading to the induction or inhibition 
of inflammation.

Conclusion  Identification of the genes and shared pathways of diseases can contribute to identifying pathogenesis 
pathways and designing preventive and therapeutic strategies.
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Introduction
Lung is a basic organ regulating and maintaining the 
function of the respiratory tract [1, 2]. Recent data 
have shown that respiratory disorders affect many peo-
ple in the USA (35 million people, most of whom deal 
with asthma and chronic obstructive pulmonary dis-
ease (COPD)). This disorder leads to various diseases in 

patients, which are associated with many deaths [3]. A 
rise in the mortality of patients due to respiratory dis-
orders is a major global challenge that necessitates the 
identification of the pathogenesis of diseases and the use 
of preventive and therapeutic strategies [4].

There is a wide range of chronic lung diseases which 
overlap in terms of clinical symptoms and are difficult 
to distinguish [5]. In addition, disease pathogenesis is 
multifactorial, and the main cause of chronic lung dis-
ease has not yet been identified. Some chronic lung dis-
eases, including COPD, asthma, idiopathic pulmonary 
fibrosis (IPF), and mustard lung disease (MLD) have 
shared clinical symptoms such as mucus secretion, 
cough, impaired lung function, and dyspnea.
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Recent evidence suggests that inflammation is shared 
in all the four mentioned diseases, leading to disease 
progression. The chemotaxis of immune cells and their 
cytokine production are the other factors in the patho-
genesis of diseases [1, 6–8]. However, in COPD and MLD, 
inflammation stimulates the immune system and coagu-
lation factors’ secretion, which ultimately causes coagula-
tion in patients [9, 10]. Inflammation in asthma causes T 
cells to differentiate into T helper2 (Th2), and eventually 
produces a series of cytokines, including IL-5 and IL-13, 
which lead to mucus production and secretion in patients 
[11]. In IPF, inflammation leads to TGF-β production, a 
cytokine that causes pulmonary fibrosis in patients [12].

Protein–protein interaction (PPI) handles a wide range 
of genes and proteins and creates a network between 
them in cellular communication [13]. In fact, gene ontol-
ogy (GO) shows the molecular pathways, cellular func-
tions, and biological processes of each gene and protein 
in a disease. In other words, PPI depicts the network cre-
ated between genes and proteins, as well as the common-
alities between them in cellular communication [14–16].

Lung involvement is a shared pathogenesis and iden-
tical genes and molecular pathways are involved in the 
pathogenesis of the four diseases. Gene study has been 
evaluated individually in chronic lung diseases, and no 
study has assessed the expression of shared genes and 
proteins in several diseases. Thus, the present study 
evaluated the association between genes and shared 
proteins in COPD, asthma, IPF, and MLD. Biological 
pathways, cellular components, and molecular func-
tions of proteins were also examined.

Materials and methods
Data collection
PubMed, Scopus, ISI Web of Science, and Cochrane data-
bases were used to collect the data. All relevant studies were 
extracted and evaluated. Only case–control studies were 
included. Protein expression changes (increase or decrease) 

were measured compared to the control group. All the pro-
teins were selected from proteomics studies. After data 
extraction, duplicates and missing data were deleted.

After identifying the relevant articles and extracting the 
studied genes, dysregulation was found in the expression of 
13,940 genes in COPD, 2700 genes in asthma, 6686 genes 
in IPF, and 104 genes in MLD. A list of all the genes with 
fold change, p-value, and FDR is presented in Supplemen-
tary S1. For some genes, p-value, fold change, or FDR were 
not reported. After removal of duplicates, 6,348 genes in 
COPD, 1,597 genes in asthma, 5,272 genes in IPF, and 76 
genes in MLD had up- or down-regulation. Then, using 
Genes Set, enrichment pathways involved in GO were 
identified (Fig. 1). The pathways with the highest score in 
which more genes were involved were then selected (Fig. 2).

Based on the screened studies, proteins identified as hav-
ing different expressions under varying processing condi-
tions within each study were also considered. The studies 
included COPD (n = 49), asthma (n = 23), IPF (n = 25), and 
MLD (n = 6). Furthermore, some studies only listed the pro-
teins that showed expression changes without indicating the 
extent of these changes. Therefore, in this study, no threshold 
level for protein expression variations was established.

Protein Interaction Network
To draw the protein interaction network, all the data 
were combined in a database; then, https://​string-​db.​
org/ was used for analysis. Physical and molecular inter-
actions between proteins were identified and extracted. 
Finally, all data, networks and relationships between pro-
teins were entered to Cytoscape (https://​cytos​cape.​org/). 
Finally, the hub genes with the highest degree were iden-
tified using network analyzer packages.

Shared gene and pathway analysis
Shared genes of the mentioned diseases were examined. 
Diseases were also classified into three and two groups, 
and the shared genes were evaluated. Also, enrichment 

Fig. 1  Workflow of data collection and analysis of genes and pathways

https://string-db.org/
https://string-db.org/
https://cytoscape.org/


Page 3 of 11Rezaeeyan et al. BMC Medical Genomics          (2023) 16:159 	

analysis was performed for the diseases individually and 
together (Figs. 3 and 4).

Enrichment analysis
FunRich (http://​www.​funri​ch.​org) was used to evaluate 
the gene ontology enrichments of the listed genes. These 
data were used to evaluate biological and molecular simi-
larities of the genes.

Results
This study examined shared genes and their associated 
biological pathways among four chronic lung diseases 
(COPD, IPF, asthma, and MLD) using PPI networks and 
enrichment analysis. In addition, changes in gene expres-
sion in each disease were identified separately. The role of 
genes in cellular metabolism and the biological processes 
involved in lung pathogenesis were also investigated.

Similarity analysis for disease genes
The genes shared by the diseases were examined. For this 
purpose, genes shared by the diseases were studied in 
two and three groups. In the ternary group, there were 
763, 24, 24, and 39 genes shared by COPD-asthma-IPF, 

Fig. 2  Scheme of total protein in COPD, asthma, IPF, and MLD

Fig. 3  Scheme of the number proteins shared by the diseases. A number of proteins between MLD, asthma and IPF, B number of proteins 
between COPD, asthma and IPF, C number of proteins between COPD, asthma and MLD, D number of proteins between IPF, COPD and MLD

http://www.funrich.org
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COPD-asthma-MLD, asthma-IPF-MLD and IPF-MLD-
COPD, respectively. Genes shared between the three dis-
eases are shown in a Venn diagram (Fig.  3). In the pair 
groups, there were 815, 3475, 55, 1346, 26, and 42 genes 
shared between COPD-asthma, COPD-IPF, COPD-MLD, 
asthma-IPF, asthma-MLD and IPF-MLD, respectively. 
Moreover, 22 genes were shared by the four diseases (Fig. 4). 
Table 1 lists these 22 genes along with their up- or down-reg-
ulation in each disease. Using Enrichr, interactions between 
unique proteins in each disease were designed. Further 
evaluations showed that the GRB2 gene in both COPD and 
MLD and the ESR1 and IRF7 genes in asthma and IPF had 
the highest association with the other genes, respectively 
(Supplementary file S2). The names of unique proteins in 
each disease, along with their interaction information with 
other proteins, are reported in Supplementary file S3.

Gene ontology and enrichment analysis
Gene enrichment analysis is a method for analyzing 
molecular and biological processes between diseases. 
In addition, gene ontology evaluates biological pro-
cesses, cellular components, and molecular functions 
using the FunRich software. This tool identifies GO 
and biological pathways between shared disease genes. 
P-value < 0.05 was considered as a standard metric for 
high-score biological pathways.

Evaluation of hub proteins
The PPI network was determined using STRING. Then, 
using Cytoscape, the molecular pathways and interac-
tions between the shared genes were drawn. The PPI 

network derived from the shared genes was displayed 
as nodes and edges based on the degree of importance 
and interactions. The genes with a high score were 
selected as the hub. These hub genes can be known as 
biomarkers, based on which preventive and therapeutic 
strategies can be designed (Fig. 5).

Shared biological process and Reactome pathway
With a more detailed evaluation, most of the genes and 
molecular pathways involved in GO and the biological 
process were identified. The main biological processes 
included neutrophil degranulation, innate immune 
response, post-translational protein modification, and 
retina homeostasis, while the main Reactome pathways 
included neutrophil degranulation, platelet degranula-
tion, post-translational protein phosphorylation, and 
retinoid metabolism and transport (Table 2).

Discussion
Lung disorders are among the most shared diseases and 
are characterized by impaired lung function. There is 
a wide range of lung diseases whose clinical symptoms 
overlap; therefore, it is difficult to distinguish them from 
one another [17]. Shared genes or pathways that can 
be used to treat these diseases had not previously been 
identified [18]. In this study, we first examined the genes 
and pathways shared by four chronic diseases (COPD, 
IPF, asthma, and MLD). Based on the systems biology 
approach and using enrichment analysis, we examined 
the genes and biological pathways shared by the cited 

Fig. 4  Scheme of 22 proteins shared by COPD, asthma, IPF and MLD. The nodes’ size and color indicate the number of interactions they have 
with other proteins. Hence, a node with a larger size and a redder color indicates more interactions and points with other proteins, whereas 
a smaller and greener indicate a lower degree of that node
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disorders. In this section, we first evaluate the biological 
pathways, in which 22 genes shared by the four diseases 
are involved, and then assess the shared biological path-
ways in triplicate.

Haptoglobin (HP) is a factor involved in hemoglobin 
metabolism. It has also been shown to be involved in the 
pathogenesis of chronic lung diseases. CD163 is known 
as the HP receptor. The interaction between HP and 
CD163 increases the expression of heme oxygenase-1 

(HO-1), which reduces inflammation and oxidative stress 
[19]. CD163 has also been shown to differentiate mac-
rophage type 2 (M2) which, in turn, decreases inflam-
mation in COPD. Considering the role of the MAPK 
/ cAMP / PI3K / AKT pathway in M2 differentiation, 
CD163 probably causes M2 differentiation by activat-
ing this pathway [20]. In asthma patients, the interaction 
between HDAC8 / Gal3 increases the CD163 expression; 
therefore, given the role of CD163 in M2 differentiation, 

Table 1  Summary of up and down-regulation of 22 proteins shared between COPD, asthma, IPF and MLD

Gene Name Symbol COPD Asthma IPF MLD
Total study 49 23 25 6

Actin, cytoplasmic 1 ACTB Up (11)
Down (6)

Up (2)
Down (5)

Up (8)
Down (3)

Up (2)
Down (2)

Alpha-2-HS-glycoprotein AHSG Up (2) Up (1)
Down (1)

Up (1)
Down (1)

Unknown

Albumin ALB Up (11)
Down (4)

Up (6)
Down (3)

Up (4)
Down (4)

Up (2)

Apolipoprotein A-I APOA1 Up (4)
Down (1)

Up (3) Up (3)
Down (3)

Unknown

Apolipoprotein C-III APOC3 Up (2) Up (2) Down (3) Unknown

Complement C3 C3 Up (6)
Down (3)

Up (2)
Down (6)

Up (2)
Down (10)

Down (2)

Ferritin heavy chain FTH1 Up (Unknown) Down (2) Up (2) Down (1)

Glyceraldehyde-3-phosphate dehydrogenase GAPDH Up (3)
Down (4)

Up (2)
Down (3)

Up (5)
Down (2)

Up (1)

Vitamin D-binding protein GC Up (2)
Down (1)

Up (3) Down (4)
Up (1)

Up (3)

Glutathione S-transferase P GSTP1 Up (2)
Down (5)

Up (1)
Down (5)

Up (0.3)
Down (4)

Not changed

Haptoglobin HP Up (10)
Down (2)

Up (5)
Down (2)

Up (7)
Down (3)

Up (5)

Heat shock protein beta-1 HSPB1 Up (1)
Down (2)

Up (2) Up (2)
Down (2)

Up (1)

Immunoglobulin kappa constant IGKC Up (6)
Down (1)

Up (1) Up (4) Up (1)

Keratin, type I cytoskeletal 10 KRT10 Up (1)
Down (3)

Up (1) Up (1)
Down (1)

Up (1)

Keratin, type I cytoskeletal 9 KRT9 Up (2)
Down (2)

Up (1) Down (1) Up (1)

Lipocalin-1 LCN1 Up (2)
Down (1)

Down (2) Down (1) Down (1)

Proteasome subunit alpha type-2 PSMA2 Up (1) Down (1) Up (1)
Down (2)

Down (1)

Retinol-binding protein 4 RBP4 Up (1)
Down (2)

Down (2) Up (3)
Down (2)

Unknown

Protein S100-A8 S100A8 Up (8) Up (4)
Down (2)

Up (2) Up (2)

Protein S100-A9 S100A9 Up (6)
Down (3)

Up (5)
Down (Unknown)

Up (3)
Down (1)

Up (1)

Serotransferrin TF Up (2) Up (1)
Down (4)

Up (3)
Down (2)

Down (1)

Ubiquitin-conjugating enzyme E2 N UBE2N Up (3) Down (2) Up (2)
Down (1)

Down (1)
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Fig. 5  Scheme of shared proteins in diseases. A proteins shared by COPD, asthma and IPF, B proteins shared by COPD, asthma and MLD, C proteins 
shared by COPD, IPF and MLD, D proteins shared by IPF, asthma, and MLD. The size and color of the nodes correspond to the number of interactions 
they have with other proteins. Thus, a node with a larger size and a redder color indicates more interactions and scores with other proteins, whereas 
a smaller size and a greener color indicate a lower degree of that node
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and the role of M2 cells in Th2 differentiation, CD163 
in asthma can be considered as a target for the targeted 
therapy route [21].

S100 A8 / A9 was another factor shared by the four 
diseases. In COPD, S100A8 plays a cyto-protective role. 
In other words, PKA / cAMP prevents inflammation 
and the production of reactive species oxygen (ROS). In 
COPD, S100A8 is dephosphorylated and degraded by 
SYVN1, which eventually leads to the apoptosis of lung 
cells [22]. Some studies have reported that S100A8 acti-
vates NF-KB through MUC5AC expression, which ulti-
mately increases NLRP3 activation and inflammatory 
cytokines’ production [23]. Therefore, S100A8 acts as a 
double-edged sword in COPD. Identifying the pathways 
involved in pathogenesis and treatment can be effective 
for designing treatments.

In IPF, an increase in S100A8 triggers inflammatory 
cytokines’ production by activating TLR4. Moreover, in 
asthma, it causes inflammation by activating the PI3K 

/ AKT / MAPK / NF-kB pathway [24]. In asthma, the 
SERPINB3 / B4 complex increases S100A8 production 
and inflammation by activating P38 / MAPK. S100A8; 
in addition to causing inflammation through molecular 
pathways, it can raise the production of complement C3, 
which is a component of the inflammatory system [25]. 
This study found that S100A8 / A9 expression was higher 
in all four diseases compared to controls; since this pro-
tein is involved in inflammation and cellular protection, 
identifying pathways that lead to cellular protection of 
S100A8 / A9 against inflammation can be a therapeutic 
route.

C3 increases cell survival by activating the mTOR path-
way. In COPD, an increase in C3 leads to CD46 expres-
sion. CD46 activates STAT1 and, eventually, BCL-2 by 
forming a complex with CD3. BCL-2 expression pre-
vents cell apoptosis. In addition, C3 expression in COPD 
increases the apoptosis of cytotoxic TCD8 cells, which 
prevents inflammation [26]. C3 expression is increased 

Table 2  Some top biological and Reactome pathway between diseases

Asthma-IPF-MLD

Biological Process P-value Bonferroni method Reactome Pathway P-value Bonferroni method

  Neutrophil degranulation 1.9E-07 0.00233 Neutrophil degranulation 5.49E-06 0.013788

  Retina homeostasis 1.72E-11 2.11E-07 Regulation of Insulin-like Growth Factor (IGF) 
transport and uptake by Insulin-like Growth 
Factor Binding Proteins (IGFBPs)

6.53E-06 0.016399

  Post-translational protein modification 6.4E-06 0.078357 Post-translational protein phosphorylation 3.16E-06 0.007939

  Cellular protein metabolic process 1.71E-06 0.021 Platelet degranulation 0.000161 0.403806

COPD-Asthma-IPF

Biological Process P-value Bonferroni method Reactome Pathway P-value Bonferroni method

  Neutrophil degranulation 3.1E-66 3.79E-62 Neutrophil degranulation 1.52E-50 3.83E-47

  Signal transduction 1.74E-13 2.13E-09 Platelet degranulation 6.24E-41 1.57E-37

  Innate immune response 5.05E-18 6.18E-14 Regulation of insulin-like growth factor (IGF) 
transport and uptake by insulin-like growth 
factor binding proteins (IGFBPs)

8.41E-23 2.11E-19

  Cell adhesion 3.25E-18 3.98E-14 Post-translational protein phosphorylation 9.12E-17 2.29E-13

COPD-Asthma-MLD

Biological Process P-value Bonferroni method Reactome Pathway P-value Bonferroni method

  Neutrophil degranulation 1.9E-07 0.00233 Neutrophil degranulation 5.49E-06 0.013788

  Post-translational protein modification 6.4E-06 0.078357 Regulation of insulin-like growth factor (IGF) 
transport and uptake by insulin-like growth 
factor binding proteins (IGFBPs

6.53E-06 0.016399

  Retina homeostasis 1.72E-11 2.11E-07 HDL remodeling 3.88E-09 9.76E-06

  Cellular protein metabolic process 1.71E-06 0.021 Retinoid metabolism and transport 2.39E-06 0.005999

COPD-IPF-MLD

Biological Process P-value Bonferroni method Reactome Pathway P-value Bonferroni method

  Neutrophil degranulation 4.45E-10 5.45E-06 Neutrophil degranulation 4.7E-08 0.000118

  Retina homeostasis 2.11E-16 2.58E-12 Post-translational protein phosphorylation 1.74E-06 0.004372

  Cellular protein metabolic process 3.93E-08 0.000481 Regulation of insulin-like growth factor (IGF) 
transport, and uptake by insulin-like growth 
factor binding proteins (IGFBPs)

4.12E-06 0.010344

  Post-translational protein modification 1.13E-05 0.138488 Retinoid metabolism and transport 4.01E-07 0.001007
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in COPD patients; therefore, C3 targeting can be a good 
treatment strategy. In asthma, an increase in C3 leads 
to innate lymphoid cell chemotaxis (ILC2), which ulti-
mately raises the production of IL-4 and IL-13 and causes 
inflammation. C3 also increases the expression of CCL2 
and CCL5 chemokines by activating the ERK1,2 / MAPK 
pathway. The expression of these chemokines leads to 
mast cell chemotaxis and inflammation. On the other 
hand, adenosine reduces the chemotaxis of mast cells to 
inflammation site by inhibiting ERK1,2 / MAPK [27, 28].

In IPF, C3 produces IL-17, which eventually causes 
pulmonary fibrosis through TGF-β / P38 / MAPK. C3 
also causes pulmonary fibrosis due to MUC5B expres-
sion. Furthermore, TGF-β has been shown to inhibit C3 
by inhibiting CD46 and CD55. Therefore, TGF-β, despite 
causing pulmonary fibrosis in IPF, can prevent inflamma-
tion and pulmonary fibrosis in patients by reducing C3 
production [29–31]. MLD have also been found to cause 
C3 inflammation and disease progression and, ultimately, 
it reduces patient survival [32]. Since C3 expression is 
decreased in asthma, IPF, and MLD, identifying pathways 
that reduce its expression can be effective in treatment.

Apolipoprotein A1 (APO A1) is another factor with 
a dual role; it plays an effective role in the progres-
sion and prevention of lung damage due to inflam-
mation by regulating different pathways. In COPD, 
APOA1 reduces ROS production by NADPH oxidase 
and NOX3 expression [33]. It also inhibits apopto-
sis in lung cells by inhibiting NF-κB and Caspase8. In 
asthma, APO A1 expression inhibits inflammation by 
inhibiting ERK / NF-κB. It also prevents lung damage 
and dysfunction by expressing Lipoxin A4 (LXA4) [33, 
34]. Moreover, it reduces the chemotaxis of neutro-
phils to the inflammation site by lowering the VCAM-1 
and CXCL5 expression. Ultimately, it decreases TGF-β 
production [35]. Decreased TGF-β can reduce Th2 dif-
ferentiation and produce IL-4 and IL-13. In IPF, APO 
A1 lowers the TGF-β production. TGF-β causes pul-
monary fibrosis in patients through the ERK / MAPK 
pathway. It also reduces M2 differentiation and TGF-β 
production by decreasing the IL-4 production [36, 37]. 
Since APOA1 has an anti-inflammatory role and, in 
this study, its expression had increased in some dis-
eases, identifying the pathways leading to its increased 
expression can contribute to designing therapeutic 
methods to prevent inflammation.

CD74 is known as transferrin receptor (TF). TF is 
involved in the regulation of inflammation and ROS 
production due to iron metabolism. In COPD, CD74 
inhibits macrophage migration inhibitory factor (MIF) 
expression. MIF generates ROS via the ASK1 / P38 / 
XOR pathway [38]. CD74 hinders lung cell apoptosis by 
inhibiting P53 and activating the ERK / MAPK / AKT 

pathway [38]. Inhibition of MIF expression by reduc-
ing NF-κB inhibition and M2 cell differentiation allevi-
ates inflammation [39]. In asthma, MIF induces CCl2, 
CXCR2, and CXCR4 expression through the ERK / 
MAPK / P38 / Rho A GTPase pathway. The expression 
of this chemokine causes the chemotaxis of immune 
cells and inflammation in patients [40].

Heat shock protein (HSP) has been shown to inhibit 
MIF. In COPD, increased HSP expression inhibits JNK 
/ NF-κB and prevents inflammation. HSP has also been 
shown to increase inflammation through the TLR4 / 
MAPK / NF-kB pathway [41]. Activation of the MMK3 
/ P38 / NF-kB / Rel A pathway also raises the HSP 
expression [42]. In asthma, HMGB1 expression induces 
HSP expression through the TLR4 / MYD88 / NF-kB 
pathway, which eventually produces IL-4 and IL-13. 
The generation of these cytokines leads to Th2 differen-
tiation and disease progression [43, 44]. Other studies 
have reported that HSP induces immune cell chemo-
taxis and inflammation through the ERK / MAPK 
pathway. In IPF, HSP produces TGF-β, which causes 
epithelial mesenchymal transition (EMT) and pulmo-
nary fibrosis through SMAD / P38 / ERK / MAPK [45]. 
HSP also activates HFL-1 after binding to LRP-1 and 
eventually produces TGF-β [46].

In mustard victims, as in IPF, HSP causes inflam-
mation through TGF-β and activation of P38 / MAPK 
pathway [47]. CD74 is a TF receptor, and this protein 
along with HSP played a dual role in pathogenesis; 
moreover, the findings of the present study have shown 
that their expression has variations. Therefore, identify-
ing the pathways that reduce inflammation via HSP and 
CD47 can contribute to therapeutic designs.

In addition to shared genes, several genes were observed 
in disease alone and were evaluated under the influence of 
molecular mechanisms involved in pathogenesis.

Growth factor receptor‑bound protein 2 (GRB2)
GRB2 is a gene expressed on many cells. It binds to 
several receptors through its domains, including EGFR 
and FGFR, and regulates many cellular molecular pro-
cesses. Studies have shown that in COPD GRB2, by 
activating the PI3K / AKT pathway, it increases the 
BCL-2 expression and prevents the apoptosis of airway 
epithelial cells (AECs) [48]. By activating inflammatory 
cells, it also induces inflammatory reactions in patients. 
GRB2 has been shown to produce IL-1, IL-6 and 
TNF-α through MAPK signaling. The production of 
these cytokines stimulates monocytes and neutrophils 
and generates inflammatory mediators. GRB2 also pro-
duces MMPs and stimulates inflammatory responses in 
AECs by generating VEGF and activating the MAPK / 
ERK pathway [48, 49].
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The role of GRB2 in the pathogenesis of IPF varies. 
Accordingly, it has been determined that GRB2 is located 
downstream of the TGF-β receptor and activates the 
Raf / MEK / ER1 / 2 pathway. Activation of this pathway 
leads to the proliferation of fibroblast cells. The activa-
tion of the said pathway also stimulates the production of 
MMPs and the proliferation of collagen cells, which cause 
fibroblast cells to proliferate [50].

Thus, although GRB2 is involved in both diseases, its 
downstream pathways differ in each disease, a finding 
that can help the design of treatment strategies.

Estrogen receptor 1 (ESR1)
ESR1 was identified as the gene most closely associated 
with other genes in asthma. ESR1 in asthma regulates the 
proliferation and remodeling of airway smooth muscle 
(ASM). The results revealed that ESR1 produces TNF-α 
and activates PDFG. These factors lead to the produc-
tion of MMPs and prevent the activation of their inhibi-
tors (TIMPs) [51]. Based on the literature, ESR1 produces 
TNF-α by activating the NF-κB pathway. The generation 
of these factors leads to extracellular matrix (ECM) stim-
ulation, which increases the remodeling of ASM. There-
fore, the regulation of ESR1 expression in patients can be 
a therapeutic route to prevent the progression of the dis-
ease through targeted therapy [51].

Interferon Regulatory Factor 7 (IRF7)
To date, no study has been conducted on the molecu-
lar mechanism of IRF7 in MLD patients. However, its 
expression has been shown to decline in these patients 
compared with healthy individuals. IRF7 is known to 
suppress inflammation. It reduces the production of 
inflammatory mediators by suppressing the NF-κB path-
way. Thus, since inflammation is an inflammatory mech-
anism in MLD, the regulation of IRF7 expression can be a 
suitable treatment route [52, 53].

Conclusion
The genes and pathways shared by COPD, asthma, IPF, 
and MLD were investigated. The results showed 22 shared 
genes involved in many pathways, including lipid metab-
olism, post-translational protein modification, platelet 
degranulation, etc. However, most genes were involved 
in stimulating the immune system and causing inflamma-
tion. The dysregulation of proteins can activate signaling 
pathways and release inflammatory mediators. Still, some 
of these genes were shown to act as double-edged swords 
as they both induce and inhibit inflammation. Given 
that these genes activate different pathways in the cited 
diseases, identifying the factors and their downstream 
pathways can be effective in designing preventive and 
therapeutic strategies.
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