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Abstract 

Background  Stroke attributable to atrial fibrillation (AF related stroke, AFST) accounts for 13 ~ 26% of ischemic stroke. 
It has been found that AFST patients have a higher risk of disability and mortality than those without AF. Additionally, 
it’s still a great challenge to treat AFST patients because its exact mechanism at the molecular level remains unclear. 
Thus, it’s vital to investigate the mechanism of AFST and search for molecular targets of treatment. Long non-coding 
RNAs (lncRNAs) are related to the pathogenesis of various diseases. However, the role of lncRNAs in AFST remains 
unclear. In this study, AFST-related lncRNAs are explored using competing endogenous RNA (ceRNA) network analysis 
and weighted gene co-expression network analysis (WGCNA).

Methods  GSE66724 and GSE58294 datasets were downloaded from GEO database. After data preprocessing and 
probe reannotation, differentially expressed lncRNAs (DELs) and differentially expressed mRNAs (DEMs) between AFST 
and AF samples were explored. Then, functional enrichment analysis and protein-protein interaction (PPI) network 
analysis of the DEMs were performed. At the meantime, ceRNA network analysis and WGCNA were performed to 
identify hub lncRNAs. The hub lncRNAs identified both by ceRNA network analysis and WGCNA were further validated 
by Comparative Toxicogenomics Database (CTD).

Results  In all, 19 DELs and 317 DEMs were identified between the AFST and AF samples. Functional enrichment 
analysis suggested that the DEMs associated with AFST were mainly enriched in the activation of the immune 
response. Two lncRNAs which overlapped between the three lncRNAs identified by the ceRNA network analysis and 
the 28 lncRNAs identified by the WGCNA were screened as hub lncRNAs for further validation. Finally, lncRNA GAS6-
AS1 turned out to be associated with AFST by CTD validation.

Conclusion  These findings suggested that low expression of GAS6-AS1 might exert an essential role in AFST through 
downregulating its downstream target mRNAs GOLGA8A and BACH2, and GAS6-AS1 might be a potential target for 
AFST therapy.

Keywords  Atrial fibrillation, Stroke, Competing endogenous RNA, Weighted gene co‑expression network analysis, 
Long non-coding RNA, GAS6-AS1

*Correspondence:
Wei Cui
cuiweihb2h@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-023-01478-y&domain=pdf


Page 2 of 14Li et al. BMC Medical Genomics           (2023) 16:51 

Introduction
Atrial fibrillation (AF), affecting 25% of adults world-
wide, is the most common clinical tachyarrhythmia [1] 
and is independently associated with a two-fold risk 
of mortality [2, 3]. Stroke attributable to atrial fibrilla-
tion (AF related stroke, AFST) accounts for 13 ~ 26% of 
ischemic stroke [4], and this proportion increases with 
age [5]. AFST is characterized by a high percentage of 
early recurrent ischemic stroke [6] and hemorrhagic 
transformation (HT) in the days immediately follow-
ing the index stroke [7]. AFST patients have a worse 
prognosis, including higher risk of disability and mor-
tality, than those without AF [8]. Nowadays, a growing 
number of studies focus on preventing and intervening 
stroke in AF patients, however, the molecular mecha-
nism of AFST is still not clearly understood, making 
its treatment a big challenge. Therefore, investigating 
the mechanism of AFST, as well as searching for the 
molecular targets for treatment, are of great clinical 
importance.

Long non-coding RNAs (lncRNAs) are a new kind 
of non-coding RNAs that lack of functional protein-
coding ability [9], and are found of pronounced lower 
amounts than protein-coding genes. The function of 
lncRNAs in human transcription and epigenetics has 
been widely demonstrated [10]. Numerous research 
has shown that lncRNAs are related to various diseases, 
including cancer, heart failure, myocardial infarction 
and diabetes [11–14]. Despite these findings, the mech-
anism of lncRNAs in AFST remains unclear. According 
to the competing endogenous RNA (ceRNA) hypoth-
esis, lncRNA can regulate messenger RNA (mRNA) 
expression as miRNA sponge [15]. By constructing 
disease-associated lncRNA-miRNA-mRNA regulatory 
ceRNA network, it is possible to identify disease-asso-
ciated hub lncRNAs.

The weighted gene co-expression network analy-
sis (WGCNA) is a relatively recent method to inves-
tigate the complex association between genes and 
clinical characteristics [16]. WGCNA can aggregate 
co-expressed genes into modules to identify disease-
related hub genes. Co-expression modules associ-
ated with diseases can be constructed not only using 
mRNAs, but also miRNAs or lncRNAs [17, 18]. The 
method has been widely used to study plenty of dis-
eases, including cancer [19], severe asthma [20], and 
proved to be an effective method to identify potential 
therapeutic molecular targets.

In this study, we aimed to identify potential hub lncR-
NAs associated with AFST using ceRNA network anal-
ysis and WGCNA.

Materials and methods
In the current study, we integrated two datasets from 
the Gene Expression Omnibus (GEO) database. To 
uncover lncRNAs involved in AFST pathogenesis, it 
was imperative to combine diverse methods or biol-
ogy algorithms, thus we conducted a series of analy-
ses including differential expression analysis, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses, pro-
tein–protein interaction (PPI) network of the differen-
tially expressed mRNA (DEMs) and cluster analysis, 
WGCNA, ceRNA network analysis, Comparative Toxi-
cogenomics Database (CTD) validation, prognostic 
analysis based on Receiver operating characteristics 
(ROC). The workflow was illustrated in Fig. 1.

Data sources
GEO is a public genomic data repository containing 
array-based data [21]. Following screening, two datasets 
of GSE66724 [22] and GSE58294 [23], both of which were 
annotated using GPL570 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array, were downloaded 
from GEO database. Since the two datasets shared the 
same platform, these two candidates were selected for 
the integrated analysis. In all, 16 blood samples were col-
lected from 8 patients with AF but no stroke (AF group), 
and 8 patients with both AF and stroke (AFST group) in 
GSE66724. Blood samples of GSE58294 were collected 
from patients with AF and stroke (AFST group, n = 69) 
and patients with AF but no stroke (AF group, n = 23). In 
GSE58294, all blood samples were obtained during the 
acute phase of the stroke.

Data preprocessing and probe reannotation
R packages of “affy” and “limma” were applied to assess 
GSE66724 and GSE58294 RAW data. The data were pre-
processed by Robust Multi-array Average (RMA) pro-
cedure, and then the data of these two datasets were 
integrated for the subsequent analysis. Then, we marked 
different datasets as different batches, and used the 
“Combat” function in the “sva” package of R software to 
adjust the batch effect between the two datasets, then 
the principal component analysis (PCA) cluster plot 
was drawn to illustrate the samples before and after the 
batch effect removal. Reannotation of Affymetrix micro-
array probes to lncRNAs was performed according to 
the literature [24]. Only lncRNAs with mean expression 
values > 0.5 in each sample were selected, finally, 1347 
lncRNAs were obtained. Before proceeding to the next 
step, the expression value was normalized using “normal-
izeBetweenArrays” function in the “limma” package. The 
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repeatability of the data was also validated by the PCA 
[25]. The PCA and PCA cluster plots were carried out by 
the “FactoMineR” and “Factoextra” packages.

Differentially expressed lncRNA (DELs) and differentially 
expressed mRNAs (DEMs) analyses
The “limma” package was used to explore DELs and 
DEMs between AFST and AF samples using the empiri-
cal bayes method [26]. Benjamin multiple test calibra-
tion was used to calculate the false discovery rate (FDR). 
Finally, the FDR < 0.05 and Fold change (FC) > 1.5 was 
taken as the threshold to select DELs and DEMs. There-
after, a volcano plot of the DELs and DEMs was plotted 
using the “ggplot2” package. A hierarchical cluster heat-
map was plotted to represent DEL and DEM expression 
intensity using the “pheatmap” package.

Functional enrichment analysis of the DEMs
With GO enrichment analysis, genes could be annotated 
using dynamic, controlled terms, which were distrib-
uted into biological processes (BP), cellular components 
(CC), and molecular functions (MF). In KEGG analysis, 
genomic information was linked to higher-order func-
tional information and specific pathways. We used the 
“clusterProfiler” package to analyze the enrichment of 
GO terms and KEGG pathways in DEMs. Adjusted p 
value < 0.05 as well as q value < 0.05 were applied as the 
detection threshold, and the enrichment results were dis-
played using a dot graph and GOcircle plot.

At the same time, GO enrichment analysis and KEGG 
enrichment analysis were also performed based on 
Metascape [27]. The p-value < 0.01 was applied as the 
detection threshold. Then, a network representing the 
enriched GO terms and KEGG pathways was con-
structed. The network was visualized using Cytoscape 

Fig. 1  Flowchart of the study. WGCNA, weighted gene co-expression network analysis; PPI, protein-protein interaction; CTD, Comparative 
Toxicogenomics Database; miRNA, microRNA; lncRNA, long non-coding RNA; ceRNA, competing endogenous RNA
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software (V3.6.0) and nodes that represent the enriched 
terms and pathways were colored according to cluster ID 
and p-value [27]. Based on the DEMs identified in our 
study, we performed the gene-pathway crosstalk analy-
sis to investigate the interactions among significantly 
enriched genes and pathways using the ClueGO and 
Cluepedia plug-in of Cytoscape, and the enriched genes 
and pathways were mapped into a crosstalk network.

Identification of protein‑protein interaction (PPI) networks 
of DEMs
PPI network analysis of DEMs was performed using 
Metascape. A network was constructed when proteins 
interacted with each other. Subsequently, Cytoscape 
software (V3.6.0) was applied to visualize and analyze 
the network, and the topological features including the 
degree, closeness, betweenness of the nodes in the PPI 
network were calculated using the CentiScaPe plug-in 
of Cytoscape. In order to search clusters, the Molecular 
Complex Detection (MCODE) plug-in of Cytoscape was 
used.

CeRNA network construction
The MiRcode database (http://​www.​mirco​de.​org/), which 
included presumed interactions between lncRNAs and 
miRNAs, was used to predict DELs’ relevant target miR-
NAs [28]. Then, according to the miRTarBase (http://​
miRTa​rBase.​cuhk.​edu.​cn/), miRDB (http://​mirdb.​org), 
and TargetScan (http://​www.​targe​tscan.​org) databases 
[29–31], the aforementioned miRNAs’ relevant target 
mRNAs were predicted. Only the mRNAs that were 
identified in all three databases were screened as target 
mRNAs. In summary, the final ceRNA network con-
tained the DELs, the predicted miRNAs, and the inter-
section of the target mRNAs and DEMs.

Identification of Hub lncRNAs through WGCNA
To explore the association between genes and clini-
cal traits, the lncRNA expression matrix was extracted 
from the merged dataset. All 1347 lncRNAs were cho-
sen to construct the co-expression modules following the 
instruction of “WGCNA” package [16]. First, we used the 
“picksoftthreshold” function in the “WGCNA” package 
to calculate the soft threshold power β for each module. 
Following the β being settled down, the adjacency matrix 
was constructed and transformed into a topological over-
lap matrix (TOM). Then, hierarchical clustering and 
dynamic tree cut were performed with a merging cut-off 
value of 0.25 to determine co-expression modules.

The module eigengene (ME) was a weighted average 
gene expression value and indicated the overall expres-
sion level of the module. Then, pearson’s correlation anal-
ysis was performed on MEs and clinical traits, allowing 

the identification of the modules which were significantly 
associated with the external traits. To further verify the 
module-trait correlation, we also calculated the module 
significance (MS, defined as the average absolute GS of 
all genes in the module). In general, modules with high 
MS values were considered as key modules. For each 
module, gene significance (GS) represented the associa-
tion between genes and clinical traits, and module mem-
bership (MM) represented the association between genes 
and MEs. In the key modules, lncRNAs with |GS|> 0.6 
and |MM|> 0.5 were identified as AFST related hub 
lncRNAs.

Using a Venn diagram, the intersection between the 
hub lncRNAs identified by WGCNA and ceRNA net-
work analysis was determined. Next, using Cytoscape 
software (V3.6.0), we built a sub-ceRNA regulatory net-
work including the overlapped hub lncRNAs, its target 
miRNAs, and the downstream mRNAs.

Further validation of the lncRNAs and mRNAs 
in the sub‑ceRNA network
The CTD (http://​ctd.​mdibl.​org) provided information 
about the associations between gene products, pheno-
types, and diseases [32]. Using the CTD, we were able to 
identify the potential relationship between lncRNAs and 
mRNAs in our sub-ceRNA network and the diseases of 
AF and stroke, with the inference score indicating the 
strength of association. The genes with high inference 
scores were identified as having potential clinical impli-
cations. Then the expression profiles of the genes were 
shown and ROC curves were generated to evaluate their 
diagnostic accuracy, and sensitivity and specificity were 
assessed using the area under the curve (AUC).

Results
Identification of DELs and DEMs in AFST
After data preprocessing, merging, and reannotation 
of GSE66724 and GSE58294 (Additional files 1 and 2), 
54,674 probes corresponding to 18,084 genes, which con-
tained 1347 lncRNAs and 16,737 protein-coding genes, 
were obtained. According to PCA, significant differences 
between AF and AFST samples were found (Fig.  2A). 
Using a threshold of FC > 1.5 and FDR < 0.05, a total of 
19 DELs and 317 DEMs were identified between AFST 
samples and AF samples (Additional files 3 and 4). In the 
AFST samples, 6 DELs were upregulated, 13 were down-
regulated; while out of 317 DEMs, 168 were upregulated, 
149 were downregulated. A volcano plot and a heatmap 
of the DELs or DEMs were shown in Fig. 2. In the heat-
map, the top 100 DELs or DEMs according to the value of 
|logFC| were shown and the AFST samples and AF sam-
ples were clearly distinguishable from the heatmap.

http://www.mircode.org/
http://miRTarBase.cuhk.edu.cn/
http://miRTarBase.cuhk.edu.cn/
http://mirdb.org
http://www.targetscan.org
http://ctd.mdibl.org
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Functional enrichment analysis of the DEMs
The enrichment analyses of GO and KEGG pathways 
with a cut-off value of adjusted p-value < 0.05 as well as 
q-value < 0.05 were presented in Additional files 5 and 6, 
where the top 20 GO terms and KEGG pathways were 
shown according to the adjusted p-value. As shown 
in Fig.  3A and Additional file  7, activation of immune 
response, immune response-regulating cell surface recep-
tor signaling pathway, and antigen receptor-mediated 
signaling pathway were dominant enriched BP terms, 
meanwhile, the enriched MF term was immune receptor 
activity. The concentric circle diagram of the GO analy-
sis was shown in Additional file 8. Moreover, the KEGG 
enrichment analysis showed that the complement and 
coagulation cascade was the most enriched pathway, fol-
lowed by hematopoietic cell lineage, NF-kappa B signal-
ing pathway, B cell receptor signaling pathway (Fig. 3B). 
The significantly enriched terms and pathways might 
contribute to a further understanding of the role played 
by DEMs in AFST.

Additionally, we used Metascape to analyze functional 
enrichment, and the enriched terms were integrated into 
the networks by cluster ID and p-value. Nodes with the 
same cluster ID were colored the same in Fig.  3C, and 
terms enriched with more genes tended to be more sig-
nificant in Fig. 3D. At the same time, we performed the 
gene-pathway crosstalk analysis to investigate the inter-
actions among significantly enriched genes and pathways 
using the ClueGO and Cluepedia plug-in of Cytoscape, 
a gene-pathway network was constructed to visualize the 
associations between the significantly enriched pathways 
and genes (Fig. 4).

As a result of the enrichment analysis described above, 
the DEMs associated with AFST were mainly enriched 
in the activation of immune response and complement 
and coagulation cascades. The results showed that AFST 
might be closely associated with the process of immune 
response and complement and coagulation cascades.

PPI network and cluster analysis
In order to better understand the DEM interactions, we 
used Metascape to analyze PPI network. The PPI network 
was composed of 216 nodes and 339 edges (Additional 
file 9), and the topological features including the degree, 
closeness, and betweenness of the nodes in the PPI net-
work were showed in Additional file 10. Then we used the 
MCODE plug-in of Cytoscape to search for clusters in 
the network. Finally, according to k-core = 2, four clusters 
were identified (Additional files 9 and 11).

Construction of the ceRNA network
First, the miRcode database was applied to predict miR-
NAs interacting with DELs. In all, 165 interactions 
between 4 DELs and 109 unique miRNAs were deter-
mined (Additional file  12). Following that, the target 
mRNAs of the 109 miRNAs were predicted using the 
miRTarBase, miRDB, and TargetScan databases. In total, 
688 interactions between 109 miRNAs and 599 distinct 
mRNAs were identified (Additional file 13). Based on the 
overlapped mRNAs of the 599 mRNAs and 317 DEMs, a 
ceRNA network consisting of 3 lncRNAs, 7 miRNAs, and 
11 mRNAs was constructed (Table 1, Additional file 14). 
All the three lncRNAs (LINC00323, LINC00342, GAS6-
AS1) were downregulated in AFST patients.

Fig. 2  Identification DEMs and DELs in the merged dataset. A Principal component analysis plot for the merged dataset. B The volcano plot 
shows the upregulated and downregulated DEMs and DELs in AFST samples. The upregulated DEMs and DELs are highlighted in red, while the 
downregulated ones are highlighted in blue. The vertical lines represent the |FC| equals to 1.5; and the horizontal line represents the FDR equals to 
0.05. C Heatmap of the top 100 DELs and DEMs. AF, atrial fibrillation; AFST, atrial fibrillation related stroke; FDR, false discovery rate; FC, fold change; 
DEMs, differentially expressed mRNAs; DELs, differentially expressed lncRNAs
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Fig. 3  The functional enrichment analysis of the DEMs. A GO enrichment analysis. B KEGG pathway enrichment analysis. In A and B, the dot color 
reflects the level of significance, whereas the dot size reflects the number of target genes enriched in the corresponding pathway. C Network 
of enriched terms analyzed by Metascape (colored by cluster ID). D Network of enriched terms analyzed by Metascape (colored by p-value). In 
C nodes share the same cluster ID are typically close to each other. In D, the deeper of the color, the more significant of the p-value. GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEMs, differentially expressed mRNAs
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Identification hub lncRNAs through WGCNA
In order to further verify the hub lncRNAs, we performed 
WGCNA in which all 1347 lncRNAs were included to 
construct the co-expression modules. The samples were 
analyzed using hierarchical clustering, and four obvious 
outliers (GSM1406037, GSM1406065, GSM1630733, 
GSM1630739) were removed from the cohort before 
WGCNA (Fig. 5A). It was shown in Fig. 5B that a thresh-
old power of 3 was sufficient for WGCNA. As illustrated 
in Fig. 5C, the final 7 modules were identified based on 
a hierarchical clustering and dynamic tree cutting algo-
rithm (cut-off value was 0.25). The largest module (blue) 
contained 906 lncRNAs while the smallest one (pink) 

contained 21 lncRNAs. By WGCNA, genes without 
a distinct module assignment were grouped in a gray 
module and were dismissed in the following analysis. 
Furthermore, interactions between the seven modules 
were analyzed. Together with the eigengene adjacency 
heatmap, the dendrogram of the modules demonstrated 
a high level of co-expression module independence 
(Fig. 5D).

Using correlation analysis, we investigated the rela-
tionship between modules and external traits. The green 
module had the most negative correlation with AFST 
(r = − 0.74), while the brown module had the most posi-
tive correlation with AFST (r = 0.73). (Fig. 6A). Moreover, 

Fig. 4  Gene-pathway crosstalk network. The large circles represent pathways, and the size of large circles indicates the level of significance of the 
pathway, and the pathways are grouped according to the kappa score. The small circles represent genes, and the thickness of the lines indicates the 
strength of the interaction
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across all modules, the green module had the highest MS 
values, followed by the red module and the brown mod-
ule (Fig. 6B). Therefore, taking together the results of cor-
relation analysis and MS, the red module, green module, 
and brown module were identified as the core modules 
for AFST. In addition, the genes in the 3 modules were 
analyzed using GS and MM. The genes in the upper right 
section of Fig.  6C–E, which had high values of GS and 
MM, were significantly associated with AFST and were 
the most important elements of the three modules at the 
same time. Consequently, a total of 28 lncRNAs (Table 2) 
in the upper right section of Fig. 6C–E were considered 
for further analysis.

The overlapped lncRNAs of the three lncRNAs in the 
ceRNA network and the 28 lncRNAs identified through 

Table 1  CeRNA network of lncRNAs, miRNAs and mRNAs in 
AFST

ceRNA Competing endogenous RNA, AFST Atrial fibrillation related stroke, 
lncRNA Long non-coding RNA, miRNA microRNA, mRNA messenger RNA

lncRNAs miRNAs mRNAs

LINC00323 hsa-miR-507 BCL7A

hsa-miR-363-3p GOLGA8A, SERTAD3, LHFPL2

hsa-miR-107 TGFBR3

hsa-miR-33a-3p DLGAP5

LINC00342 hsa-miR-142-3p SLC37A3, C9orf72

hsa-miR-27a-3p TGFBR3, ABCA1

hsa-miR-129-5p EBF1

GAS6-AS1 hsa-miR-363-3p GOLGA8A, SERTAD3, LHFPL2

hsa-miR-507 BACH2, BCL7A

Fig. 5  Construction of Co-expression modules used WGCNA. A Sample clustering to detect outliers. The red line represents the threshold for 
outlier. B Soft-threshold power analysis. The left picture shows the scale free fit index for each soft-thresholding power. The right picture displays 
the mean connectivity for each soft-thresholding power. C Co-expression cluster dendrogram, based on TOM similarity. Each color represents one 
module. D Module eigengene clustering and eigengene adjacency heatmap, which shows the correlation between each module. TOM; topological 
overlap matrix; WGCNA, weighted gene co-expression network analysis
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WGCNA, GAS6-AS1 and LINC00342, were identified 
as hub lncRNAs (Fig. 6F). These two lncRNAs, together 
with their target miRNAs and mRNAs, were applied to 
construct a sub-ceRNA network (Fig.  7). According to 
ceRNA theory, as miRNA sponges, lncRNAs were sup-
posed to regulate mRNAs positively. In our sub-ceRNA 
network, two downregulated lncRNAs (GAS6-AS1, 
LINC00342) and four downregulated mRNAs (BCL7A, 
BACH2, GOLGA8A, EBF1) aligned with the ceRNA the-
ory, and were considered for further investigation.

Further validation of the lncRNAs and mRNAs 
in the sub‑ceRNA network
Then, using the CTD, we predicted the potential role 
of the aforementioned six genes in AF and stroke. The 
inference score for the RNAs targeted AF and stroke 
was shown in Table  3. Finally, one lncRNA, GAS6-AS1, 
and three mRNAs including BCL7A, BACH2, GOL-
GA8A turned out to be associated with AFST based on 
ceRNA network analysis and WGCNA, as well as CTD 

validation. GAS6-AS1 might function, at least in part, as 
a ceRNA to regulate BCL7A, BACH2, and GOLGA8A in 
AFST.

The expression levels of the four hub genes were shown 
in Additional file  15, which showed that GAS6-AS1, 
BCL7A, BACH2, and GOLGA8A expression were sig-
nificantly lower in the AFST samples compared with the 
AF samples. Subsequently, ROC curves were performed 
to assess the diagnostic value of the hub genes for AFST, 
and it was shown that the AUC for GAS6-AS1 was 0.828. 
Similar results for BCL7A, BACH2, and GOLGA8A were 
presented in Additional file 16.

Discussion
In the current study, 31 blood samples from AF patients 
and 77 blood samples from AFST patients were 
enrolled from two datasets. For the first time, we found 
that lncRNA GAS6-AS1 might be associated with AFST. 
Both ceRNA network analysis and WGCNA were per-
formed to confirm the role of GAS6-AS1 in AFST. The 

Fig. 6  Identification of AFST related module and hub lncRNAs by WGCNA. A Heatmap of the correlation between the MEs and clinic traits. The 
Green module and the brown module are the most relevant modules with AFST. B Barplot of the MS across modules related to AFST. C Scatter 
plot between GS for AFST and the MM in brown module. D Scatter plot between GS for AFST and the MM in green module. E Scatter plot 
between GS for AFST and the MM in red module. F A Venn diagram of the lncRNAs identified in ceRNA network analysis and WGCNA. The overlap 
between lncRNAs in ceRNA network and lncRNAs with |GS|> 0.6 and |MM|> 0.5 in brown, green and red modules represent the hub lncRNAs for 
further validation. lncRNA, long non-coding RNA; AFST, atrial fibrillation related stroke; ME, module eigengene; MS, module significance; GS, gene 
significance; MM, module membership; ceRNA, competing endogenous RNA; WGCNA, weighted gene co-expression network analysis
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two different methods yielded identical results regard-
ing the function of GAS6-AS1 in AFST, which was fur-
ther confirmed by CTD. The reliable results indicated 

that lncRNA GAS6-AS1 might be a potential predictor 
of AFST or a potential therapeutic target in treating 
AFST.

Table 2  Hub lncRNAs identified in WGCNA

WGCNA Weighted gene co-expression network analysis, GS Gene significance, MM Module membership, lncRNA Long non-coding RNA

lncRNAs GS p-value (GS) MM p-value (MM) Module color

LINC00926 − 0.556 0.000 − 0.749 0.000 Brown

SEPSECS-AS1 − 0.558 0.000 − 0.661 0.000 Brown

LINC00342 − 0.735 0.000 − 0.904 0.000 Brown

ST20-AS1 0.542 0.000 0.722 0.000 Brown

DLGAP1-AS2 0.699 0.000 0.791 0.000 Brown

FAM13A-AS1 0.557 0.000 0.675 0.000 Brown

ZNF790-AS1 − 0.535 0.000 − 0.720 0.000 Brown

TSPOAP1-AS1 − 0.604 0.000 − 0.907 0.000 Brown

DANCR − 0.565 0.000 − 0.720 0.000 Brown

EPB41L4A-AS1 − 0.543 0.000 − 0.783 0.000 Brown

ZFAS1 0.608 0.000 0.717 0.000 Brown

CKMT2-AS1 − 0.515 0.000 − 0.789 0.000 Brown

TNRC6C-AS1 − 0.543 0.000 − 0.736 0.000 Brown

TPT1-AS1 − 0.511 0.000 − 0.674 0.000 Brown

HCG18 − 0.520 0.000 − 0.801 0.000 Brown

GAS6-AS1 − 0.550 0.000 0.608 0.000 Green

LINC01527 − 0.532 0.000 0.685 0.000 Green

LINC00624 − 0.642 0.000 0.685 0.000 Green

DUBR − 0.572 0.000 0.702 0.000 Green

LINC00550 − 0.688 0.000 0.819 0.000 Green

LINC00276 − 0.638 0.000 0.720 0.000 Green

KRBOX1-AS1 − 0.546 0.000 0.754 0.000 Green

C17orf77 − 0.569 0.000 0.759 0.000 Green

DSG2-AS1 − 0.634 0.000 0.765 0.000 Green

SSBP3-AS1 − 0.561 0.000 − 0.709 0.000 Red

LINC01089 − 0.536 0.000 − 0.738 0.000 Red

ARRDC1-AS1 − 0.562 0.000 − 0.682 0.000 Red

CCDC18-AS1 − 0.585 0.000 − 0.678 0.000 Red

Fig. 7  Construction of the AFST-related lncRNA-miRNA-mRNA sub-ceRNA network. Rhombuses represent lncRNAs, triangles represent miRNAs 
and ellipses represent mRNAs, respectively. Red and blue color represent down-regulation and up-regulation, respectively. According to ceRNA 
theory, lncRNAs are supposed to regulate mRNAs positively, so only the genes with the same color (red) in the network are in accordance with 
the theoretical expectation. ceRNA, competing endogenous RNA; AFST, atrial fibrillation related stroke; lncRNA, long non-coding RNA; miRNA, 
microRNA; mRNA, messenger RNA
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Several studies had assessed the biomarkers in AFST 
previously. It was suggested by Allende et  al. [22] that 
Hsp70 protected AFST patients by preventing throm-
bosis without increasing bleeding risk and it would be a 
new target to treat AFST patients. Using the datasets of 
GSE79768 and GSE58294, Zou et al. [33] found that the 
expression of ZNF566, PDZK1IP1, ZFHX3, and PITX2 
genes were related to AFST and may be potential thera-
peutic targets for it. Based on the datasets of GSE66724 
and GSE58294, Zhang et  al. [34] found that ten genes 
including SMURF2, CDC42, UBE3A, RBBP6, CDC5L, 
NEDD4L, UBE2D2, UBE2B, UBE2I, and MAPK1 were 
overexpressed in AFST patients. According to Li et al. 
[35], the factor of inflammation was supposed to be 
considered when treating AFST patients, and certain 
genes, including MEF2A, CAND1, PELI1, and PDCD4 
were identified and might contribute to the patho-
genesis of AFST. The inconsistency of the hub genes 
in different studies might be attributed to the differ-
ent samples included and different analysis protocols. 
It was intriguing that all the aforementioned studies 
focused on the differentially expressed mRNAs, to our 
knowledge, no previous study had investigated the role 
of lncRNA in AFST.

In 1988, for the first time, Schneider and his col-
leagues identified six members of the growth-arrest-
specific (GAS) family of genes [36]. Located on 
chromosome 13q34, the GAS6 gene has been shown 
to contribute to cell proliferation. An antisense RNA 
of GAS6, named GAS6-AS1, which is transcribed from 
chromosome 13q34 too, also plays an important role in 
the pathogenesis of many kinds of cancers. In different 
cancers, the role of GAS6-AS1 on patients’ prognosis is 
extensively inconsistent. GAS6-AS1 may play a tumor 
suppressor role in lung cancer [37]. Similarly, a higher 
level of GAS6-AS1 expression is associated with a bet-
ter survival in Non-Small-Cell Lung Cancer (NSCLC) 
patients [38]. Nevertheless, GAS6-AS1 promotes the 
migration and proliferation of gastric cancer cells by 
enhancing their entry into S-phase [39]. By sponging 

miR-370-3p, GAS6-AS1 contributes to the develop-
ment of acute myeloid leukemia [40]. The opposite 
results that both the oncogenic [41] effect and anti-
oncogenic [42] effect are obtained in papillary renal cell 
carcinoma.

The role of GAS6-AS1 in stroke has rarely been inves-
tigated. It’s suggested that GAS6-AS1 may be related to 
an increased risk of HT after intravenous thrombolysis 
in acute ischemic stroke patients [43]. In the current 
study, the association between GAS6-AS1 and AFST is 
reported for the first time. GOLGA8A, one of the target 
mRNAs of GAS6-AS1 in our ceRNA network, has been 
shown to be related to intracerebral hemorrhage too 
[44]. So, the GAS6-AS1/hsa-miR-363-3p/GOLGA8A 
axis in our ceRNA network seems to be related to 
intracerebral hemorrhage. Meanwhile, AFST is charac-
terized by a high percentage of HT in the days imme-
diately after the stroke [7]. Therefore, it is plausible to 
postulate an association between the GAS6-AS1/hsa-
miR-363-3p/GOLGA8A axis and HT after AFST, which 
warrants further investigation.

Increasing evidence suggests that ischemic stroke is 
associated with profound immune responses in the blood 
and the activation of multiple immune cell subsets. How-
ever, there is still a debate over whether these immune 
responses are beneficial or detrimental [45]. There-
fore, it is crucial to identify specific molecular targets to 
develop a new immunomodulatory treatment to prevent 
the detrimental effect of immune responses after stroke 
[46]. Functional enrichment analyses in our study reveal 
that the DEMs related to AFST are primarily enriched 
in the biological processes of activation of the immune 
response and complement and coagulation cascades. The 
result proposes that AFST may be correlated with the 
process of immune response. Therefore, the hub genes 
identified in our study may be the molecular targets that 
we are looking for to develop new immunomodulatory 
therapies.

Among the three target mRNAs of GAS6-AS1 in our 
ceRNA network, BACH2 has higher inference scores for 
AF and Stroke, at the same time, Bach2 has been sug-
gested as an influential immune-regulating transcription 
factor in T helper 2 (Th2), Follicular T helper (Tfh), reg-
ulatory T cell (Treg), B cells and plays a key role in Th2 
immune response previously [47]. BCL7A tends to be 
related to cancer [48], but not stroke. Taking into account 
the inference scores and the biological function of the 
target mRNAs, it is possible that GAS6-AS1 downregula-
tion may function in AFST patients by regulating BACH2 
as a ceRNA through the immune response.

Collectively, we thus propose an association between 
the ceRNA axis GAS6-AS1/hsa-miR-363-3p/GOLGA8A 
and HT after AFST, and predict that the GAS6-AS1/

Table 3  Inference score between hub genes and AF or stroke

AF Atrial fibrillation, lncRNA Long non-coding RNA, mRNA messenger RNA, NA 
Not available

Hub genes Classification AF Stroke

GAS6-AS1 lncRNA 6.03 6.79

LINC00342 lncRNA NA NA

BCL7A mRNA 15.17 21.53

BACH2 mRNA 10.56 34.99

EBF1 mRNA 9.35 21.07

GOLGA8A mRNA 9.3 26.37
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hsa-miR-507/BACH2 axis has a potential role in AFST 
through inflammatory and immune responses. They 
may be potential targets for AFST therapy. The detailed 
mechanisms may need further investigation.

There are still limitations in our current study. First, 
although different approaches have been used to demon-
strate the role of lncRNA GAS6-AS1, further validation 
is needed to confirm it. Second, due to the lower expres-
sion levels of lncRNAs compared to mRNAs, WGCNA 
is performed only for lncRNAs, and as a result, lncRNA-
mRNA interactions may be missing. Most importantly, 
the potential mechanisms of the association between 
GAS6-AS1 and AFST was speculated on the basis of pre-
vious studies and bioinformatics analysis. Further experi-
ments (both in vivo and in vitro) are desperately needed 
to verify our findings. In addition, gene expression dif-
fers in different stroke phase [49]. All blood samples in 
GSE58294 are taken during the acute phase of the stroke, 
and we cannot rule out that samples taken at a different 
stroke phase may have yielded different results.

Conclusions
In conclusion, we identified a hub lncRNA of GAS6-AS1 
associated with AFST by ceRNA network analysis and 
WGCNA. It was subsequently validated by CTD that 
GAS6-AS1 played a pivotal role in AFST. These findings 
suggested that low expression of GAS6-AS1 might exert 
an essential role in AFST through downregulating GOL-
GA8A and BACH2, by affecting post-AFST hemorrhagic 
transformation and post-AFST immune response, and 
pointed out the direction for further research. Altogether, 
these analyses suggested that GAS6-AS1 might represent 
a potential target for AFST therapy.
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