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Abstract 

Background  Oral cancer (OC) is a debilitating disease that can affect the quality of life of these patients adversely. 
Oral premalignant lesion patients have a high risk of developing OC. Therefore, identifying robust survival subgroups 
among them may significantly improve patient therapy and care. This study aimed to identify prognostic biomark-
ers that predict the time-to-development of OC and survival stratification for patients using state-of-the-art machine 
learning and deep learning.

Methods  Gene expression profiles (29,096 probes) related to 86 patients from the GSE26549 dataset from the 
GEO repository were used. An autoencoder deep learning neural network model was used to extract features. We 
also used a univariate Cox regression model to select significant features obtained from the deep learning method 
(P < 0.05). High-risk and low-risk groups were then identified using a hierarchical clustering technique based on 100 
encoded features (the number of units of the encoding layer, i.e., bottleneck of the network) from autoencoder and 
selected by Cox proportional hazards model and a supervised random forest (RF) classifier was used to identify gene 
profiles related to subtypes of OC from the original 29,096 probes.

Results  Among 100 encoded features extracted by autoencoder, seventy features were significantly related to time-
to-OC-development, based on the univariate Cox model, which was used as the inputs for the clustering of patients. 
Two survival risk groups were identified (P value of log-rank test = 0.003) and were used as the labels for supervised 
classification. The overall accuracy of the RF classifier was 0.916 over the test set, yielded 21 top genes (FUT8-DDR2-
ATM-CD247-ETS1-ZEB2-COL5A2-GMAP7-CDH1-COL11A2-COL3A1-AHR-COL2A1-CHORDC1-PTP4A3-COL1A2-CCR2-
PDGFRB-COL1A1-FERMT2-PIK3CB) associated with time to developing OC, selected among the original 29,096 probes.

Conclusions  Using deep learning, our study identified prominent transcriptional biomarkers in determining high-
risk patients for developing oral cancer, which may be prognostic as significant targets for OC therapy. The identified 
genes may serve as potential targets for oral cancer chemoprevention. Additional validation of these biomarkers in 
experimental prospective and retrospective studies will launch them in OC clinics.
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Introduction
Oral cancer is among the 10th most prevalent cancer 
types among men and the 12th most prevalent can-
cer among women worldwide [1]. Oral cancer is mainly 
observed in the tongue, nevertheless, it can occur on 
many sites including the gingiva, palate, lips as well 
as the floor of the mouth, cheeks, and the area behind 
the wisdom teeth [2]. Oral squamous cell carcinoma 
(OSCC) accounts for over 90% of head and neck can-
cers (with ~ 450,000 new cases annually) [3, 4]. The inci-
dence and deaths due to oral cancer deaths vary across 
the world, with the highest in developing countries [5]. 
Studies have shown that regardless of the advancements 
in screening approaches and pharmacological treat-
ments, the incidence and mortality rates of oral cancer 
are practically increasing [6, 7]. Detecting oral cancer in 
its early stages, as well as timely treatment of the disease, 
are considered the most efficient ways of controlling the 
mortality rate [1]; nevertheless, most the oral tumors 
are diagnosed at an advanced stage which reduces the 
patients’ survival [8]. There are various treatments for 
OSCC, including surgery, radiotherapy, and adjunct 
chemotherapy (sometimes in combination), depending 
on the stage of the disease. However, OSCC has a poor 
prognosis, so the five-year overall survival rate of OSCC 
is less than 50% (ranges from 15 to 60%) [9, 10], depend-
ing on the severity of the disease [11].

The role of several factors including smoking, age, alco-
hol consumption, infections sustained by human papillo-
maviruses (HPVs), Epstein-Barr virus (EBV), or Candida 
albicans in developing OSCC, has been well-established 
[12–14]. Several studies have proposed some biomark-
ers for diagnosing oral cancer lesions with somehow low 
sensitivity/specificity for effective diagnosing of all oral 
tumors [15]. However, only 15% of all pharmaceutical 
agents have demonstrated “sufficient safety and potency 
to gain any sort of regulatory consent” [16]. Moreo-
ver, the biomarkers associated with the time-to-OSCC 
development (patient survival as the objective) that can 
be used in the prognosis of OSCC have not been fully 
understood and remained obscure. This indicates the 
deficiencies in the understanding of cancer complexity 
and highlights the importance of the identification of new 
prognostic biomarkers to obtain information for moni-
toring patients effectively and managing the treatment 
process [16]. Therefore, discovering biomarkers based on 
gene profiles data that are involved in the development 
of OSCC and improvement of survival prediction using 
state-of-the-art models is much needed in patients with 
oral preneoplastic lesions. This provides models that can 
mimic “the diversity of human tumor biology in a pre-
clinical arrangement” efficiently [16], which would help 
an improved prognosis of OSCC and early treatment.

During the past decades, a vast majority of the litera-
ture has considered expert models in ultra-high dimen-
sional feature spaces extensively. Among them, deep 
learning (DL), which is an advanced computer-aided 
technique, has gained much attention in the medical 
field [17], and it has been shown to have a vital role in 
detecting and diagnosing different types of cancer as 
well as prognosis of a disease. Autoencoders are types 
of DL usually used for unsupervised objectives, and 
recently, they have received much attention for unsu-
pervised feature extraction in survival analysis. Studies 
have established autoencoder as an efficient approach 
to produce features related to some clinical outcomes 
like time-to-event response [18, 19] and have utilized 
autoencoders for analyzing genomics and expression 
data in other cancers for unsupervised feature selection 
as inputs of survival analysis [20, 21].

DL has been widely used in various cancers to pre-
dict the survival of patients. For example, Zhang et al. 
conducted a study based on the features obtained by 
an autoencoder algorithm to identify prognostic sub-
types of high-risk neuroblastoma using multi-omics 
data. They showed that the autoencoder outperformed 
other methods like the principal component method 
in terms of prognosis [22]. Takahashi et  al. have used 
an autoencoder to predict the survival of patients with 
lung cancer using omics data. They identified survival-
associated subtypes in non-small cell lung cancer 
(longer and shorter-surviving groups) [23]. Chaud-
hary et  al. utilized an autoencoder in analyzing liver 
cancer data and demonstrated that the DL used pro-
vides robust prognostic subtypes in liver cancer using 
omics data. Moreover, some attempts have been made 
to apply DL in the diagnosis and prognosis of OSCC. 
Parallel to our study, Li et al. have used an autoencoder 
to identify molecular subtypes of OSCC focusing on 
immunosuppression genes. However, they have used 
a different pipeline. Also, Shams and Htike have used 
deep neural networks using feed-forward with back-
propagation design to diagnose, and predict oral cancer 
versus healthy controls based on gene expression pro-
filing [24]. However, the former limited their analysis to 
the immunosuppressive genes and the latter handled a 
classification problem.

Yet, not all aspects of the time-to-development of 
OSCC have been fully understood. Therefore, this study 
used an unsupervised autoencoder framework to build 
a model for predicting the prognosis of OSCC patients 
to provide a prognostic stratification for the survival of 
the patients and to identify potential effective biomark-
ers related to the prognosis of oral cancer in patients 
with the oral preneoplastic lesions.
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Methods
Data source and preprocessing
GSE26549 dataset from the GEO repository related to 
oral cancer tissue transcriptome (generated using the 
Affymetrix transcript version (microarray) with platform 
ID GPL6244) was used. This dataset consisted of pre-
processed expression data of 86 oral preneoplastic lesion 
(OPL) patients, and thirty-five out of the 86 patients 
developed oral cancer [25]. Survival time was defined as 
the time to develop the oral preneoplastic lesions to oral 
cancer in patients. The individuals with oral preneoplas-
tic lesions not develop oral cancer were considered as 
censor. The quantile normalization (QN) procedure was 
utilized using “bestNormalize” R package.

Feature extraction using DL framework
Here, we used the DL computational framework on 
gene expression profiles related to developing OSCC in 
patients with the oral preneoplastic lesions. An autoen-
coder framework was selected as the implementation 
of DL for feature extraction. The philosophy of autoen-
coder is similar to the principal component analysis, 
where linear combinations of the original variables are 
constructed. Autoencoders receive the gene expression 
profiles as the inputs and reconstruct the original input 
by combining some nonlinear functions. These combina-
tions are then used as new features and can be used as 
inputs for further analysis instead of the original variables 
[19]. The preprocessed gene expression profiles related to 
86 samples were used as the input for the autoencoder 
framework. An autoencoder is a feed-forward, nonrecur-
rent neural network that learns through unsupervised 
learning [26], and is trained to reconstruct the original 
input to its output. Let us consider x = (x1. . . . .xn) as 
the input vector of dimension n of the input layer of an 
autoencoder. So, the autoencoder aims to reconstruct the 
x vector by an x’ vector (dimension n). This is done by 
providing successive transformations of x in several hid-
den layers. In this study, for the ith layer, the rectified lin-
ear activation function or ReLU activation function was 
used [27] between input layer x and output layer y, i.e.,

where x is a vector of size d and y is a vector of size p. 
Also, Wi stands for a p× d weight matrix and bi stands 
for the intercept vector with size p. For an autoencoder 
with k layers, x’ is then given by:

where fk−1
◦fk(x) = fk−1 fk(x)  is the composed function 

of fk−1 with fk.

y = fi(x) = ReLU(Wix + bi)

x
′

= F1→k(x) = f ◦1 . . .
◦f ◦k−1

fk(x)

An autoencoder is trained so that different weight 
vectors of Wi are obtained to optimize (minimiza-
tion problem) a specific objective function like mean 
squared error (MSE), measuring the error between the 
input x and the output x′ as follows:

Also, an L1 penalty (say, αw ) on the weight vector of 
Wi and an L2 penalty (say, αa ) on the activities of the 
nodes, F1→k(x) was added to the objective function to 
control overfitting as follows [28]:

In this study, the Python Keras package (https://​
github.​com/​fchol​let/​keras) was utilized to build an 
autoencoder consisting of three hidden layers (500, 100 
and 500 nodes, respectively). The bottleneck layer of the 
autoencoder was used to extract new features from the 
gene profiles of oral cancer patients. Finally, the gradi-
ent descent approach [29] with 140 epochs (iterations) 
and 50% dropout were utilized for training the autoen-
coder as the learning algorithm. Each instance of train-
ing data is processed once by the learning algorithm 
during one epoch. Both regularization parameters of L1 
and L2 were obtained 0.0001 through cross-validation. 
A number of 140 epochs were used.

Hierarchical clustering and feature selection
The extracted features from the autoencoder were 
examined through the univariate Cox proportional haz-
ards (Cox-PH) model [30] to select significant features 
( P < 0.05 ). Then, the significant features were used to 
cluster the patients through the hierarchical clustering 
algorithm [31].

Identifying low and high‑risk groups
The Kaplan–Meier curve and the log-rank test were 
used to identify survival groups (high-risk and low-
risk groups). According to Kaplan Meier’s curve, the 
patients with lower median survival were considered as 
the high-risk survival patients, and the other group was 
regarded as the low-risk group [32]. Also, the prognos-
tic index ( β ′X  ) was calculated for the external valida-
tion set, where β ′ stands for the regression coefficients 
obtained from a multivariate Cox regression model and 
X indicates the matrix of selected genes.

MSE(x · x
′

) =
1

N

N
∑

i=1

(

xi − x
′

i

)2

L
(

x · x′
)

= MSE(x · x′)+

N
∑

i=1

(

αw� Wi �1 + αa� F1→i(x) �
2

2

)

https://github.com/fchollet/keras
https://github.com/fchollet/keras
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Supervised random forest classifier
The survival groups identified in the previous step were 
considered new labels for the patients. A supervised 
random forest classifier was created to choose the risk-
related genes. RF, introduced by [33], constructs many 
classification/regression trees through randomly selected 
training datasets and random subsets of predictors for 
predicting outcomes. The final prediction of the outcome 
is calculated by aggregating the predictions provided by 
each tree. So, higher accuracy is achieved by RF com-
pared to a single decision tree model [34]. Also, RF pro-
vides variable importance criterion for variable selection. 
In this study, variable importance was used to select key 
genes [35]. The tenfold cross-validation technique was 
used to tune the parameters of the RF. Finally, the cut-off 
point of 0.002 was used as a criterion for gene selection.

Gene Ontology (GO) and KEGG pathway enrichment 
analysis
The Database for Annotation Visualization and Inte-
grated Discovery (DAVID) program was used for GO 
and KEGG pathway [36–38] enrichment analysis for 21 
selected genes by the RF method to see if they have a role 
in biological process, cellular component, etc. The Benja-
mini adjusted P-value less than 0.05 was considered sta-
tistically significant. Gene ontology provides information 
that helps to computationally analyze and achieve knowl-
edge about gene functions determined by large-scale 
molecular biology approaches and genetic experiments 
[2]. Pathways associated with genes are also provided in 
gene ontology.

Protein–protein interaction (PPI) network analysis
The PPI network was constructed using the “Search Tool 
for the Retrieval of Interacting Genes” (STRING) for 21 
selected genes. A confidence score of 0.4 was considered 
as a threshold for network construction. Afterward, the 
PPI network was visualized and analyzed by Cytoscape 
software (V 3.8.2).

Results
Thirty-five out of 86 patients developed oral cancer. The 
mean and median follow-up time of the patients were 
9.01 and 10.7  years (min = 0.18 and max = 14.34  years), 
respectively. One-, three- and five-year survival rates of 
the patients were 88%, 73%, and 65%, respectively.

The information on gene expression profiles related 
to 86 patients with oral preneoplastic lesions was used 
as input features of the autoencoder, a DL framework. 
Figure  1 illustrates the architecture of the autoencoder 
(a) and the loss values (MSE) versus the epochs (b). The 
activity of the 100 nodes from the bottleneck hidden 
layer was extracted as new features. Seventy features 

out of the 100 new features were statistically significant 
using univariate Cox-PH regression (P < 0.05), and they 
were shown to be associated with the survival of the 
patients. These 70 features were subjected to hierarchi-
cal clustering, with cluster number K ranging from 2 
to 6. Considering the silhouette index, the number of 2 
(k = 2) clusters was the optimum. Table 1 shows the char-
acteristics of each group identified using clustering based 
on 70 features from DL. The median survival for group 
1 was ~ 5 years and ~ 10 years. Furthermore the survival 
analysis on the entire data (86 patients) showed that the 
survival curves in the two identified clusters (Fig. 2) were 
statistically different (log-rank test P = 0.003). We also 
conducted the penalized principal component analysis 
as an alternative to the DL. Using univariate Cox regres-
sion, 20 out of 100 principal components were signifi-
cant (P < 0.05). The same strategy was used to identify 
two groups, but the difference between the two survival 
curves using this method was not statistically significant 
(P = 0.171). Thus, the two classes were considered labels 
for the subsequent supervised RF classifier.

The RF classifier was trained (sensitivity = 0.814, speci-
ficity = 0.966, and total accuracy = 0.916 over the 30% 
of data as a testing set), and gene profiles related to the 
survival risk groups were selected based on variable 
importance greater than 0.002. Table 2 shows the variable 
importance of 21 top-rank genes with variable impor-
tance greater than 0.002 and their over/under expression 
status in high-risk patients. Also, Fig.  3 illustrates the 
heatmap of the 21 selected genes.

Gene Ontology (GO) and KEGG pathway enrichment 
analysis
Summary of the top GO results and KEGG pathways 
were illustrated in Fig.  4. The results of GO enrich-
ment analysis indicated that collagen fibril organization, 
extracellular matrix organization, skeletal system devel-
opment, cellular response to amino acid stimulus, regu-
lation of immune response, transforming growth factor 
beta receptor signaling pathway, platelet activation, tis-
sue homeostasis, skin development, blood vessel devel-
opment, and chondrocyte differentiation terms were 
significantly enriched in biological process (BP). Colla-
gen trimer, extracellular matrix, endoplasmic reticulum 
lumen, collagen type I trimer, extracellular region, and 
Golgi apparatus were significantly enriched in cellular 
component (CC). Platelet-derived growth factor bind-
ing, extracellular matrix structural constituent conferring 
tensile strength, extracellular matrix structural constitu-
ent, SMAD binding, and identical protein binding terms 
were significantly enriched in molecular function (MF).

The KEGG pathway analysis indicated that the pro-
tein digestion and absorption, human papillomavirus 
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Fig. 1  a Architecture of the autoencoder, and b loss function values over epochs

Table 1  Survival information of two identified groups

Subgroup NO. Patients (%) NO. events
(%)

NO. censor
(%)

Mean (Year) SE Median
(Year)

1 27 (31.4) 16 (59.3) 11 (40.7) 5.33 0.90 5.06

2 59 (68.6) 19 (32.2) 40 (67.8) 10.23 0.81 10.76
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infection, focal adhesion, AGE-RAGE signaling pathway 
in diabetic complications, amoebiasis, platelet activation, 
and relaxin signaling pathway terms were enriched for 21 
selected genes (Fig. 4).

PPI network analysis
The constructed PPI network was composed of 15 nodes 
and 38 edges. In order to find the hub genes, including 
in the pathogenesis of oral cancer, the constructed PPI 
network was evaluated with the CytoHubba package 
under Cytoscape software. The top 10 genes were iden-
tified using the four methods, including degree, MNC, 
EPC, and EcCentricity. After depicting the Venn dia-
gram (Fig.  5), eight common genes including PDGFRB, 
COL1A2, CDH1, DDR2, COL3A1, COL2A1, COL1A1, 
and COL5A2 were selected as hub genes (Fig. 6).

In silico validation of selected genes
An  in silico  validation was conducted for the selected 
probes using two public data sets with series accession 
numbers of GSE9844 and GSE41613 on oral cancer, so 
that we predicted the outcome of independent samples 

related to external data sets based on the selected genes 
from the previous steps using the utilized method in the 
original data set (GSE26549). The first dataset included 
gene expression profiles of 26 microdissected OTSCC 
tissues and 12 matching normal tissue samples [39]. We 
applied the RF method for the classification of the oral 
cancer patients and healthy controls. About 70% of the 
data was considered as a training set, and the rest of them 
were used to test the method. On the training data set, a 
three-fold cross-validation strategy was used to tune the 
parameters. Figure 7a depicts the ROC curve along with 
the AUC for the testing set in the in silico validation data 
set using the selected genes in Table 2. According to the 
results, the AUC was 1.000, indicating that the identified 
genes can successfully predict oral cancer development 
and can be used for the prognosis of the patients.

The second data set included the survival time of 97 
oral cancer patients. The prediction error curve, based on 
a model including selected genes in the previous steps, 
was provided in Fig. 7b indicating that the selected genes 
were potentially informative in predicting the survival 
of the patients with oral cancer. Also, we calculated the 

Fig. 2  Kaplan Meier curve for two subgroup of survival time
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prognostic index ( β ′X , where β ′ stands for the regression 
coefficients obtained from a multivariate Cox regression 
model, and X indicates the matrix of selected genes). So, 
the patients were divided into two risk groups. Figure 7c 
illustrates the Kaplan–Meier survival curves for the two 
groups. The log-rank test showed a statistical difference 
between the curves (Chisq = 8.1 on 1 degree of freedom, 
P = 0.004).

Discussion
According to the findings of the present study, FUT8 
(Fucosyltransferase 8) was the first top gene identified 
by the algorithm used (DL and RF). FUT8 is a protein-
coding gene that encodes an enzyme belonging to the 
family of fucosyltransferases involved in many pathologi-
cal/physiological activities such as tumor metastasis and 
inflammation) [40, 41], and regulating the fucosylation 
of O-glycans and N-glycans [40]. Results of the present 
study indicated overexpression of FUT8 in identified 
high-risk patients compared to the low-risk group, which 
was in concordance with other studies [42]. Studies 
have shown increasing mRNA levels of FUT8 and core 
glycoprotein in tumor tissues of oral cancer patients 
compared with normal oral epithelial/oesophageal tis-
sue [42, 43]. “FUT8 plays an anti-radiation-driven role 
in ESCC by core fucosylation of CD147, and it can be 

used as a marker to predict the radiotherapy response 
of ESCC patients”  [40, 44]. According to the findings, 
DDR2 (Discoidin domain receptor 2) was the second top 
rank gene identified by RF, showing overexpression in 
high-risk patients. This finding was in concordance with 
the results of other studies [45, 46]. DDR2 is a receptor 
tyrosine kinase (RTK), and it has been shown to be acti-
vated through fibrillar collagens [46] and involved in cell 
behaviors of different types of cancer, including VEGF 
expression, differentiation, tumor angiogenesis, inva-
sion, and metastatic potential of HNSCC cell lines [46]. 
DDR2 has been well-established to be activated through 
binding with collagens. Then, a series of intracellular 
pathways of p38, JNK, ERK1/2, Notch-1, and NF-κB are 
activated [47, 48]. Several studies have shown the regula-
tory functions of DDR2 factor in different types of can-
cers, including lung carcinoma [49]. Ataxia telangiectasia 
mutated (ATM)  was the third top rank gene identified 
as an important gene in determining high-risk patients. 
It was shown that it is over-expressed in high-risk sur-
vival group patients. This finding was consistent with 
the results of other studies [50]. ATM encodes a vital cell 
cycle checkpoint (CCK) kinase protein belonging to the 
PI3/PI4-kinase family that functions as a regulator of 
various downstream proteins, including “tumor suppres-
sor proteins p53 and BRCA1, checkpoint kinase CHK2, 
checkpoint proteins RAD17 and RAD9, and DNA repair 
protein NBS1”. This protein is thought to be one of the 
two master controllers of CCK signaling pathways essen-
tial in cell response to DNA damage and genome stability 
[51].

The protein encoded by PDGFRB as a plasma mem-
brane receptor belongs to the platelet-derived growth 
factor family. The binding of PDGF ligands to this 
receptor leads to dimerization and activation of down-
stream signaling pathways having a role in the regula-
tion of  motility and proliferation, differentiation, and 
survival of cells [52].  Lin et  al., in their study, indicated 
that PDGFRB expression level was associated with poor 
prognosis and lymph node metastasis of OSCC [53]. 
E-cadherin protein encoded with CDH1 belongs to the 
cadherin protein family. This transmembrane glycopro-
tein, which regulates cell adhesion, is a tumor suppressor 
protein [54]. Pannone  et al., in their study, showed that 
the expression level of CDH1 decreases in oral tumors in 
mRNA and protein levels. Moreover, the expression level 
of E-cadherin had a reverse correlation with tumor grade 
and prognosis of patients [55].

The protein encoded with COL1A2 and COL1A1  is 
the building block of type I collagen. The expression 
level of COL1A2 is dysregulated in several tumors such 
as malignant melanoma head and neck ovarian pancre-
atic, and bladder cancer [56, 57]. COL3A1 encoded the 

Table 2  Top genes identified by random forest method through 
variable importance (VIMP)

Order Probe set VIMP Gene symbol Value in high-risk group

1 8103389 100 FUT8 Overexpressed

2 8137240 75 DDR2 Overexpressed

3 8128956 46 ATM Overexpressed

4 8055639 36 CD247 Overexpressed

5 8175393 35 ETS1 Overexpressed

6 7903358 32 ZEB2 Overexpressed

7 8055624 31 COL5A2 Overexpressed

8 8101260 27 GMAP7 Overexpressed

9 7926127 26 CDH1 Overexpressed

10 8002218 21 COL11A2 Underexpressed

11 8137244 21 COL3A1 Overexpressed

12 8003667 18 AHR Overexpressed

13 8098637 16 COL2A1 Overexpressed

14 8138805 14 CHORDC1 Overexpressed

15 7943620 12 PTP4A3 Overexpressed

16 7953603 11 COL1A2 Overexpressed

17 7957277 10 CCR2 Overexpressed

18 8045563 9 PDGFRB Overexpressed

19 7953835 7 COL1A1 Overexpressed

20 8171684 7 FERMT2 Overexpressed

21 7929511 6 PIK3CB Overexpressed
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polypeptide chain which was the building block of type 
III collagen. The expression of this gene has an essential 
role in the proliferation and migration of tumor cells and 
is dysregulated in several malignancies, such as ovarian 
cancer and brain tumor [58, 59]. Collagen, type II, alpha 
1  peptide encoded with COL2A1  form the homotrimer 
Type II collagen [60]. Tarpey et  al., in a study, showed 
that in Chondrosarcoma, hyper-mutability of COL2A1 
is common [61]. Moreover, Ganapathi et  al., in a study, 
indicated that the expression level of this gene is associ-
ated with the prognosis of high-grade serous ovarian can-
cer [62]. Type V collagen consists of peptides encoded 
with COL5A2. This gene has an essential role in the regu-
lation of angiogenesis and metastasis of several tumors 

such as osteosarcoma, colorectal cancer, gastric cancer, 
and breast cancer [63, 64].

The results of GO enrichment analysis indicated that 
genes identified in this study representing biological 
pathways were significantly enriched in relation to can-
cers. These findings were in agreement with similar stud-
ies, so that cancer-related terms such as collagen fibril 
organization, extracellular matrix organization [65], cel-
lular response to amino acid stimulus, platelet activa-
tion [66], tissue homeostasis [67], regulation of immune 
response, skin development [68], platelet-derived growth 
factor binding, extracellular matrix structural constitu-
ent, SMAD binding [66], extracellular matrix [65], col-
lagen trimmer, and endoplasmic reticulum lumen [66] 

Fig. 3  Heat-map of the 21 selected genes using random forest related two identified survival groups
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were enriched for 21 selected genes by the RF method. 
Moreover KEGG pathway enrichment analysis indicated 
that cancer related pathways such as protein digestion 
and absorption, platelet activation [65], focal adhesion, 

Amoebiasis [66], human papillomavirus infection [69], 
AGE-RAGE signaling pathway in diabetic complications 
[70], and relaxin signaling pathway [71] were significantly 
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Fig. 4  Summary of the top GO results and KEGG pathways

Fig. 5  The overlap between the top predicted target genes, ranked 
by MNC, MCC, and degree, is illustrated in a Venn diagram

Fig. 6  The PPI network of identified genes, formed by using 
Cytoscape software. Proteins are represented by nodes, and 
interactions between two proteins are described by edges
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enriched which was in agreement with the results of 
other studies.

In the present study, we sued a univariate Cox regres-
sion model as the multivariate regression could not be 
applied here due to a large number of unsupervised 
extracted features (> 100) compared to the sample size 
(n = 86). It is suggested to use other methods of screen-
ing selected features, like penalized Cox regression 
model with different penalties to choose a subset of fea-
tures among the pool of features, and to conduct simu-
lation studies to see which variable selection method 
works better.

Conclusion
This study identified eight hub genes, including PDG-
FRB, COL1A2, CDH1, DDR2, COL3A1, COL2A1, 
COL1A1, and COL5A2, that may have a role in devel-
opment of oral cancer. Further experimental investi-
gations are required in order to well-understand and 
to validate the pathogenic role of these genes in oral 
cancer.
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