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Abstract 

Background The use of in silico pathogenicity predictions as evidence when interpreting genetic variants is widely 
accepted as part of standard variant classification guidelines. Although numerous algorithms have been developed 
and evaluated for classifying missense variants, in-frame insertions/deletions (indels) have been much less well 
studied.

Methods We created a dataset of 3964 small (< 100 bp) indels predicted to result in in-frame amino acid insertions 
or deletions using data from gnomAD v3.1 (minor allele frequency of 1–5%), ClinVar and the Deciphering Develop-
mental Disorders (DDD) study. We used this dataset to evaluate the performance of nine pathogenicity predictor 
tools: CADD, CAPICE, FATHMM-indel, MutPred-Indel, MutationTaster2021, PROVEAN, SIFT-indel, VEST-indel and VVP.

Results Our dataset consisted of 2224 benign/likely benign and 1740 pathogenic/likely pathogenic variants 
from gnomAD (n = 809), ClinVar (n = 2882) and, DDD (n = 273). We were able to generate scores across all tools for 91% 
of the variants, with areas under the ROC curve (AUC) of 0.81–0.96 based on the published recommended thresh-
olds. To avoid biases caused by inclusion of our dataset in the tools’ training data, we also evaluated just DDD vari-
ants not present in either gnomAD or ClinVar (70 pathogenic and 81 benign). Using this subset, the AUC of all tools 
decreased substantially to 0.64–0.87. Several of the tools performed similarly however, VEST-indel had the highest 
AUCs of 0.93 (full dataset) and 0.87 (DDD subset).

Conclusions Algorithms designed for predicting the pathogenicity of in-frame indels perform well enough to aid 
clinical variant classification in a similar manner to missense prediction tools.

Keywords Pathogenicity, In-frame indels, Variant interpretation, Pathogenicity prediction

Background
Next generation DNA sequencing (NGS) is transform-
ing healthcare by facilitating novel understanding of 
disease and uptake of precision medicine initiatives [1, 

2]. Genetic variation is widespread, with every indi-
vidual carrying > 200 very rare coding variants [3], so 
molecular diagnosis of monogenic disorders requires 
expert clinical and scientific interpretation of variants 
detected by NGS. Classifying the pathogenicity of can-
didate causal variants is essential for robust diagnosis 
and management of genetic disorders. To this end, 
numerous in silico pathogenicity prediction algorithms 
have been developed and are widely used as evidence 
when interpreting genetic variants. The use of patho-
genicity predictors is supported by current guidelines 
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from the American College of Medical Genetics and 
Genomics (ACMG) and Association for Molecu-
lar Pathology (AMP) [4] and, more recently, the UK 
Association for Clinical Genomic Science (ACGS) [5], 
through the PP3/BP4 criteria. Pathogenicity predic-
tion algorithms incorporate various lines of evidence 
to predict the impact of variation on protein function, 
including evolutionary inter-species sequence conser-
vation [6], physico-chemical distances between amino 
acids [7] as well as integrated tests for identifying reg-
ulatory features [8]. Some also incorporate human var-
iation and disease data [9] by querying gene or variant 
level understanding from open source [10] or propri-
etary [11] databases. These aggregated data are used to 
generate statistical prediction models, such as super-
vised machine learning classifiers [12], which produce 
a score used to assign pathogenicity status to a given 
variant.

Most pathogenicity predictors have been devel-
oped to predict the effect of missense substitutions 
[13, 14], which are primarily caused by single nucleo-
tide variants (SNVs) in the protein-coding regions of 
the genome. However, small insertions and deletions 
(indels) account for between 13 and 18% of all vari-
ation in the human genome [15, 16], both within and 
outside protein-coding regions, and have been linked 
to numerous rare heritable diseases [17] as well as can-
cerous somatic mutations [18]. Approximately 40% of 
coding indels are in-frame [19], defined as a nucleo-
tide length (n), wholly divisible by three, which results 
in the removal or addition of n/3 amino acids. Unlike 
frame-shifting indels, which are generally assumed to 
cause loss-of-function, the insertion or deletion of a 
small number of amino acids is likely to have a simi-
larly deleterious effect on a protein as substitution of 
one amino acid for another. Indeed, missense variants 
and in-frame indels are frequently grouped together as 
“protein altering variants” and overall assumed to have 
“moderate” impact [20].

Numerous small in-frame indels have been shown to 
cause monogenic disease, most famously (p.Phe508del) 
in CFTR [21]. However, in general, the classification of 
in-frame indels has been much less well studied than 
missense and loss-of-function variants. To this end, 
we created a novel dataset of previously classified in-
frame indels, constructed from three databases, two 
open source (gnomAD [22] and, ClinVar [10]) and one 
managed access (Diagnosing Developmental Disorders 
study (DDD) [23]), and use this dataset to evaluate the 
performance of nine in silico prediction algorithms. We 
show that although the accuracy of pathogenicity clas-
sifiers varies across tools, overall the performance is 
comparable to those designed for missense variants.

Methods
Benchmark dataset generation
Variants were retrieved from gnomAD (v3.1.1) [22], Clin-
Var [10], and the DDD study deposited in DECIPHER 
[23], all accessed 18 March 2021, before filtering for suit-
ability for this study (Fig.  1). Briefly, variants in genome 
build GRCh38 were included if they were evenly divisible 
by 3 and < 100 base-pairs in length. Assumed benign vari-
ants with a minor allele frequency 1–5% were retained 
from the gnomAD population database, while variants 
classified as likely pathogenic (LP), pathogenic (P), benign 
(B) or likely benign (LB) were retained from the two clini-
cal datasets. Identical variants in more than one database 
were retained from only one using the preferential order of 
DDD, ClinVar then gnomAD, and variants with conflicting 
annotations between databases were removed. The result-
ing variants were annotated by the Ensembl Variant Effect 
Predictor (VEP) [20]. Those annotated as “inframe_inser-
tion” or inframe_deletion” with biotype “protein coding” 
and a single protein consequence per variant were selected 
(n = 3964; Table 1, Additional file 2: Table S1). A subset of 
potentially novel variants from the DDD study, which were 
not present in either ClinVar or gnomAD (n = 151), was 
used as an additional test set because these variants are 
unlikely to have been previously encountered by the tools.

Tool selection and benchmarking
For inclusion in this study, pathogenicity prediction tools 
were identified from the literature and had to be either (i) 
accessible through a webserver or (ii) downloadable for 
use on a local server. We evaluated the performance of 
nine pathogenicity prediction tools, using their default 
classification threshold criteria: CADD [24], CAPICE 
[25], PROVEAN [26], FATHMM-indel [27], Mutation-
Taster2021 [28], MutPred-Indel [29], SIFT-indel [12], 
VEST-indel [30], and VVP [31] (Table 2). Standard perfor-
mance metrics (sensitivity, specificity, positive and negative 
predictive values) and the Matthews Correlation Coef-
ficient (MCC) [32] were calculated for all tools. Receiver-
operator characteristics (ROC) and the area under the 
ROC curve (AUC) were determined for all tools apart 
from SIFT-indel and MutationTaster2021 which produced 
binary classifications. All above analyses were repeated 
using the DDD-only subset. We also considered the effect 
of protein length on the ability of software to classify vari-
ants by grouping variants into four bins of amino acid 
length (1, 2–4, 5–10 and 11 +).

Results
Benchmark datasets contained a good balance 
of pathogenic and benign insertions and deletions
Our dataset consisted of 3964 small in-frame indels 
from 1820 genes, including 1246 insertions and 2718 



Page 3 of 9Cannon et al. BMC Medical Genomics           (2023) 16:36  

deletions from gnomAD (n = 809), ClinVar (n = 2882) 
and DDD (n = 273) (Fig.  1). Of these, 2224 were B/LB 
and 1740 were P/LP ranging in size from 1–48 amino 
acids for insertions and 1–66 amino acids for dele-
tions (Fig.  2). The longest pathogenic and benign 

deletions were 32 and 66 residues, and the longest 
pathogenic and benign insertions were 28 and 48 resi-
dues, respectively. Variants were distributed across 
1820 protein-coding genes (mean = 2.18, SD = 3.64, 
min = 1, max = 66). The proportion of benign/patho-
genic variants varied across genes linked with mono-
genic disease. Some genes had almost exclusively 
benign variants in our dataset, e.g. DSPP [MIM:125485] 
(B/LB = 25, P/LP = 0) and ARID1B [MIM:614556] (B/
LB = 62, P/LP = 1); some had almost exclusively patho-
genic variants, e.g. LDLR [MIM:606945] (B/LB = 0, P/
LP = 63), FBN1 [MIM: 134797] (B/LB = 0, P/LP = 20) 
and NF1 [MIM:613113] (B/LB = 0, P/LP = 17); and 
some had similar numbers of pathogenic and benign 
variants, e.g. CREBBP [MIM:600140] (B/LB = 10, P/

Fig. 1 Flowchart of dataset construction. We included in-frame indels from ClinVar, gnomAD and the DDD study (deposited in DECIPHER). SNV 
single nucleotide variant, MAF Minor allele frequency

Table 1 Number of variants from each database included in our 
benchmark dataset

Database Benign Likely benign Likely 
pathogenic

Pathogenic Total

ClinVar 424 803 796 859 2882

DDD 15 173 49 36 273

gnomAD 809 0 0 0 809

Total 1248 976 845 895 3964
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LP = 10) and ARX [MIM:300382] (B/LB = 10, P/LP = 9). 
The DDD-only dataset consisted of 151 novel in-frame 
indels from 119 genes, including 81 B/LB and 70 P/LP 

variants ranging in size from 1–11 to 1–13 amino acids 
for insertions and deletions, respectively, all in genes 

Table 2 Pathogenicity predictors and default or recommended classification thresholds used in this study

VCF Variant call format, VEP Variant effect predictor, TSV tab separated values, CSV comma separated values

Software Input data format Command line 
interface

Genome Build 
(GRCh)

Benign threshold Pathogenic threshold

CADD VCF  + 37/38  < 20  >  = 20

CAPICE VEP annotated TSV  + 37/38  < 0.02  >  = 0.02

FATHMM-indel VCF − 37  >  = 0.5  < 0.5

MutPred-Indel Peptide (FASTA)  + 37/38  < 0.672  >  = 0.672

MutationTaster 2021 VCF/genomic position/
transcript specific

− 37 Benign Deleterious

PROVEAN VCF subset (CSV)  + 37  > 2.5  <  = 2.5

SIFT-indel VCF subset (CSV) − 37/38 Neutral Damaging

VEST-indel VCF  + 37/38  < 0.5  >  = 0.5

VVP VCF  + 37/38  < 57  >  = 57

Fig. 2 Histogram showing length and pathogenicity classification of our benchmark dataset. In-frame indels (n = 3964, deletions = 2718, 
insertions = 1246) were taken from gnomAD, ClinVar and the DDD study. B/LB benign/likely benign (blue), P/LP pathogenic/likely pathogenic (red)
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where rare deleterious variants are known to cause 
developmental disorders.

Performance was generally high across all tools using our 
full dataset, but some tools performed substantially worse 
using a smaller, novel variant dataset
For the full dataset, 3615–3963 (91–99%) of variants 
were classified by each tool and 3522 (89%) were classi-
fied by every tool. Of the latter, 556 (15.8%) were univer-
sally categorised correctly by all nine tools as pathogenic 
(n = 179, 5.1%) or benign (n = 377, 10.7%). Sensitivity and 
specificity ranged from 0.30–0.99 to 0.61–0.97, respec-
tively (Table 3, Fig. 3A). For the smaller DDD-only novel 
dataset, 143–151 (95–100%) variants were classified by 
each tool and 141 (93%) were classified by every tool. Of 
these, 14 (9.9%) were universally categorised correctly by 
all nine tools as pathogenic (n = 8, 5.7%) or benign (n = 6, 
4.2%). Sensitivity ranged from 0.24 to 0.97 and specificity 
range from 0.14 to 0.8 (Table 3, Fig. 3B).

Sensitivity decreased for most tools between the full 
dataset and the DDD-only subset, apart from FATHMM-
indel that remained the same (0.94), as well as CADD and 
SIFT-indel which increased from 0.49 to 0.64 and 0.82 
to 0.86, respectively; MutationTaster2021 showed the 

largest decrease in sensitivity from 0.98 to 0.72. Specific-
ity decreased for all tools between the two datasets with 
CADD and SIFT-indel decreasing the least from 0.92 to 
0.80 and 0.61 to 0.51, respectively; VVP decreased the 
most from 0.67 to 0.14. These observations were reca-
pitulated in the MCC metric, where VVP and Muta-
tionTaster2021 decreased the most by 0.48 and 0.44, 
whereas CADD and SIFT-Indel decreased the least by 
0.02 and 0.04, respectively. PROVEAN, VEST-indel and 
FATHMM-indel showed similar performance in the 
DDD-only subset with MCC metrics of 0.51, 0.53 and 
0.51, respectively.

Tool performance was generally independent of indel 
length
We investigated the tools’ performance for insertions 
and deletions separately, and whether their performance 
was influenced by indel length (grouped into bins of 1, 
2–4, 5–10 and 11 + amino acids inserted/deleted). We 
observed very little difference in performance between 
groups of variants (Additional file  1: Figs. S2 and S3) 
shows this in more detail), despite an increase in the pro-
portion of benign variants with increasing indel length.

Table 3 Performance metrics for all indel pathogenicity prediction tools tested

Findings from the entire dataset are included in the top table, and just the novel (DDD-only) subset in the bottom table. Relative strength of likelihood ratios for 
application of ‘strong’ or ‘moderate’ evidence under the ACMG/ACGS variant classification criteria [33] are denoted as: $High relative strength, +Medium relative 
strength. Additional file 1: Fig. S1 shows ROC-AUC curves

TP True positive, FP False positive, TN True negative, FN False negative, LR + positive likelihood ratio, LR− negative likelihood ratio, PPV Positive predictive value, NPV 
negative predictive value, AUC  Area under the curve, MCC Matthews correlation coefficient

Tool TP FP TN FN Total (%) Sens Spec LR+ LR− PPV NPV AUC MCC

All variants (1740 pathogenic; 2224 benign)

CADD 852 176 2047 886 3961 (99.9) 0.49 0.92 6.19$ 0.55 0.83 0.70 0.86 0.47

CAPICE 1611 715 1500 129 3955 (99.7) 0.93 0.68 2.87+ 0.11+ 0.69 0.92 0.91 0.61

FATHMM-Indel 1626 572 1622 111 3931 (99.2) 0.94 0.74 3.59+ 0.09+ 0.74 0.94 0.91 0.68

MutPred-Indel 516 72 2116 1211 3915 (98.8) 0.30 0.97 9.08$ 0.73 0.88 0.64 0.81 0.37

MutationTaster2021 1675 99 1976 36 3786 (95.5) 0.98 0.95 20.52$ 0.02$ 0.94 0.98 – 0.93

PROVEAN 1482 581 1470 82 3615 (91.2) 0.95 0.72 3.35+ 0.07$ 0.72 0.95 0.93 0.66

SIFT-Indel 1406 827 1287 313 3833 (96.7) 0.82 0.61 2.09 0.30+ 0.63 0.80 – 0.43

VEST-indel 1560 385 1758 179 3882 (98.0) 0.90 0.82 4.99+ 0.13+ 0.80 0.91 0.93 0.71

VVP 1720 728 1481 20 3949 (99.6) 0.99 0.67 3.00+ 0.02$ 0.70 0.99 0.87 0.67

DDD subset (70 pathogenic; 81 benign)

CADD 45 16 65 25 151 (100) 0.64 0.80 3.25+ 0.45 0.74 0.72 0.78 0.45

CAPICE 64 44 37 6 151 (100) 0.91 0.46 1.68 0.19+ 0.59 0.86 0.82 0.41

FATHMM-indel 66 38 43 4 151 (100) 0.94 0.53 2.01 0.11+ 0.63 0.91 0.74 0.51

MutPred-Indel 17 16 64 53 150 (99.3) 0.24 0.80 1.21 0.95 0.52 0.55 0.64 0.05

MutationTaster2021 50 19 61 19 149 (98.7) 0.72 0.76 3.05+ 0.36+ 0.72 0.76 – 0.49

PROVEAN 60 32 45 6 143 (94.7) 0.91 0.58 2.19 0.16+ 0.65 0.88 0.86 0.51

SIFT-indel 60 39 41 10 150 (99.3) 0.86 0.51 1.76 0.28+ 0.61 0.80 – 0.39

VEST-indel 62 29 51 8 150 (99.3) 0.89 0.64 2.44+ 0.18+ 0.68 0.86 0.87 0.53

VVP 68 70 11 2 151 (100) 0.97 0.14 1.12 0.21+ 0.49 0.85 0.64 0.19
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Discussion
We tested the performance of nine pathogenicity pre-
diction tools on a dataset of 3964 in-frame indels and 
a smaller subset of 151 novel, clinically classified indels 
that are not readily accessible from public databases. 
We show that the performance of these tools is gener-
ally good across a range of indel lengths, with AUCs of 
0.81–0.93. As expected, most tools performed less well in 
the smaller novel subset, with AUCs of 0.64–0.87, which 
likely reflects the use of publicly accessible datasets in the 
tools’ classification method or training data.

Of the nine tools tested, MutationTaster2021 had the 
highest sensitivity and specificity when tested on all 
variants but also showed the greatest decrease in sen-
sitivity when tested on the DDD only dataset. Since 
gnomAD variants were used as benign training cases 
and ClinVar and HGMD [11] as pathogenic training 
cases [28], this may reflect some overfitting [34] and 
potentially suggests a lower performance for previ-
ously unobserved variants. FATHMM-indel, CAPICE, 
VEST-indel and PROVEAN performed comparably 
well, although PROVEAN and VEST-indel classified 
fewer variants than CAPICE and FATHMM-indel. It 
should be noted that some tools (e.g. CADD, CAPICE, 
MutationTaster2021, PROVEAN, VVP) were not 
designed specifically for use with in-frame indels and 
were trained primarily on SNVs, whilst other tools (e.g. 
VEST-indel, FATHMM-indel, MutPred-Indel, SIFT-
indel) were optimised particularly for the classifica-
tion of indels. We have previously demonstrated that 
standard pathogenicity predictors such as SIFT and 
Polyphen-2 classified missense variants with AUCs 
of between 0.85–0.87 for a publicly accessible “open” 

dataset, and 0.70–0.72 for a restricted access “clinical” 
dataset [34], which is a comparable performance to 
the indel pathogenicity predictors tested here. How-
ever, the newer meta-predictors Revel [35] and Clin-
Pred [36] produced AUCs of 0.97–0.99 and 0.82–0.81 
for open and clinical datasets of missense variants [34], 
respectively, outperforming all the indel pathogenic-
ity prediction tools tested here. Nonetheless, similar to 
many missense pathogenicity predictors, the likelihood 
ratios calculated for in-frame indel predictors using our 
dataset (Table 3) support their use at either ‘supporting’ 
or ‘moderate’ towards the PP3 and BP4 criteria of the 
ACMG/ACGS recommendations, although none of the 
tools reach the moderate threshold in the DDD subset 
[33, 37].

We found that the pathogenicity predictor tools var-
ied substantially in input requirements and their ease 
of use. For example, seven of the tools tested require 
variants to be uploaded in VCF format as input and five 
of these also offer a downloadable command line inter-
face (Table  2). Tools with these two features are typi-
cally well suited for integration into analysis pipelines; 
however, ease of installation, additional required soft-
ware and metadata dependencies varied. For example, 
MutPred-Indel contained all the necessary metadata 
to make pathogenicity predictions, but required vari-
ants to be input in FASTA format, which is not rou-
tinely used in a clinical genetic testing setting, as well 
as installation of a specific version of MATLAB. Simi-
larly, PROVEAN offered a command line option but 
also required local installations of NCBI-Blast, and 
the NCBI nr protein database. The requirement for 
advanced bioinformatics skills to operate a tool will 

Fig. 3 Performance of pathogenicity prediction tools for in-frame indels. Sensitivity (top) and specificity (bottom) of nine pathogenicity prediction 
tools based on classification of 3964 in-frame-indels from ClinVar, DDD and gnomAD databases (blue), as well as a DDD-only subset of 151 variants 
(red)
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adversely affect its utility, particularly for routine diag-
nostics use. In contrast, CAPICE used an Ensembl-VEP 
annotated TSV file as input, and we found it the easiest 
to install and quickest to use.

Like other comparable studies, we were limited by sev-
eral factors. Firstly, the veracity of the variant classifica-
tions taken from ClinVar, the DDD study and gnomAD is 
uncertain, and our benchmark dataset may include some 
erroneous variant classifications. We tried to minimise 
this issue by incorporating data from three different data-
bases and by using minor allele frequency thresholds for 
benign variants. However, the low number of variants in 
the DDD subset (n = 151) limits the comparison of tool 
performance metrics and a larger dataset would provide 
a more accurate assessment. Secondly, unlike missense 
variants caused by SNVs, in-frame indels are compara-
tively rare and are harder to detect robustly using NGS, 
and thus our dataset is relatively small. Evaluation of the 
performance of the tools versus indel length was further 
limited by the inverse correlation between frequency and 
variant length in the dataset, which limits the interpret-
ability of tool performance for larger indels. Although 
large (> 100 base-pair) in-frame indels exist, and may be 
either benign or pathogenic, these are difficult to detect 
using short-read NGS technologies, so were largely 
absent from the databases used here and excluded from 
our dataset. Finally, not all variants in our dataset were in 
genes linked with monogenic disease, particularly those 
from gnomAD, which potentially introduces a bias for 
tools that use gene-level data for classification. However, 
around 75% of genes present in our dataset contained 
variants from at least two of the databases, and a sensi-
tivity analysis using only these variants produced similar 
results (data not shown).

Conclusions
We have shown that numerous in silico pathogenicity 
prediction tools perform well for in-frame indels using a 
benchmark dataset. We therefore suggest that genomic 
diagnostic laboratories should consider incorporating 
these tools—in the same manner as missense predic-
tion tools—to aid variant classification. Our findings are 
consistent with previous studies [25, 27, 30] and, to the 
best of our knowledge, represent the largest independ-
ent assessment to date of pathogenicity predictors for in-
frame indels.
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