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Three nervous system‑specific expressed 
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Abstract 

Background  Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease in adults. However, 
ALS, especially sporadic ALS (sALS), is difficult to diagnose due to the lack of biomarkers.

Results  We used the bioinformatics technology to find the potential biomarker and we found that two hundred 
seventy-four DEGs were identified and enrichment analysis showed DEGs were involved in nervous system activity, 
like axon_guidance and the neurotrophin_signaling_pathway. Five nervous system-specific expressed hub genes 
were further validated by three GEO datasets. APP, LRRK2, and PSEN1 might be potential diagnostic and prognostic 
biomarkers of sALS, and NEAT1-miR-373-3p/miR-302c-3p/miR-372-3p-APP, circ_0000002-miR-302d-3p/miR-373-3p-
APP and XIST-miR-9-5p/miR-30e-5p/miR-671-5p might be potential ceRNA regulatory pathways. APP SNP analysis 
showed subjects harboring the minor G allele of rs463946, minor G allele of rs466433 and minor C allele of rs364048 
had an increased risk of sALS development.

Conclusions  Our results identified three nervous system-specific expressed hub genes that might be diagnostic and 
prognostic markers of sALS and APP might be a genetic susceptibility factor contributing to sALS development.
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Background
Amyotrophic lateral sclerosis (ALS) is a progressive 
and aggravated neurodegenerative disease and the 
most common motoneuron disease in adults. ALS is 
characterized by the progressive degeneration of upper 
and lower motor neurons in the cerebral cortex, brain 
stem and anterior horn of the spinal cord, which leads 
to amyotrophy of the limbs and trunk, and eventually, 
patients die because of respiratory failure caused by 
predominant diaphragm dysfunction [1]. The clinical 
characteristics of ALS patients are the coexistence of 
symptoms and signs of upper and lower motor neuron 
damage, featuring as different combinations of muscle 
weakness, amyotrophy and pyramid signs [2]. ALS has 
a prevalence of 1–2 per 100,000 people worldwide, and 
the average age of onset is approximately 55 years [3]. 
The clinical heterogeneity among ALS patients leads to 
difficulty in diagnosis, and currently, definitive diagnos-
tic tests are lacking [4]. In addition, effective treatments 
for ALS are not available since riluzole and edara-
vone, two FDA-approved drugs for ALS treatment, 
only delay the progression of ALS in some patients, 
and therapeutic interventions are still based on symp-
tom management and respiratory support [5, 6]. The 
average survival time of ALS patients is 3–5 years [7]. 
Therefore, a detailed understanding of ALS develop-
ment could help with more effective intervention in the 
early stages of the disease. Based on the family history, 
patients are divided into familial ALS (fALS) and spo-
radic ALS (sALS) [8]. Genetic disorders are considered 
an important cause of ALS, and several known genes 
and/or loci have been reported to affect the develop-
ment of fALS, such as SOD1, FUS and C9orf72 [9–11]. 
Because several genes/loci involved in sALS develop-
ment have been identified, sALS is considered to have a 
genetic basis and more complex pathogenesis [12]. The 
biomarkers investigation of sALS has been ongoing for 
many years, however, effective biomarkers and exact 
genetic mechanism of sALS still need further studied 
[13].

Transcriptomics and microarray analyses are impor-
tant techniques in disease research and have been 
widely used to identify novel biomarkers and improve 
the diagnosis and treatment of various diseases, such as 
tumors and neurodegenerative diseases [14, 15]. Com-
peting endogenous RNAs (ceRNAs) can competitively 
bind miRNAs through microRNA response elements 
(MREs) to regulate the expression level of each other, 
forming a large-scale gene expression regulatory net-
work in the transcriptome [16, 17]. The ceRNA regula-
tory network plays an important role in the occurrence 
and development of neurodegenerative diseases [18]. 

Therefore, it is possible to explore potentially key genes 
and pathway networks closely related to disease devel-
opment through a combination of microarray and bio-
informatical technologies.

In the present study, we performed a bioinformatics 
analysis using publicly available gene expression data-
sets to search for sALS susceptibility genes. In addi-
tion, we conducted a case–control study including 30 
sALS patients and 30 nonneurological controls in the 
Chinese Han population. We detected single nucleo-
tide polymorphisms (SNPs) of the susceptibility gene 
risk fragments to verify the relationship between these 
SNPs of susceptibility genes and sALS. We aimed to 
identify some diagnostic biomarkers in the early stage 
of sALS development.

Methods
Gene expression data acquisition
The microarray data, which were samples (nerv-
ous tissues, muscular tissues or whole blood) of sALS 
patients, were obtained from the Gene Expression 
Omnibus (GEO) database. Six GEO datasets and eight 
GPL platforms were included in our study, including 
GSE833, GSE26276, GSE4595, GSE26927, GSE39644, 
GSE112681, GPL80 (Affymetrix), GPL6244 (Affym-
etrix), GPL1708 (Agilent-012391), GPL6255 (Illumina 
humanRef-8), GPL10558 (Illumina HumanHT-12), 
GPL15846/GPL15847 (NanoString Technologies) and 
GPL6947 (Illumina HumanHT-12). We divided these 
datasets into the test set and the validation set. The 
test set included GSE833 and GSE26276, including 11 
samples (sALS, nonneurological control, and fALS) 
and 9 samples (sALS, multifocal motor neuropathy 
[MND], and nonneurological control), respectively. 
The mRNA expression data were acquired from tissue 
specimens of the spinal cord and skeletal muscle. The 
validation set included GSE4595, GSE26927, GSE39644 
and GSE112681, which included 20 samples (sALS and 
nonneurological control), 118 samples (Alzheimer’s 
disease, sALS, fALS, Huntington’s disease, multiple 
sclerosis, Parkinson’s disease, nonneurological con-
trol and schizophrenia), 48 samples (sALS, fALS, non-
neurological control, and multiple sclerosis), and 1117 
samples (sALS, fALS and nonneurological control), 
respectively. The mRNA expression data were acquired 
from tissue specimens of the motor cortex, spinal cord 
and whole blood. An expression matrix of nonneuro-
logical controls and sALS patients was acquired online. 
In total, the data of 681 nonneurological controls and 
436 ALS patients were analyzed in our study (Table 1). 
The accessed date of the database was March. 3, 2022.



Page 3 of 17Liao et al. BMC Medical Genomics           (2023) 16:15 	

Data processing and identification of differentially 
expressed genes (DEGs)
The raw data downloaded from the GEO database were 
normalized by the Robust Multiarray Average (RMA) 
method using the R software (Version 4.1.0) affy pack-
age and further transformed into fragments per kilobase 
of sequence per million mapped reads (FPKM) values for 
the analysis. The gene expression analysis and analysis of 
intersample differences were conducted using the limma 
package. The significance of False Discovery Rate (FDR) 
q < 0.05. The screening criteria were as follows: Log2 (fold 
change) > 1.5 or < − 1.5 and an adjusted p value ≤ 0.05.

DEG visualization analysis
Heatmaps and volcano plots were used for the DEG visu-
alization analysis. Briefly, a heatmap was generated with 
the pheatmap package, and a volcano plot was generated 
with the ggpubr package by R software.

Tissue/organ‑specific gene expression determination
We determined the tissue/organ-specific expressed genes 
of the DEGs using the online tool BioGPS (http://​biogps.​
org/). Briefly, the tissue distribution of the DEGs was ana-
lyzed, and the screening criteria for tissues/organ-specific 
genes were as follows: (1) the gene expression location 
matched a single organ system, and its expression value 
was greater than 10 times the median value, and (2) the 
second most abundantly expressed tissues were no more 
than one-third of the most expressed tissues.

Performance of the enrichment analysis
A gene set enrichment analysis (GSEA) is a computa-
tional method that can be used to determine the distribu-
tion trend of genes of interest or concordant differences 
between two biological states. For the GSEA, we down-
loaded the GSEA software (version 3.0) and c2: GO gene 
sets (c2.cp.kegg.v7.4symbols.gmt) to evaluate the path-
ways and molecular mechanisms of the DEGs. For the 
GO (Gene Ontology) enrichment analysis, we used the 

GO annotation of genes in the R software org.Hs.eg.db 
(version 3.1.0) package and mapped the DEGs onto the 
background set. The gene enrichment results were ana-
lyzed by R software by setting the minimum gene set as 5 
and the maximum gene set as 5000. A Q value < 0.05 and 
an FDR < 0.25 were considered statistically significant. 
The online database KOBAS 3.0 (http://​kobas.​cbi.​pku.​
edu.​cn/​kobas3) was used for the KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) analysis of the DEGs. The 
use of KEGG data were approved by the Kanehisa labora-
tory [19].

PPI network construction
All DEGs were analyzed using the online tool STRING 
(https://​string-​db.​org/), and a PPI network was con-
structed under a filter condition of a combined 
score > 0.4. The interaction information of all DEGs was 
downloaded and further modified by Cytoscaple software 
(v3.9.1) for better visualization. The significant gene clus-
ters and related cluster scores were identified by Minimal 
Common Oncology Data Elements (MCODE) with the 
following filter criteria: code score cutoff = 0.2; degree 
cutoff = 2; k core = 2; and maxdepth = 100. CytoHubba 
is commonly used for significant gene identification (hub 
genes), and the top 14 hub genes in the DEG network 
were determined by five algorithms, namely, maximal 
clique centrality (MCC); degree; density of maximum 
neighborhood component (DMNC); maximum neigh-
borhood component (MNC); and clustering coefficient. 
The final hub genes were determined by intersecting all 
results.

Prediction of the target miRNAs of the DEGs
The target miRNAs of the hub genes were predicted 
by the following five online miRNA databases: miR-
Walk, miRDB, TargetScan, DIANA-micro and miR-
code. MiRNAs that were found in at least four databases 
were selected as the target miRNAs, and a visual mes-
senger RNA (mRNA)–miRNA coexpression network 

Table 1  Information of selected GEO datasets

sALS Sporadic amyotrophic lateral sclerosis

GEO accession Platform Sample Age Sex (male/femal) Attribute

Health sALS Health sALS Health sALS

GSE833 GPL80 4 5 – – – – Test set

GSE26276 GPL6244 3 3 – – – – Test set

GSE4595 GPL1708 9 11 – – – – Validation set

GSE26927 GPL6255 10 10 66.8 ± 16.7 68.2 ± 7.6 10/0 7/3 Validation set

GSE39644 GPL15846 10 10 56 ± 11.5 60.1 ± 8.1 3/7 7/3 Validation set

GSE112681 GPL6947&GPL10558 645 397 – 62.0 ± 12.2 357/288 239/158 Validation set

http://biogps.org/
http://biogps.org/
http://kobas.cbi.pku.edu.cn/kobas3
http://kobas.cbi.pku.edu.cn/kobas3
https://string-db.org/
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was constructed according to the targeting relation-
ship between the mRNAs and miRNAs using Cytoscape 
software.

CeRNA network construction
LncRNAs and circRNAs that interacted with the selected 
miRNAs were predicted by the online database StarBase 
(version 3.0) (http://​starb​ase.​sysu.​edu.​cn/​index.​php). The 
mRNA–miRNA–lncRNA/circRNA (ncRNAs) interac-
tion was further used for the ceRNA network construc-
tion by Cytoscape software.

Genomic DNA extraction and polymerase chain reaction 
(PCR)
Samples were collected from sALS patients and nonneu-
rological controls, and the relevant genomic DNA was 
extracted using a QIAamp DNA Micro Kit (56304, Qia-
gen, Germany) according to the manufacturer’s instruc-
tions. Genomic DNA was further used to perform PCR 
according to the manufacturer’s instructions. The ampli-
fication conditions were as follows: 95 °C predenaturation 
for 3  min, 94  °C denaturation for 20  s, 58  °C annealing 
for 20 s, and 72  °C extension for 40 s for 35 cycles. The 
sequences of the primers are shown in Additional file 1: 
Table S1.

Statistical analysis
The statistical analysis was performed using the R soft-
ware (Version 4.1.0). The continuous variables were 

compared between the groups using Student’s t-test and 
presented as the mean ± standard deviation (S.D.) or 
standard error (S.E.M.). The Kaplan–Meier method was 
used for the survival analysis, and the difference between 
the groups was analyzed by the log-rank test. ROC 
curves were generated using the R software pROC pack-
age (version 1.17.0.1), and the AUCs were determined 
accordingly. A p value < 0.05 was considered statistically 
significant. *p < 0.05; **p < 0.01; ***p < 0.001.

Results
Identification of DEGs
The workflow of this study was shown in Fig.  1. Then, 
two GEO datasets, GSE833 and GSE26276, in our test 
set were selected to identify the DEGs. GSE833 included 
4 nonneurological control samples and 5 sALS samples, 
while GSE26276 included 3 nonneurological control 
samples and 3 sALS samples. A heatmap and volcano plot 
analysis of two datasets were used to visualize the DEGs 
(Fig. 2A, B). In the GSE833 dataset, 274 DEGs were iden-
tified in the sALS group compared with the nonneuro-
logical control samples, including 117 upregulated genes 
and 157 downregulated genes. In the GSE26276 dataset, 
203 DEGs were identified in the sALS group compared 
with the nonneurological control samples, including 142 
upregulated genes and 61 downregulated genes. The 
Venn plot showed that 8 DEGs were found in both data-
sets, and we merged the DEGs in the two datasets into a 
new expression matrix for further analysis (Fig. 2C).

Fig. 1  The flow diagram of the study

http://starbase.sysu.edu.cn/index.php
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Fig. 2  Identification of DEGs. A Heatmap of DEGs between sALS samples and nonneurological control samples based on GSE833 and 
GSE26276. Red rectangles and blue rectangles represent high and low expression, respectively. B Volcano plot of DEGs between sALS samples 
and nonneurological control samples based on GSE833 and GSE26276. Red plot, green plot and gray plot represent upregulated genes, low 
upregulated genes and nonsignifcant genes, respectively. C Eight DEGs were found both in GSE833 and GSE26276
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Analysis of DEG expression in tissues/organs
According to the localization in the gene expression anal-
ysis, 46 tissue/organ-specific expressed genes were iden-
tified by BioGPS (Table 2). The results showed that most 
of these DEGs were specifically expressed in the nervous 
system (24/46, 52.17%). The second tissue/organ-specific 
expressed system was hematologic/immune cells, includ-
ing 9 DEGs (9/46, 19.57%), followed by the digestive 
system (4/46, 9.70%), circulatory system (2/46, 4.35%), 
endocrine system (2/46, 4.35%), genital system (2/46, 
4.35%), respiratory system (1/46, 2.17%), placental system 
(1/46, 2.17%) and other systems (1/46, 2.17%).

DEG enrichment analysis
Functional and pathway enrichment analyses of the 
DEGs were performed by GSEA software, the R software 
org.Hs.eg.db package and the Online database KOBAS 
3.0. First, we performed a GSEA by uploading the expres-
sion profiles of GSE833 and GSE26276, and we used the 
c2: GO gene set to investigate the GO enrichment of gene 
expression at the overall level. The screening criteria for 
the significantly enriched gene set were a Q value < 0.05 
and an FDR < 0.25. We found that the most enriched 
gene sets in GSE833 and GSE26276 were related to 
axon_guidance, neurotrophin_signaling_pathway, neuro-
active_ligand_receptor_interaction, adherens_junction, 
huntingtons_disease, amyotrophic_lateral_sclerosis_als 
and parkinsons_disease (Fig. 3A–D).

Second, we performed GO and KEGG pathway analy-
ses of the DEGs using the R software org.Hs.eg.db pack-
age and KOBAS 3.0, respectively. The results of the 
GO enrichment analysis of the DEGs showed that pro-
cesses of nervous system activity, such as chemical syn-
aptic transmission, neural crest cell development and 
neurogenesis, were significantly related to sALS, and 
other biological processes, such as response to endog-
enous stimulus, anterograde transsynaptic signaling and 

excitatory postsynaptic potential, were also involved. The 
top 10 biological processes were selected based on a Q 
value < 0.05 and an FDR < 0.25 and are shown in Fig. 3E. 
The KEGG pathway analysis revealed that the DEGs were 
mainly enriched in neuroactive ligand receptor interac-
tion. In addition, the PI3K-Akt signaling pathway, cellu-
lar senescence, the apelin signaling pathway, fluid shear 
stress and atherosclerosis were enriched in the sALS 
samples (Fig. 3F).

PPI network analysis and hub gene identification
The interaction network of proteins coded by the DEGs 
between the nonneurological controls and sALS patients 
comprising 161 nodes and 617 edges was evaluated by 
STRING and visualized by Cytoscape (Fig. 4A). We fur-
ther used the MCODE plugin to identify the gene cluster 
modules according to the filter criteria, and the results 
showed that four modules were identified (Fig.  4B–E). 
Cluster 1 had 14 nodes and 60 edges with a score of 
4.615. Cluster 2 had the second highest cluster score 
(score: 3.571, 15 nodes and 50 edges), followed by Cluster 
3 (score: 3.5, 9 nodes and 28 edges) and Cluster 4 (score: 
3.5, 5 nodes and 14 edges). To identify the hub genes in 
the interaction network, the CytoHubba plugin was used, 
and the results showed that 14 hub genes were identified 
by five algorithms of cytoHubba, including Clustering 
Coefficient, Degree, MNC, MCC and DMNC (Table  3). 
These DEGs are the core genes in the PPI network, 
implying that they play an important role in the patho-
genesis of sALS. Since the GO, KEGG and GSEA enrich-
ment analyses revealed an important function of the 
DEGs in the biological process of nervous system activ-
ity, we further intersected 14 hub genes and 24 nervous 
system-specific expressed genes and identified five nerv-
ous system-specific expressed hub genes, including APP, 
AKT1, LRRK2, PSEN1, and SLCO1A2 (Table 3, in bold).

Table 2  Tissues/organ-specific DEGs expression

DEGs differentially expressed genes

System/organ Genes Counts

Haematologic/immune cells UBE3A, SELL, PTGDR, PRKCD, ARHGAP25, FZR1, DARS1, LARP4B, NUCB2 9

Nervous APP, PSEN1, SLCO1A2, LRRK2, AKT1, CHRNA4, GDF10, ALK, FHL3, ABCE1, PLP1, LMO3, TF, PRG4, 
CHI3L1, PDE6H, HTR2A, VAMP1, RXRG, PDE6A, EDNRB, HIP1, OPCML, PUM2

24

Digestive FABP6, MEP1A, RARRES2, C4BPA 4

Respiratory F3 1

Circulatory PGAM2, TNNC 2

Placenta LGMN 1

Endocrine CDH1, SERPINA3 2

Genital SYCP2, SPAG11A 2

Others GNAT1 1
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Construction of mRNA–miRNA coexpression networks
MiRNAs have been reported to regulate gene levels by 
binding the 5′ or 3′ UTR of the target mRNA and play 
an important role in neurological disorder development. 

Therefore, we predicted the target miRNAs of 5 nervous 
system-specific expressed hub genes using five online 
miRNA databases and identified 87 target miRNAs 
and 94 mRNA–miRNA pairs. Finally, we constructed 

Fig. 3  DEG enrichment analysis. A and B GSEA analysis based on the expression profiles of GSE833. C and D GSEA analysis based on the expression 
profiles of GSE26276. E The chord plot showed the top 11 enriched biological processes of DEGs. F The bubble plot showed the most enriched 
KEGG signaling pathway
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a coexpression network of mRNAs and miRNAs by 
Cytoscape, which comprised 92 nodes and 94 edges 
(Fig. 5).

Verification of five nervous system‑specific expressed hub 
genes in three GEO datasets
Three GEO datasets, namely, GSE4595, GSE26927 and 
GSE39644, including 29 nonneurological control sam-
ples and 31 sALS patient samples, were used to verify the 

expression levels of 5 nervous system-specific expressed 
hub genes. The R software ggplot2 package was used to 
generate a split violin plot, and the differences were ana-
lyzed by Student’s t-test. As expected, we found that the 
mRNA expression levels of the 5 nervous system-specific 
expressed hub genes in the sALS group were significantly 
higher than those in the nonneurological control groups 
(Fig. 6A–C, p < 0.01), implying that the 5 hub genes play 
an important role in sALS development. In addition, we 

Fig. 4  PPI network analysis and hub gene identification. A The interaction network of DEGs was comprised 161 nodes and 617 edges. Nodes 
represent protein and edge represent protein and protein interaction. Red circles represent the upregulated genes and green diamonds represent 
downregulated genes. B–E Four cluster modules identified by MCODE. Cluster 1 had 14 nodes and 60 edges with a score of 4.615. Cluster 2 had 15 
nodes and 50 edges with a score of 3.571. Cluster 3 had 9 nodes and 28 edges with a score of 3.5 and Cluster 5 nodes and 14 edges with a score of 
3.5
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performed GO, KEGG and GSEA enrichment analy-
ses based on five nervous system-specific expressed hub 
genes. As expected, the enriched gene sets of the DEGs 
were related to the neurotrophin signaling pathway, glial 
cell activation, neuron death, axon guidance, regulation 
of the actin cytoskeleton, etc., which are correlated with 
sALS progression (Additional file 1: Fig. S1A–G).

ROC curve and prognosis prediction ability of 5 nervous 
system‑specific expressed hub genes in sALS samples
Since sALS patients are difficult to diagnose in the early 
stage because of clinical heterogeneity, it is essential to 
find diagnostic biomarkers to distinguish individuals with 
sALS from nonneurological people. We used ROC curves 
to evaluate the diagnostic ability of the 5 hub genes in 
predicting sALS. Specifically, the expression profiles of 
5 hub genes in the GSE112681 dataset of nonneurologi-
cal control samples and sALS samples were analyzed by 
the R software pROC package. The ROC curves of these 
hub genes were drawn, and the area under the curve 
(AUC) was calculated. The results showed that all hub 
genes have strong diagnostic value in sALS samples. Our 
results showed that these 5 hub genes could be biomark-
ers for sALS diagnosis. LRRK2 had the highest diagnostic 
ability (AUC: 0.927), while the AUC of the other genes 
was 0.832 for AKT1, 0.811 for APP, 0.832 for PSEN1, and 
0.810 for SLCO1A2 (Fig. 7A–E). Additionally, we evalu-
ated the ability of these genes to predict the prognosis of 
sALS patients by a survival analysis. A survival curve of 
the sALS patients based on the expression of the 5 hub 
genes was drawn by the Kaplan–Meier method. The 
results showed that sALS patients with high expression 

levels of AKT1, APP, LRRK2, PSEN1, or SLCO1A2 had 
a poorer prognosis than those with a low expression of 
these hub genes (Fig. 7F–J). Our results imply that AKT1, 
APP, LRRK2, PSEN1 and SLCO1A2 may be biomark-
ers for the diagnosis and prognosis prediction of sALS 
patients based on our present samples.

Construction of mRNA–miRNA–ncRNA coexpression 
networks
MiRNAs can cause posttranscriptional gene silenc-
ing by binding mRNAs, while other ncRNAs, such as 
lncRNAs and circRNAs, can regulate gene expression 
by competitively binding miRNAs, which is called the 
ceRNA mechanism. CeRNAs can disable microRNAs 
by binding microRNA response elements (MRS), which 
reveal mRNA–miRNA–ncRNA interaction coexpres-
sion networks. The existence of microRNA regulatory 
pathways is of great biological significance. We pre-
dicted the circRNAs and lncRNAs that interacted with 
selected miRNAs by the online database StarBase 3.0. 
The screening criteria were as follows: (1) mammalian; 
(2) human h19 genome; (3) and strict stringency (≥ 5) 
of CLIP-Data with degradome data. NcRNAs present 
in most selected miRNA predictions were chosen as 
the predicted circRNAs and lncRNAs. In the predicted 
results of the StarBase database, a transcript has mul-
tiple circRNA shearing sites; thus, the circRNA with 
the largest number of samples and the highest score 
in the circBase database was selected as the target 
circRNA. Finally, we obtained 7 lncRNAs and 5 cir-
cRNAs from APP-targeted miRNAs, 1 lncRNA and 
16 circRNAs from LRRK2-targeted miRNAs, and 1 

Table 3  Hub genes determined using cytoscape plug-in cytoHubba by five algorithms

FC fold change

Gene Description Log2FC Adjust p value Regulation

AKT1 Serine/threonine kinase 1 4.183 0.007 Up

PSEN1 Presenilin 1 5.0827 0.030 Up

APP Amyloid beta precursor protein 5.3519 0.021 Up

LRRK2 Leucine rich repeat kinase 2 2.8715 0.029 Up

SLCO1A2 Solute carrier organic anion transporter family 
member 1A2

3.9143 0.030 Up

MYOG Myogenin 2.2627 0.041 Up

MDM2 MDM2 proto-oncogene 0.4255 0.018 Up

LIG4 DNA ligase 4 2.7041 0.048 Up

XRCC4 X-ray repair cross complementing 4 2.8248 0.034 Up

CCNB1 Cyclin B1 3.1106 0.031 Up

ATF3 Activating transcription factor 3 2.7574 0.018 Up

JAG1 Jagged canonical Notch ligand 1 2.2920 0.028 Up

RAD9A RAD9 checkpoint clamp component A − 4.7490 0.019 Down

AHR Aryl hydrocarbon receptor − 1.6973 0.035 Down
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lncRNA and 14 circRNAs from PSEN1-targeted miR-
NAs. Three ceRNA networks were constructed based 
on the prediction results and visualized by Cytoscape 
(Fig.  8A–C). Subsequently, we conducted a literature 
search and selected seven miRNAs and three ncR-
NAs that were reported to affect neurodegeneration 
disorder development for further study. We propose 
that NEAT1-miR-373-3p/miR-302c-3p/miR-372-3p-
APP, circ_0000002-miR-302d-3p/miR-373-3p-APP 
and XIST-miR-9-5p/miR-30e-5p/miR-671-5p might 
be potential ceRNA regulatory pathways that regulate 
sALS progression (Fig. 8D–F).

Identification of the genetic association between 3 SNPs 
and sALS
To date, several studies have confirmed that AD (Alz-
heimer’s disease), PD (Parkinson’s disease), FTD (fron-
totemporal dementia), PSP (progressive supranuclear 
palsy) and ALS have similar genetic bases. SNPs of APP 
(rs463946, rs466433, and rs364048) have been found to 
be closely related to the incidence of AD in the Chinese 
Han population. Therefore, we hypothesized that these 
three SNPs of APP are involved in sALS development, 
and the locations of the three SNPs of APP are shown 
in Fig. 9 A-C. All 3 SNPs were intronic polymorphisms, 

Fig. 5  Construction of mRNA–miRNA coexpression networks. A co-expressed network of mRNAs and target miRNAs. The mRNA–miRNA 
co-expressed network was constructed by Cytoscape including 92 nodes and 94 degrees. Red diamonds represent five hub genes and blue circles 
represent the target miRNAs
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Fig. 6  Verification of five nervous system-specific expressed hub genes in three GEO datasets. A–C Five hub genes are significantly upregulated in 
sALS patient samples compared with nonneurological control samples verified by three datasets: GSE4595, GSE26927 and GSE39644, respectively 
(***p < 0.001, **p < 0.01, *p < 0.05)
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Fig. 7  ROC curve and prognosis prediction ability of 5 nervous system-specific expressed hub genes in sALS samples. A–E ROC curve of 5 nervous 
system-specific expressed hub genes were constructed by GSE112681 dataset. The AUC of these genes was 0.832 for AKT1, 0.811 for APP, 0.927 for 
LRRK2, 0.832 for PSEN1, and 0.810 for SLCO1A2. F–J survival analysis show that high expression of these genes predicted poor prognosis for sALS. 
F–J survival analysis based on hub genes expression by Kaplan–Meier method
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and the minor alleles of rs463946 (OR = 3.000, 95% CI 
1.164–7.732, p = 0.014), rs466433 (OR = 3.000, 95% CI 
1.164–7.732, p = 0.014), and rs364048 (OR = 3.000, 95% 
CI 1.164–7.732, p = 0.014) significantly increased the risk 
of sALS development, suggesting that these three poly-
morphisms might represent genetic susceptibility fac-
tors. Subjects harboring the minor G allele (GG + CG) 
of rs463946 (p = 0.026), minor G allele (GG + AG) of 
rs466433 (p = 0.026) and minor C allele (CC + CT) of 
rs364048 (p = 0.026) showed an increased risk of sALS 
development compared with those with the other geno-
types (Table 4).

Discussion
Amyotrophic lateral sclerosis is a highly fatal neurode-
generative disease, and currently, effective treatment is 
lacking. The cause of ALS currently remains unknown, 
although some people have familial disease, which is 
associated with mutations in genes that perform a wide 
range of functions [20]. Research investigating the path-
ogenic factors of sALS is still in a relatively underdevel-
oped state [21]. Based on the current predicament that 
sALS is difficult to diagnose due to the lack of biomark-
ers, new diagnostic biomarkers and prognostic biomark-
ers of sALS are urgently needed.

In this study, we identified 3 nervous system-specific 
expressed hub genes, which play an important role in 
sALS progression. According to the current understand-
ing of the pathogenesis of sALS, axonopathy, aberrant 
RNA metabolism, nucleocytoplasmic and endosomal 
transport, oligodendrocyte degeneration, neuroinflam-
mation and mitochondrial dysfunction were reported 
to be involved in sALS development [22]. The results of 
our GO, KEGG pathway and GSEA analyses of hub genes 
functions are consistent with the pathogenesis of sALS, 
indicating that elucidating the functions of these DEGs in 
sALS might help us gain a deeper understanding of the 
pathophysiology of sALS.

The expression levels of three nervous system-specific 
expressed genes (APP, LRRK2, PSEN1) were validated in 
three GEO datasets. We further evaluated whether these 
genes could be used as diagnostic biomarkers of sALS. 
The ROC curve analysis showed that all these genes have 
a high diagnostic ability for sALS. Survival analysis con-
firmed that a high expression of these genes predicted a 
poor prognosis of sALS, indicating that these genes could 
also be prognostic biomarkers of sALS.

Thus far, studies have shown that AD, PD, FTD, PSP 
and ALS have similar genetic bases [23]. With the devel-
opment of research concerning neurodegenerative 

Fig. 8  Construction of mRNA–miRNA–ncRNA coexpression networks. A CeRNA networks of APP. B CeRNA network of LRRK2. C CeRNA network of 
PSEN1. D CeRNA network of NEAT1-miR-373-3p/miR-302c-3p/miR-372-3p-APP. E ceRNA network of circ_0000002-miR-302d-3p/miR-373-3p-APP. F 
CeRNA network of XIST-miR-9-5p/miR-30e-5p/miR-671-5p. Orange diamonds represent three nervous system-specific expressed hub genes, blue 
circles represent target miRNAs, yellow triangles represent lncRNA and green V represents the circRNA
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Fig. 9  Locations of rs463946, rs466433, rs364048 in the APP gene. A The rs463946 is located in intron 15, at position 26,173,869 of the APP gene on 
chromosome 21. B The rs466433 is located in the intron 1, at position 26,171,645 of the APP gene on chromosome 21. C The rs364048 is located in 
intron 1, at position 26,171,723 of the APP gene on chromosome 21



Page 15 of 17Liao et al. BMC Medical Genomics           (2023) 16:15 	

diseases, many neurodegenerative diseases are believed 
to exhibit varying degrees of genetic and pathological 
overlap, indicating that genes or proteins associated with 
the pathogenesis of one neurodegeneration disease may 
also be associated with other diseases. For example, the 
deletion of the SOD1 gene promotes APP protein oli-
gomerization and memory loss in an AD mouse model, 
suggesting that SOD1 may be involved in the regulation 
of APP metabolism in AD patients [24]. The amyloidosis 
process of APP in the central nervous system may lead 
to the degeneration of motor neurons. Bryson J B et  al. 
reported that after the knockdown of the APP gene in 
a SOD1 mouse model, innerve, motor function, viable 
motor neurons and other disease parameters of the mice 
were significantly recovered, indicating that APP was 
involved in the pathogenesis of SOD1-mediated ALS 
[25]. There are more and more studies on early diagnosis 
of ALS using plasma/serum or cerebrospinal fluid (CSF). 
Reports showed that soluble APP fragments and Aβ pep-
tides levels are altered in plasma/serum or CSF form ALS 
patients, which could serve as the biomarkers of ALS 
Pathophysiology [26]. Another report also showed that 
CSF Aβ42 increased remarkably in the ALS groups [27]. 
Our results showed that APP was highly expressed in the 
sALS samples, which is consistent with reports showing 
that APP was found in the spinal cord, skin and muscle of 
ALS patients [28, 29].

Since neurodegenerative diseases, such as AD, PD, 
FTD, PSP and ALS, share a similar genetic basis and 
SNPs of APP were reported to be involved in AD progres-
sion [30, 31], we investigated the effect of SNPs of APP 
in sALS patients. The results confirmed that three minor 
alleles, rs463946, rs466433 and rs364048, increased 

the risk of sALS development. A possible reason is that 
the metabolic process of the APP protein is affected by 
SNPs of APP, which reduces the normal decomposition 
of the APP protein and leads to the occurrence of sALS. 
However, more investigations are needed to confirm this 
hypothesis.

CeRNA networks play an important role in neurode-
generative disease progression. LncRNAs, miRNAs and 
circRNAs are important component factors in ceRNA 
networks. In our study, the target miRNAs, target lncR-
NAs and circRNAs of these miRNAs were predicted for 
APP, LRRK2 and PSEN1. We identified three important 
potential RNA regulatory pathways in the pathogenesis 
of sALS, including NEAT1-miR-373-3p/miR-302c-3p/
miR-372-3p-APP, XIST-miR-9-5p/miR-30e-5p/miR-
671-5p-LRRK2 and circ_0000002-miR-302d-3p/
miR-373-3p-APP.

Our study has some shortcomings. The sample size 
for testing and validation was relatively small, and the 
expression of the three hub genes in sALS samples should 
be further examined using fresh tissue samples. In addi-
tion, the diagnostic ability and prognostic ability of the 
three hub genes of sALS should be further confirmed in 
prospective cohort studies.

Conclusions
Our study identified 3 nervous system-specific expressed 
hub genes, APP, LRRK2 and PSEN1, as potential diagnos-
tic and prognostic biomarkers of sALS, and our results 
provide new insight into the pathogenesis of sALS at the 
transcriptome level. We also identified three potential 
RNA regulatory pathways that affect sALS progression 
by ceRNA network construction.

Table 4  Three SNPs shown the significant at p < 0.05 in the study

SNP single nucleotide polymorphism, OR odds ratio

SNP Group Genotypes Genotypes p 
value

Allele Allele p value OR (95%)

GG CG CC G C

rs463946 Cases (n = 30) 2 11 17 0.026 15 (25.0%) 45 (75.0%) 0.014 G:3.000 (1.164–7.732)

Controls (n = 30) 1 3 26 5 (8.3%) 55 (91.7%) C:0.818 (0.694–0.965)

SNP Group Genotypes Genotypes p 
value

Allele Allele p value OR (95%)

GG AG AA G A

rs466433 Cases (n = 30) 2 11 17 0.026 15 (25.0%) 45 (75.0%) 0.014 G:3.000 (1.164–7.732)

Controls (n = 30) 1 3 26 5 (8.3%) 55 (91.7%) A:0.818 (0.694–0.965)

SNP Group Genotypes Genotypes p 
value

Allele Allele p value OR (95%)

GG CC CT C T

rs364048 Cases (n = 30) 2 11 17 0.026 15 (25.0%) 45 (75.0%) 0.014 C:3.000 (1.164–7.732)

Controls (n = 30) 1 3 26 5 (8.3%) 55 (91.7%) T:0.818 (0.694–0.965)
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