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Abstract 

Background: Acquired immunodeficiency syndrome (AIDS) is a chronic infectious disease characterized by consist-
ent immune dysfunction. The objective of this study is to determine whether immune cell-related genes can be used 
as biomarkers for the occurrence of AIDS and potential molecular mechanisms.

Methods: A weighted gene co-expression network analysis was performed using the GSE6740 dataset from the 
Gene Expression Synthesis Database  to identify the Hub gene, which contained microarray data from HIV-1 positive 
(HIV-1+) and HIV-1 negative (HIV-1−) individuals. The HIV-1+-related differentially expressed genes were then identi-
fied using the limma package. Subsequently, the characteristic immune cell-related genes were identified as diagnos-
tic biomarkers for HIV-1+ using the random forest model (RF), support vector machine model, and generalized linear 
model.

Results: MEdarkgreen exhibited the strongest correlation with HIV clinical features of any of these modules. As the 
best model for diagnosing HIV-1±, RF was used to select four critical immune cell-related genes, namely, ARRB1, 
DPEP2, LTBP3, and RGCC, and a nomogram model was created to predict the occurrence of HIV-1 infection based 
on four key immune cell-related genes. Diagnostic genes were shown to be engaged in immune-related pathways, 
suggesting that immunological molecules, immune cells, and immune pathways all have a role in HIV-1 infection. 
The CTD database was explored for prospective medications or molecular compounds that might be utilized to treat 
HIV-1+ patients. = Moreover, in HIV-1+ individuals, the ceRNA network revealed that ARRB1, DPEP2, LTBP3, and RGCC 
could be regulated by lncRNAs through the corresponding miRNAs. Ultimately, RT-PCR results from clinical blood 
samples demonstrated that the four diagnostic genes were significantly downregulated in HIV-1+ patients.

Conclusion: We screened four immune cell-related genes, ARRB1, DPEP2, LTBP3, and RGCC, which may be consid-
ered as the diagnostic markers for HIV-1/AIDS. Our findings reveal that immune related genes and pathways involved 
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Background
Background of Acquired Immunodeficiency Syndrome 
(AIDS)
Acquired immunodeficiency syndrome (AIDS) refers 
to a chronic infectious disease characterized by human 
immunodeficiency virus (HIV)-1 infection [1]. One of 
the indications of infection is the continuous destruc-
tion of CD4 + T cells, which can lead to increased 
immune deficiency and mortality [2]. According to 
data from UNAIDS, approximately 37.9 million people 
worldwide are infected with HIV, with nearly 770,000 
people dying as a result of HIV-related diseases [3, 
4]. Integrase strand transfer inhibitors (INSTI), such 
as Raltegravir (RAL), Bictegravir (BIC), Dolutegravir 
(DTG), and Elvitegravir (EVG), are currently approved 
for the treatment of HIV-1 infection [5]. Despite their 
ability to reduce the incidence and mortality of AIDS 
by inhibiting viral replication and controlling infec-
tion, these drugs are still unable to cure the disease, 
HIV-1 will be reactivated immediately to destroy 
immune system if treatment is stopped.

Research progress on immunity and HIV/AIDS infection
The immune system is crucial in the pathogenesis of 
HIV infection and AIDS [6–8]. It has recently been 
reported that dendritic cells (DC) play a dual role in 
the transmission and elimination of HIV-1 infection. 
On the other hand, DC can improve the effectiveness 
of the preventive HIV-1 vaccine by generating pro-
inflammatory cytokines and enhancing T cell activa-
tion [9]. Besides, dendritic cells in lymphoid organs 
can activate resting memory T cells, which could lead 
to the reactivation of HIV-1 transmission [10]. In 
the case of HIV-1 infection, the expression of PD-1 
on virus-specific T cells is a crucial indicator of fail-
ure, which is linked to AIDS progression [11]. Th17 
cells maintain the mucosal immune response to resist 
HIV-1 invasion by secreting inflammatory factors and 
antimicrobial peptides and recruiting neutrophils [12]. 
Increased natural killer cell (NK) activity implies high 
levels of cytotoxicity, IFN-γ, and chemokines (CCL3, 
CCL4, and CCL5), which is linked to anti-HIV-1 infec-
tion and delayed AIDS progression [13]. To the best 
of our knowledge, there have been few reports on 
whether immune cell-related genes can be applied as 
biomarkers for HIV-positive (HIV-1+).

Our research results and significance
Therefore, the purpose of this study is to reveal the 
potential molecular mechanism of immune cell-related 
genes as HIV-1+ biomarkers, providing a novel idea to 
the diagnosis and treatment of HIV-1+.

Methods
Dataset download
The original gene expression profile file in the GSE6740 
dataset was downloaded from the NCBI GEO database 
(https:// www. ncbi. nlm. nih. gov/). The GSE6740 data-
set, obtained from Affymetrix Human Genome U133 
A Array [HG-U133 A] platform, is mainly comprised 
of 10 HIV-1-negative (HIV-1−) samples and 30 HIV-1+ 
samples for further analysis [14].

Weighted gene co‑expression network analysis (WGCNA)
The expression profile data of all genes in the GSE6740 
dataset were used to create the gene co-expression net-
work and identify the key modules using the WGCNA 
program in the R package [15]. Besides, HIV-1+, HIV-
1−, CD4 cells, and CD8 cells were considered clinical 
traits for WGCNA analysis. To begin, cluster analy-
sis was applied to the samples in the GSE6740 dataset 
to identify any outliers. The four clinical characters, 
including HIV-1+, HIV-1−, CD4, and CD8 cells, were 
then added to the clustering map to construct sam-
ple clustering and clinical character heat map. For the 
construction of scale-free co-expression networks, 
the function pickSoft Threshold was adopted to deter-
mine the optimal soft threshold power as 14 (scale-free 
 R2 = 0.85). The adjacency matrix was then converted 
into a topological overlap matrix (TOM). The mini-
mum number of genes per gene module was set to 30 
using the hybrid dynamic tree-cutting algorithm, and 
MEDissThres was set to 0.3 to merge similar modules. 
A calculation was undertaken to investigate the asso-
ciation between gene modules and HIV-1 clinical char-
acteristics. In this investigation, the modules having the 
highest connection with these four clinical criteria were 
designated as important modules. Among them, the 
genes satisfying the conditions | Module membership 
(MM) |> 0.8 and | Gene significance (GS) |> 0.2 were 
taken as hub genes.

in HIV-1 pathogenesis were regulated on both genetic and epigenetic levels by constructing a ceRNA network associ-
ated with lncRNA.

Keyword: AIDS, Gene co-expression network analysis, ceRNA network, HIV-1

https://www.ncbi.nlm.nih.gov/


Page 3 of 13Bai et al. BMC Medical Genomics          (2022) 15:200  

Screening of differentially expressed genes
The gene expression matrix of 40 samples was con-
structed by standardizing the expression data in the 
dataset GSE6740. The differential expression of 30 HIV-
1+ and 10 HIV-1− samples was evaluated using the R 
package limma. The screening threshold for differen-
tially expressed genes (DEGs) was P-value 0.5, and the 
candidate genes were determined using Venn analysis 
by crossing the differential genes and Hub genes.

Enrichment analysis of candidate genes
A gene-GO network was constructed to perform gene 
ontology (GO) enrichment analysis on candidate genes 
by inputting the candidate genes into ClueGO and 
CluePedia for analysis. ClueGo and CluePedia were 
both done using Cytoscape 3.8.0 software, with the 
default settings for GO terms/path selection options 
used for optimal enrichment visualization.

Construction and evaluation of random forest model (RF), 
support vector machine model (SVM), and generalized 
linear model (GLM)
The caret in the R package was used to construct a ran-
dom forest model (RF), support vector machine model 
(SVM), and generalized linear model (GLM) based 
on the expression of candidate genes in the dataset 
GSE6740 and sample grouping, with HIV-1+ diagno-
sis or not as a response variable and candidate genes as 
explanatory variables. To obtain the best model based 
on the data set, the three previously mentioned mod-
els were analyzed using the interpretation characteris-
tics of the DALEX package in R, while the plot function 
was used to draw the cumulative residual distribution 
map and the box diagram distribution map, respec-
tively. Meanwhile, an analysis of the relative impor-
tance of variables in different models was carried out, 
with the most relevant explanatory variables chosen for 
the receiver operating characteristic (ROC) analysis to 
explore the distinct ability of these genes in GSE6740.

Construction and evaluation of nomogram
A map model for clinical applications for gene diagnos-
tic markers was created using the rms package. “Score” 
refers to the scores of the following corresponding fac-
tors under different conditions, and “total score” indi-
cates the sum of all the above factors. The calibration 
curve was then generated using the calibration function 
in the rms package, and the decision curve (DCA) was 
drawn using the rmda package, to evaluate the clinical 
significance of the nomogram. Furthermore, the nomo-
gram model was evaluated for its clinical application in 

analyzing the clinical impact curve based on the DCA 
curve.

Diagnostic marker‑drug interaction network analysis
To provide detailed information such as chemical gene/
protein interactions, chemical diseases, and gene-disease 
relationships, the comparative toxicological genomics 
database (CTD, http:// ctdba se. org/) was used [16]. Diag-
nostic markers were obtained from the CTD database 
in order to get potential medications or molecular com-
pounds for HIV-1+ therapy, and the diagnostic marker-
molecular compound interaction network was visualized 
using Cytoscape software.

Construction of CeRNA network
The ENCORI database (http:// starb ase. sysu. edu. cn/ 
tutor ial. php) is public online platform for studying RNA 
interactions [17]. In this study, the ENCORI database 
was used to predict the miRNAs associated with diag-
nostic markers (mRNAs) and the lncRNAs associated 
with miRNAs, as well as to investigate the correlation 
between diagnostic genes and miRNAs and between 
miRNA and lncRNA  (|cor|> 0.3, P < 0.05), in order to 
develop a lncRNA-miRNA-mRNA regulatory network in 
HIV-1+. The potential binding sites of miRNA sequences 
and mRNAs, as well as lncRNA sequences and miRNAs, 
were demonstrated in the ENCORI database based on 
the above interactions between miRNAs and mRNAs, 
and miRNAs and lncRNAs. Following that, the ceRNA 
network was built with Cytoscape software utilizing the 
mRNA-miRNA and miRNA-lncRNA interaction pairs 
identified in the previous analysis.

RNA Extraction and RT‑PCR Detection
A total of 10 HIV-1− and 10 HIV-1+ whole blood sam-
ples were collected from the sexually transmitted disease 
(STD) and AIDS Clinic, Beijing Youan Hospital, Capital 
Medical University. The study protocol was approved by 
the ethics committee of Beijing You’an Hospital of Capi-
tal Medical University (LL-2019-038-K). All participants 
provided written informed consent.

Total RNA was extracted from blood using Nucle-
zol LS RNA Isolation Reagent (ABP Biosciences Inc), 
and the quality of the RNA was determined using a 
nucleic acid-protein instrument. RNA was reverse 
transcribed into cDNA in line with the instructions 
of SureScript-First-strand-cDNA-synthesis-kit (Gene-
Copoeia), and BlazeTaq SYBR Green qPCR mix 2.0 
(GeneCopoeia) was adopted to detect the relative 
expression of the target gene. The specific primers of 
the gene include DPEP2 forward primer 5′- ACC TGA 
CGC TCA CCC ACA CCT -3′; DPEP2 reverse primer 5′- 
GGC CCC ATC ATA ATC TCC ACC -3′; RGCC forward 

http://ctdbase.org/
http://starbase.sysu.edu.cn/tutorial.php
http://starbase.sysu.edu.cn/tutorial.php
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primer 5′- TCT CCA ACAGA CTC TAC CCCAG CAT-
3′; RGCC reverse primer 5′- GTT TTG TCA AGA TCA 
GCA A TGA -3′; ARRB1forward primer 5′- AAC TGC 
CCT TCA CCC TAA T CAT-3′; ARRB1 reverse primer 
5′- TTC CTC CTT GTC ATC CTT C -3′; LTBP3 forward 
primer 5′- ACA TCG TCA ACT ACG GCA TCC  CAT-
3′; LTBP3 reverse primer 5′- CTC GTC CACGT CCA 
TCT CTTC -3′; GAPDH forward primer 5′- CCT TCC 
GTG TTC CTA CCC CCA T-3′; GAPDH reverse primer 
5′- GCC CAA GAT GCC CTT CAG T -3′. The CT values 
of the genes were counted, and GAPDH was treated 
as the internal reference gene to calculate the relative 
expression level of the target gene using the  2−△△Ct 
method.

Statistical analysis
All analyses were conducted with R version 3.5 
(https:// www.r- proje ct. org/) and its several open pack-
ages. The two-sided P value < 0.05 was considered 
statistically significant. Other used visual packages 
included WGCNA, heatmap, and DALEX.

Results
Screening of modules highly associated with immune cells 
in HIV‑1+

The whole flowchart of the study is shown in Additional 
file  1: Figure S1. WGCNA was run on 10 HIV-1− sam-
ples and 30 HIV-1+ samples in the GSE6740 dataset 
to determine the essential modules most closely con-
nected to the clinical characteristics of HIV-1+. Prior to 
WGCNA, cluster analysis was conducted to ensure that 
there were no outlier samples in the data set (Fig.  1A). 
The clinical information of HIV-1, such as HIV-1+, HIV-
1−, CD4 cells, and CD8 cells, was retrieved from the 
GSE6740 dataset and included in the clustering diagram 
(Fig. 1B). The soft threshold power was set to 14 (scale-
free  R2 = 0.85), conforming to the scale-free distribution 
to the maximum extent (Fig. 1C), and the dynamic shear 
tree algorithm was applied to determine 15 modules 
(Fig. 1D). A detailed examination of the module-clinical 
feature correlation heat map revealed that the MEdark-
green module had the most significant association with 
the four clinical features (Fig.  1E, |correlation coeffi-
cient|> 0.4, P < 0.01), hence it was designated as the key 
module. The MEdarkgreen module produced 225 genes, 

Fig. 1 Screening of highly related modules. A The clustering dendrogram of HIV-1± samples to detect outliers. B Cluster tree of 10 HIV-1− and 30 
HIV-1+ samples in the GSE6740 dataset. The color band underneath the tree indicates the numeric values of the tissue traits. C The scale-free fit 
index for soft-thresholding powers. The soft-thresholding power in the WGCNA was determined based on a scale-free R2 (R2 = 0.85). The left panel 
shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right panel displays the mean connectivity (degree, 
y-axis) as a function of the soft-thresholding power (x-axis). D Dendrogram of all genes clustered based on the measurement of dissimilarity. E A 
heatmap showing the correlation between the gene module and clinical traits: Each row corresponds to a module eigengene and each column to 
a trait. Each cell contains the corresponding correlation and p-value. The table is color-coded by correlation according to the color legend, which 
decreased in size from red to blue. F Scatter plot of module eigengenes related to HIV-1+ in the darkgreen module

https://www.r-project.org/
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19 of which met the criteria (|MM|> 0.8 and |GS |> 0.2) 
and were identified as Hub genes (Fig. 1F).

Screening candidate genes for HIV‑1+

The limma package was used to evaluate the DEGs 
between HIV-1+ and HIV-1− samples in the GSE6740 
dataset, with P < 0.5 chosen as the screening threshold. 
A total of 524 DEGs in HIV-1+ samples were evaluated 
in contrast to HIV-1− samples, comprising 278 up-reg-
ulated genes and 246 down-regulated genes (Additional 
file 2: Table S1). Figure 2A and B represent these DEGs 
in the form of volcanic and thermal maps. Subsequently, 
these differential genes were overlapped with the hub 
genes in the MEdarkgreen module to determine five 
candidate genes (SORL1, DPEP2, RGCC, ARRB1, and 

LTBP3) (Fig.  2C). Furthermore, the ClueGO/CluePedia 
plug-in in Cytoscape software was applied to explore 
the GO of candidate genes (Fig.  2D, Additional file  2: 
Table S2). SORL 1 was shown to be involved in 22 impor-
tant biological processes, including early endosome to 
recycling endosome transport (GO: 0,061,502), choline 
O-acetyltransferase activity regulation (GO: 1,902,769), 
and positive regulation of adipose tissue development 
(GO: 1,904,179). Amyloid precursor protein catabolic 
process was associated with protein exit from the endo-
plasmic reticulum (GO: 0,032,527), positive regula-
tion of glial cell-derived neurotrophic factor production 
(GO: 1,900,168), regulation of amyloid precursor protein 
catabolic process (GO: 1,902,991), and negative regula-
tion of metalloendopeptidase activity (GO: 1,902,963). 

Fig. 2 Identification of DEGs between 30 HIV-1+ and 10 HIV-1− samples A, B. volcano plot A and Heatmap B presented the expression of DEGs. C 
The Venn diagram for key genes. D The functional annotation analysis of the five candidate genes was performed by ClueGO and CluePedia. The 
candidate genes and enrichment terms constitute a regulatory network
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Furthermore, the follicle-stimulating hormone signaling 
pathway was discovered to be linked to ARRB1, histone 
acetyltransferase activity (GO: 0,004,402), the ovulation 
cycle process (GO: 0,022,602), and the negative regula-
tion of interleukin-6 production (GO: 0,032,715), (GO: 
0,042,699), and DPEP2’s molecular function was primar-
ily involved in regulating RNA binding (GO: 0,061,980). 
In addition, RGCC was shown to be involved in the nega-
tive regulation of fibroblast growth factor synthesis, and 
both RGCC and LTBP3 have been connected to the regu-
lation of extracellular matrix formation (GO: 0,085,029) 
during HIV-1 infection.

Screening of HIV‑1+ diagnostic markers
To further screen the genes with diagnostic value for 
AIDS, the GSE6740 dataset was used to establish a ran-
dom forest model (RF), support vector machine model 
(SVM), and generalized linear model (GLM). These three 
models were then submitted to an explanatory analysis in 
R using the DALEX package, and the residual distribu-
tion map was plotted to identify the optimum model. The 
RF model, as illustrated in Fig. 3A and B, is considered to 
be the best match for the minimum sample residue. The 

four factors in the RF model, including DPEP2, RGCC, 
ARRB1, and LTBP3, have a considerable influence on the 
projected value of the response variable (Fig.  3C). The 
areas under the ROC curve of which were 0.777, 0.720, 
0.890, 0.835, respectively (Fig.  3D–G), indicating that 
these genes had an excellent separating capacity between 
HIV-1- and HIV-1 + samples. Therefore, these four genes 
were taken as diagnostic markers for HIV-1+ to carry out 
further analysis.

Construction and evaluation of a four diagnostic 
marker‑based nomogram model
To enhance clinical prediction for HIV-1+, a nomogram 
model based on DPEP2, RGCC, ARRB1, and LTBP3 
was constructed using the rms package (Fig.  4A), and 
the calibration curve (Fig. 4B) was established using the 
calibration function in the rms package to assess the 
nomogram model’s predictive capacity. The calibration 
curve shows that the difference between the actual risk 
of HIV-1 infection and the projected risk is insignificant, 
implying that the nomogram model’s prediction is highly 
accurate for HIV-1 infection diagnosis. As revealed by 
decision-making curve analysis (DCA), the “nomogram” 

Fig. 3 Construction and assessment of RF, GLM, and SVM model. A Cumulative residual distribution map of the sample. B Boxplots of the residuals 
of the sample. Red dot stands for root mean square of residuals. C The importance of the variables in RF, GLM, and SVM model
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curve is higher than the gray line, the “ARRB1” curve, 
the “DPEP2” curve, the “LTBP3” curve, and the “RGCC” 
curve. The x-axis in DCA represents forecast probability, 
while the y-axis represents net income. The oblique red 
line indicates that the nomogram model could benefit 
those patients with high-risk thresholds of 0 to 1, with the 
clinical benefit of the nomogram model outweighing that 
of the “ARRB1”, “DPEP2”, “LTBP3”, and “RGCC” curves, 

which suggested that the diagnostic value of the nomo-
gram model for predicting HIV-1 infection (Fig. 4C). In 
addition, the clinical impact curve was further evaluated 
based on the DCA curve to determine the clinical effect 
of the “nomogram” model more intuitively. It was found 
that from 0 to 1, the “Number high risk” curve was close 
to the “Number high risk with the event” curve under the 
high-risk threshold, indicating the excellent ability of the 

Fig. 4 Construction and evaluation of the nomogram model based on the four diagnostic variables from the GSE6740 dataset. A Nomogram 
predicting the incidence of HIV-1+. The total points projected on the bottom scales indicate the incidence of HIV-1+. B The calibration curve 
revealed the predictiveness of the nomogram model. C The DCA curve evaluated the clinical value of the nomogram model. D The clinical impact 
curve was used to assess the clinical impact of the nomogram model
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“nomogram” model to predict HIV-1 infection (Fig. 4D). 
These findings also suggest that the four genes DPEP2, 
RGCC, ARRB1, and LTBP3 may play an important role in 
HIV-1 infection.

Construction of diagnostic gene–drug interaction network
The potential drugs or molecular compounds (Addi-
tional file 2: Table S3) of diagnostic genes DPEP2, RGCC, 
ARRB1, and LTBP3 for HIV-1+ treatment were searched 
in the CTD database. A diagnostic gene-drug interaction 
network was created and visualized using Cytoscape to 
determine the interaction between diagnostic genes and 
existing HIV-1 medications (Fig.  5). During the treat-
ment of HIV-1+, multiple drugs can affect the expression 
of these four diagnostic genes.

Construction of CeRNA network
The ENCORI database was examined for miRNAs related 
to these four diagnostic genes. According to the ceRNA 
hypothesis, there is a negative association between 
miRNAs and lncRNAs or mRNAs. Therefore, the link 
between diagnostic markers (mRNA) and miRNAs was 
investigated, with miRNAs demonstrating a negative 
correlation with the diagnostic genes selected (Fig.  6A). 
Figure  6B shows the potential binding sites between 

miRNA sequences and diagnostic genes. Figure 6C illus-
trates the interaction of each diagnostic marker (mRNA) 
with targeted miRNAs. Furthermore, to construct the 
lncRNA-miRNA-mRNA regulatory network in HIV-
1+, the ENCORI database was used to obtain the lncR-
NAs related to the above miRNAs, and the correlation 
between miRNAs and lncRNAs was calculated. Given 
multiple lncRNAs corresponding to the same miRNA, 
only the one that was most closely associated with 
miRNA was chosen for demonstration (Fig. 6D). Mean-
while, potential binding sites between lncRNA sequences 
and miRNAs were identified and documented in the 
ENCORI database (Fig. 6E). Based on 18 mRNA-miRNA 
pairs and 56 miRNA-lncRNA pairs, a ceRNA network in 
AIDS was constructed, as shown in Fig. 6F. Moreover, the 
lncRNA-miRNA-mRNA-drug regulatory network was 
developed using CTD-identified potential therapeutic 
medicines (Fig. 7). The red hexagon represents lncRNA, 
the purple triangle indicates miRNA, the light blue cir-
cle represents mRNA, and the green diamond indicates 
molecular compounds.

Clinical sample validation of HIV‑1+ diagnostic genes
The expression levels of the four diagnostic genes 
were analyzed in the GSE6740 dataset, with the results 

Fig. 5 Drug-gene interactions network with chemotherapeutic drugs and four diagnostic genes was constructed using the CTD database. A–D 
The interaction between existing chemotherapeutic drugs and the diagnostic genes. A ARRB1. B DPEP2. C LTBP3. D RGCC 
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suggesting that the expression levels of DPEP2, RGCC, 
ARRB1, and LTBP3 were significantly down-regulated 
(Fig. 8A). This is consistent with clinical blood sample 
detection results, which showed that the expression 
levels of four diagnostic genes were considerably down-
regulated in the blood of HIV-1 + patients compared to 
the control group (Fig. 8B).

Discussion
AIDS is a chronic disease characterized by a variety of 
life-threatening diseases resulting from HIV-1 infection. 
HIV-1 infection gradually weakens the immune system, 
increasing the risk of secondary infections and diseases 
[18]. Despite recent advancements in antiretroviral treat-
ment to inhibit viral replication and contain the infection, 

Fig. 6 Construction of CeRNA network. A Diagnostic gene negative correlation miRNA screening. B The potential binding sites of miRNA to 
diagnostic genes. C The miRNA-diagnostic gene interaction networks, the yellow triangle represents miRNA and the aquamarine blue circle 
represents mRNA. D miRNA and lncRNA with the greatest correlation. E The potential binding sites of lncRNA sequence to miRNA. F ceRNA 
network, red hexagon indicates lncRNA, the purple triangle indicates miRNA and the light blue circle indicates diagnostic gene
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treating AIDS remains a challenge [19, 20]. Therefore, 
it is critical to investigate the molecular markers and 
potential molecular pathways of HIV-1+ development for 
the early detection and treatment of HIV-1+.

The co-expression relationship between molecules 
was calculated using gene co-expression network analy-
sis (WGCNA) in this study, and the results revealed that 
the MEdarkgreen module exhibited the most significant 
correlation with the clinical features of HIV-1, with 19 
hub genes in the module identified. Among them, four 
immune cell-related genes (ARRB1, DPEP2, LTBP3, and 
RGCC) may show diagnostic value for HIV-1+.

Currently, there has been increasing evidence sug-
gesting that these diagnostic genes related to immune 
cells are involved in the occurrence and development of 
various human diseases. As a member of the β-arrestins 
family, ARRB1 is essential for the survival of  CD4+ T 
cells and has a role factor in autoimmune susceptibil-
ity [21, 22]. The most recent findings further indicate 
that ARRB1 can enhance the progression of primary 
biliary cirrhosis by regulating the function of autoim-
mune T cells [23]. DPEP2 was once believed to be a 
membrane-bound dipeptidase, but it was shown to be 
highly expressed in the lung, heart, and testis [24]. It 
has been shown that the expression of DPEP2 varies in 
inflammatory diseases, indicating that it may play a role 
in the immune response [25]. On the other hand, trans-
forming growth factor-β binding protein 3 (LTBP3) 
plays an important role in the secretion, activation, and 
function of mature TGFβ [26]. Some studies are dem-
onstrating that LTBP3 is also associated with a wide 
range of diseases, such as hepatocellular carcinoma, 

multiple myeloma, and oligodontia [27–29]. Addition-
ally, by regulating angiogenesis-dependent intracellular 
perfusion, LTBP3 as a novel tumor target may promote 
early metastasis in the process of cancer cell prolifera-
tion [30]. RGCC participates in the regulation of the cell 
cycle through interaction with cyclin-dependent kinase 1 
(CDK1) [31]. Moreover, RGCC has also been confirmed 
to be associated with inflammation, vascular remodeling, 
and insulin resistance.

To further understand the role these diagnostic genes 
play in HIV-1 infection, researchers investigated the 
molecular mechanisms in ARRB1, DPEP2, LTBP3, and 
RGCC. These genes, including ARRB1 and RGCC, were 
shown to be involved in the regulation of immune-
related biological processes, which is consistent with the 
classical process required for HIV-1+ [32, 33], suggesting 
a potential mechanism of HIV-1 infection.

An increasing amount of research indicates that 
lncRNA-miRNA-mRNA regulatory networks play a role 
in disease pathogenesis and progression [34–36]. Herein, 
the ceRNA network of HIV-1+ was constructed to show 
that ARRB1, DPEP2, LTBP3, and RGCC can be regulated 
by lncRNAs through corresponding miRNAs, providing 
a foundation for further research into the complex reg-
ulatory mechanisms of HIV-1+. More importantly, we 
have also discovered the drugs that can be used to treat 
HIV-1+ and gained a better understanding of the molec-
ular regulatory mechanisms of drug therapy for HIV-1+ 
through the lncRNA-miRNA-mRNA-drug regulatory 
network.

To the best of our knowledge, this is the first 
time ARRB1, DPEP2, LTBP3, and RGCC have been 

Fig. 7 The lncRNA-miRNA-mRNA-drug regulatory network was constructed combining ceRNA network with potential therapeutic drugs (the red 
hexagon, purple triangle, light blue circle were represents lncRNA, miRNA and mRNA, seperately, and the green diamond represents molecular 
compound)
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published as potential HIV-1+ diagnostic markers 
by WGCNA based on high-throughput sequencing 
data, alongside research into the molecular mecha-
nisms underlying HIV-1+ development and treatment. 

In addition, the role of these four diagnostic genes in 
distinguishing HIV-1-infected and HIV-1-uninfected 
patients was further verified. Because many of the 
hub genes examined in WGCNA may be excluded, 

Fig. 8 Clinical sample validation of HIV-1+ diagnostic genes. A the expression level of diagnostic genes in the GSE6740 dataset. B the relative 
expression of diagnostic genes was examined by RT-PCR in clinical blood samples
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developing a diagnostic model with just the inherent 
limitations in consideration is inevitable. Besides, the 
potential diagnostic value of these genes was not veri-
fied by other external data sets.

Conclusions
The ARRB1, DPEP2, LTBP3, and RGCC associations 
with immune cells may be identified as markers to dis-
tinguish HIV-1 infection using bioinformatics methods, 
and the potential mechanism of its molecular regula-
tion was investigated, indicating a new direction for the 
early diagnosis and treatment of HIV-1+.
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