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Abstract 

Background:  Increasing evidence indicates that the immune microenvironment plays a key role in the genesis and 
progression of colorectal cancer (CRC). This study aimed to establish an immune-related gene (IRG) signature and 
determine its clinical prognostic value in patients with CRC.

Methods:  The RNA sequencing and associated clinical data of CRC were downloaded from The Cancer Genome 
Atlas (TCGA) database. We then screened for differentially expressed IRGs by intersecting with IRGs obtained from the 
Immunology Database and Analysis Portal. Functional enrichment analyses were carried out to determine the poten-
tial biological functions and pathways of the IRGs. We also explored the specific molecular mechanisms of the IRGs 
by constructing regulatory networks. Prognostic IRGs were obtained by LASSO regression analysis, and subsequently, 
gene models were constructed in the TCGA dataset to confirm the predictive capacity of these IRGs. Finally, we used 
the TIMER tool to assess the immune properties of prognostic IRGs and correlate them with immune cells.

Results:  We identified 409 differentially expressed IRGs in patients with CRC. Kyoto Encyclopaedia of Genes and 
Genomes and Gene Ontology enrichment analyses suggested that these differentially expressed IRGs were signifi-
cantly related to 102 cancer signalling pathways and various biological functions. Based on the prediction and interac-
tion results, we obtained 59 TF–IRG, 48 miRNA–IRG, and 214 drug–IRG interaction networks for CRC. Four prognostic 
genes (POMC, TNFRSF19, FGF2, and SCG2) were developed by integrating 47 survival-related IRGs and 42 character-
istic CRC genes. The results of gene model showed that patients in the low risk group had better survival outcomes 
compared to those in the high risk group. The expression of POMC, TNFRSF19, FGF2, and SCG2 was significantly cor-
related with immune cells.

Conclusion:  This study identified some valid IRGs, and these findings can provide strong evidence for precision 
immunotherapy in patients with CRC.

Keywords:  Colorectal cancer, Immune-related gene, Prognostic value, Immunotherapy

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Colorectal cancer (CRC) was the third most commonly 
diagnosed cancer and the second leading cause of 
cancer death in 2020, with approximately 1.9 million 
new cases and 935,000 deaths worldwide, representing 
approximately one in ten cancer cases and deaths [1]. 
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Although the five-year survival rate for CRC patients 
has improved with early screening in developed coun-
tries, the outcome for patients with advanced CRC 
remains unsatisfactory, with a median five-year sur-
vival rate of only 12.5% in the USA [2]. Therefore, it 
is necessary to identify specific biomarkers for early 
diagnosis and potential therapeutic targets in CRC.

Immunotherapy is gradually becoming the standard 
treatment for cancer and is as important as surgery, 
radiotherapy, and chemotherapy. Cancer immunother-
apy is designed to promote the immune response of 
tumour-specific T cells [3]. When fully reprogrammed, 
T cells are considered the most powerful anti-cancer 
immune cells. Immunotherapy has not only pro-
duced unprecedented clinical results in patients with 
refractory tumours but has also brought long-term 
clinical remission to patients with diseases that were 
historically considered incurable [4]. In recent years, 
the advent of immune checkpoint inhibitors (ICIs), 
such as anti-PD-1, has opened up a new landscape 
for cancer immunotherapy. Nevertheless, the use of 
ICIs in CRC is currently limited to patients with high 
microsatellite instability and is only 5–10% effective 
in CRC patients with microsatellite stability (approxi-
mately 90%) [5]. Hence, it is necessary to explore 
reliable immune-related genes (IRGs) as important 
immune signatures to improve efficacy and predict 
prognosis in patients with CRC.

With the presentation of large-scale publicly avail-
able gene expression databases, researchers have 
been able to quickly and accurately identify potential 
biomarkers for tumour surveillance [6]. The Cancer 
Genome Atlas (TCGA) is a commonly used database 
that contains a large amount of transcriptome data and 
can provide many tumour samples. Multiple immune-
related prognostic signatures for lung adenocarcinoma 
[7], hepatocellular carcinoma [8], breast cancer [9], 
and clear cell renal cell carcinoma [10] were estab-
lished from TCGA.

Our study integrated differentially expressed genes 
obtained from TCGA with IRGs collected from the 
Immunology Database and Analysis Portal (IMMPort) 
and conducted an in-depth mining analysis of CRC 
data. We then analysed and processed the IRGs further 
by using functional enrichment analyses and regula-
tory network construction. In addition, we discovered 
new immune biomarkers associated with CRC prog-
nosis applying LASSO regression analysis. We hope 
that these findings will lead to accurate prognostic 
assessment and effective immunotherapy strategies for 
patients with CRC.

Methods
Original data acquisition
The RNA-sequencing and miRNA data were down-
loaded from TCGA using the UCSC Xena browser 
(https://​xenab​rowser.​net/​datap​ages/) [11]. The corre-
sponding clinical data for CRC included 353 samples 
(342 tumour samples and 11 normal samples). The 
counts per million values were obtained by transform-
ing the original data.

We downloaded the CRC data set numbered GSE39582 
from the National Center for Biotechnology Information 
GEO (Gene Expression Omnibus) (https://​www.​ncbi.​
nlm.​nih.​gov/) database [12]. The data set was processed 
by the original author and standardized probe expression 
matrix was downloaded. Meanwhile, the probe annota-
tion information of corresponding platform was down-
loaded. Convert the probe to gene symbol and eliminate 
the probe that is not compared to gene symbol. For mul-
tiple probes mapped to the same gene symbol, the aver-
age value of probes was taken as the expression level of 
the gene. Then the expression values of four genes FGF2, 
POMC, SCG2, and TNFRSF19 were selected for subse-
quent analysis.

Differential immune‑related genes and miRNA screening
The samples were divided into tumour and normal 
groups. The TMM algorithm in the R (Version 4.1.1) 
software package edgeR (Version 3.36.0) [13] was used 
to standardise the raw count and transform it into counts 
per million, which was used for subsequent analysis. The 
significance of differences in gene expression was calcu-
lated using an unpaired t-test and corrected by applying 
the Benjamini–Hochberg (BH) procedure. Threshold | 
logFC | > 1 and p-value < 0.05 were selected as significant 
differences in miRNAs and genes expression. The IRGs 
were collected from the IMMPort database [14] (https://​
www.​immpo​rt.​org/​shared/​home), and 1793 different 
IRGs associated with human cancers were screened out 
(Additional file 6: Table S1). These genes were intersected 
with 4747 differentially expressed genes to obtain differ-
entially expressed IRGs in CRC.

Functional enrichment analyses of IRGs
To explore the potential biological functions and path-
ways of 409 differentially expressed IRGs, the R software 
package clusterProfiler [15] was applied to conduct the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway [16–18] and Gene Ontology (GO) [19] enrich-
ment analysis for IRGs. GO has three ontologies: 

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.immport.org/shared/home
https://www.immport.org/shared/home
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molecular function (MF), cellular component (CC), and 
biological process (BP). The results with a p-value < 0.05 
after BH correction were selected as the most significant 
enrichment results.

Survival‑associated IRG screening
Clinical survival information and gene expression data 
from patients with CRC were extracted from TCGA. 
We used the survival R package (version 2.41-3, https://​
CRAN.R-​proje​ct.​org/​view=​Survi​val) to analyse the 
impact of differentially expressed IRGs on patient sur-
vival and prognosis. Subsequently, we plotted the 
Kaplan–Meier (K–M) curve to compare overall survival 
for high- and low-risk expressions, and survival-associ-
ated IRGs were identified using a log-rank test (p < 0.05).

Construction of transcription factor (TF)‑IRG 
and miRNA‑IRG regulatory network
The over-representation analysis enrichment method was 
applied to predict TF-target enrichment of differentially 
expressed genes in protein–protein interaction network, 
using WebGestalt GAST [20] (http://​www.​webge​stalt.​
org/​option.​php). The species selected was hsapiens, the 
enrichment parameter (the minimum number of enrich-
ment genes) was set at 2, and the results of the Top 10 
were displayed. The TF-target gene interaction rela-
tions were obtained using Cytoscape [21] (version 3.6.0, 
http://​www.​cytos​cape.​org/) to draw TF-IRG regulatory 
network.

We used the miRWalk [22] tool to predict regula-
tory miRNAs of differentially expressed IRGs. The miR-
NAs obtained by our previous differential analysis were 
screened out from these miRNAs to construct the rela-
tionship between differentially expressed miRNAs and 
IRGs. Finally, the miRNA-IRG regulatory network was 
mapped using Cytoscape.

Establishment of drug–gene interaction network
According to the drug prediction database DGIdb (http://​
www.​dgidb.​org/) [23], drug–gene interactions of key dif-
ferential genes regulated by miRNA and TFs were fur-
ther predicted by the filtering parameter ‘FDA-approved’. 
We then constructed the drug–gene interaction net-
work based on the prediction results, using Cytoscape 
software.

Prognostic characteristic gene screening and model 
construction
We screened the characteristic genes of CRC using 
LASSO regression analysis and integrated them with 47 
survival-related IRGs to obtain the prognostic character-
istic genes of CRC. The lambda value of the LASSO filter 
was set to 0.004 by iterative calculation. To confirm the 

predictive capacity of these IRGs, two thirds of the sam-
ples (including 219 CRC samples) in the TCGA dataset 
were randomly selected using the R language for model 
construction. The model was validated using one third of 
the samples (including 110 CRC samples).

Immune evaluation and mutation analysis of prognostic 
characteristic genes
We used TIMER tools (https://​cistr​ome.​shiny​apps.​io/​
timer/) [24] to assess the immune characteristics of four 
prognostic characteristic genes (GRP, TNFRSF19, FGF2, 
and SCG2) in order to determine their relevance to 
immune cells. Simultaneously, the mutation data of four 
prognostic characteristic genes were downloaded from 
TCGA genomic data, and the extracted mutation signa-
tures were visualised using R package Maftools (version 
2.10.0) [25] .

Validation of four prognostic characteristic genes 
from GEO database
To verify the differential expression levels of these four 
genes (FGF2, POMC, SCG2, and TNFRSF19), we first 
selected 17 samples with paired paracancer and cancer 
tissues.  The box diagram of the expression of the four 
genes between the cancer tissue and the paired paracan-
cer tissue samples was then drawn. Paired T test was used 
to calculate the significance. To verify that these four 
genes are indeed significantly correlated with progno-
sis, 550 samples with survival time greater than 30 days 
were selected first. K–M curve was used to evaluate the 
association between different gene expression levels and 
survival prognosis. Expression level higher than or equal 
to cutoff value is high sample group, expression level 
lower than cutoff value is low sample group.  The cutoff 
value is judged by the optimal critical value according to 
the expression value, survival time, and survival state of 
each gene using R package SurvMiner (Version 0.4.3). To 
verify the significant association between the four genes 
and immune cells, we used the Timer algorithm and the 
Immunedeconv package (version 2.0.0) based on R lan-
guage [26].  The infiltration levels of macrophages, neu-
trophils, dendritic cells (DCs), CD8+ T cells, CD4+ T 
cells and B cells were calculated. Furthermore, spearman 
correlation and significant P values between the expres-
sion level of 4 genes and the level of cell invasion were 
calculated by corresponding relationship of cancer tissue 
samples.

Results
Confirmation of differentially expressed IRGs and miRNAs
A total of 4747 differentially expressed genes, includ-
ing 2490 up-regulated and 2257 down-regulated genes 
in CRC, were collected by the above screening method. 

https://CRAN.R-project.org/view=Survival
https://CRAN.R-project.org/view=Survival
http://www.webgestalt.org/option.php
http://www.webgestalt.org/option.php
http://www.cytoscape.org/
http://www.dgidb.org/
http://www.dgidb.org/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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Meanwhile, 426 differential miRNAs were obtained, 
of which 193 miRNAs were up-regulated and 233 miR-
NAs were down-regulated in CRC. In the volcano dia-
gram (Fig.  1A), there is a significant difference between 
the experimental group and the control group (p < 0.05). 
Then, after intersection of 1793 IRGs downloaded from 
IMMPort with 4,747 differentially expressed genes, 409 
differentially expressed IRGs in CRC were obtained 
(Fig. 1B).

Enrichment results of genes
The results showed that these 409 differentially expressed 
IRGs were significantly enriched in 102 KEGG pathways. 

As shown in Fig.  2A, the top five enriched pathways 
were cytokine–cytokine receptor interaction, viral pro-
tein interaction with cytokine and cytokine receptor, 
chemokine signalling pathway, natural killer cell-medi-
ated cytotoxicity, and neuroactive ligand-receptor inter-
action. Moreover, the GO enrichment analysis showed 
that ‘cell chemotaxis’, ‘external side of plasma membrane’, 
and ‘receptor ligand activity’ were the most enriched 
terms in the BP, CC, and MF, respectively (Fig. 2B–D).

Validation of 47 survival‑associated IRGs
Through survival analysis, we obtained 47 IRGs that were 
significantly associated with survival, of which 18 were 

Fig. 1  Identification of differentially expressed IRGs and miRNAs. A The volcano diagram shows up-regulated genes in red, down-regulated 
genes in green, and no differentially expressed genes in black. The mRNA volcano on the left and miRNA volcano on the right. B Venn diagram, 
intersection of 4747 differentially expressed genes and 1793 IRGs
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positively correlated and 29 were negatively correlated 
(Table  1). The K–M survival curve also confirmed the 
survival difference between the high (n = 165) and low (n 
= 164) expressing populations. As shown in Fig. 3A, the 
median survival time of the NRG1 high expression group 
was significantly longer than that of the low expression 
group (p < 0.05). However, the PGR high expression 
group showed reduced median survival time (Fig.  3B; p 
< 0.05).

Survival analysis adjusting for age and tumor stage
We conducted survival analysis adjusting for age and 
tumor stage at diagnosis via K-M survival curve. First, our 
results showed significant differences between patients 
over 60 years of age in the high-low risk group. Although 
the results were not significant in patients under 60 years 
of age, the prognosis of the high-risk group was worse 
than that of the low-risk group (Additional file  4: Fig. 
S4A, B). Next, there was a significant difference between 

the high and low risk groups in stage III-IV patients. No 
significant results were seen in stage I-II patients, but the 
prognosis of the high-risk group was worse than that of 
the low-risk group (Additional file 4: Fig. S4C, D).

TF‑IRG and miRNA‑IRG regulatory networks in CRC​
According to the prediction results of the over-represen-
tation analysis enrichment method, we obtained 59 pairs 
of TF-IRG interactions, including 9 TFs (NFAT, COUP, 
STAT4, TEF1, P53, PPAR, TATA, FREAC2, PU1) and 
24 IRGs, of which 7 IRGs (TNFRSF19, TGFB2, GREM1, 
SPP1, PGF, INHBB, and GRP) were upregulated and 17 
IRGs (SEMA6D, BMP5, TPM2, SCG2, NRG1, FABP2, 
ANGPTL1, POMC, UCN3, COLEC12, RBP2, PTH1R, 
CCL15, AGTR1, ACVRL1, NTS, and CCL28) were 
downregulated in CRC. Based on the above results, a 
complex TF-IRG network diagram for CRC was con-
structed using Cytoscape (Fig. 4).

Fig. 2  Enrichment results of differentially expressed IRGs. A Results of the KEGG pathway enrichment analysis. B Results of the GO enrichment 
analysis in the BP. In the Go-BP bubble diagram, the more red the color is, the smaller the P value is and the more significant the Go-BP is. The larger 
the bubble, the more genes it contains. C Results of the GO enrichment analysis in the CC. D Results of the GO enrichment analysis in the MF
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After integrating the 426 differential miRNAs previ-
ously obtained and the targeted miRNAs of the predicted 
IRGs using the miRWalk tool, we identified 43 miRNAs, 
13 IRGs, and 48 miRNA-IRG relationship pairs, as shown 
in Fig. 5.

Drug–gene interaction network in CRC​
Based on the drug–gene interaction information of TF- 
and miRNA-regulated IRGs in the DGIdb database, we 
obtained 214 relationship pairs between small drug mol-
ecules and IRGs, including 18 IRGs (MAPT, NST, PGR, 
NRG1, FGF2, TLR3, PTH1R, AGTR1, F2RL1, MTNR1A, 
VIPR1, BMP5, GRP, BIRC5, SPP1, CD1A, PGF, and 
MC1R) and 195 drugs. The drug–gene interaction net-
work diagram was plotted using Cytoscape (Fig. 6).

Screening and modelling of disease characteristic genes
By integrating gene node information in multiple net-
works, 42 CRC characteristic genes were screened 
using the LASSO method (Fig.  7A), and four prognos-
tic characteristic genes (POMC, TNFRSF19, FGF2, and 
SCG2) were obtained by further intersection with 47 

survival-related IRGs. To further confirm the predictive 
effect of these IRGs, 329 CRC samples from TCGA were 
used to construct a gene model. As shown in Fig.  7B, 
patients in the low-risk group had a better survival prog-
nosis than those in the high-risk group, which was con-
sistent with the model validation results in Fig. 7C.

Immunocorrelation and mutation analysis of prognostic 
characteristic genes
Our results showed that four prognostic characteristic 
genes (FGF2, POMC, SCG2, and TNFRSF19) were signif-
icantly related to a variety of immune cells. As shown in 
Fig.  8, the expression of POMC, TNFRSF19, FGF2, and 
SCG2 was significantly associated with macrophages, 
neutrophils, DCs, CD8+ T cells, CD4+ T cells and B 
cells (p < 0.05). Mutation analysis was also performed for 
the four prognostic characteristic genes, but Figure  9A 
only shows the summary gene mutation information 
for TNFRSF19 and SCG2, because there was no gene 
mutation information for POMC and FGF2 available in 
TCGA. Due to the small number of genes and mutation 
sites, the waterfall diagram of the mutation analysis was 

Table 1  Validation of 47 survival associated IRGs in CRC​

Name p value Positive/negative 
correlation

Name p value Positive/
negative 
correlation

GRP 0.028779 Negative MC1R 0.029444 Negative

HAMP 0.012122 Negative FABP2 0.041115 Positive

SEMA6D 0.046234 Positive MAPT 0.004834 Negative

OLR1 0.023140 Negative HSPA6 0.013658 Negative

BMP5 0.039142 Positive GREM1 0.009534 Negative

CCL28 0.034722 Negative SPP1 0.007463 Negative

CCL21 0.032073 Negative XCR1 0.029781 Positive

MTNR1A 0.012019 Positive CCL15 0.024537 Positive

LGR4 0.046138 Negative ANGPTL1 0.025800 Negative

VIPR1 0.048028 Negative TNFRSF10C 0.028622 Positive

RBP2 0.046735 Positive POMC 0.004394 Negative

IL13RA2 0.021061 Positive UCN3 0.031160 Positive

TLR3 0.039778 Negative F2RL1 0.013359 Positive

TNFRSF19 0.005499 Negative IL20RA 0.045089 Negative

CHP2 0.038356 Positive CD1A 0.017109 Negative

TPM2 0.005409 Negative INHBB 0.006982 Negative

ULBP3 0.010866 Positive SLC11A1 0.008031 Negative

SCG2 0.001530 Negative FGF2 0.018382 Negative

BIRC5 0.047323 Positive COLEC12 0.037506 Negative

ACVRL1 0.019278 Positive NTS 0.013250 Positive

PGF 0.046785 Negative CST4 0.008392 Negative

PGR 0.000961 Negative AGTR1 0.046148 Negative

NRG1 0.000834 Positive PTH1R 0.046433 Positive

TGFB2 0.016706 Negative
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not obvious (Fig. 9B). Figure 9C displays the overall dis-
tribution of six different mutational transformations (C > 
T, T > C, C > A, C > G, T > G, and T > A).

Validation results from the GEO database
As shown in Additional file  1: Fig. S1, it can be found 
that the expression levels of FGF2 and SCG2 in CRC 
are significantly down-regulated, while the expression 
levels of POMC and TNFRSF19 are significantly up-
regulated, which is consistent with the previous differ-
ence results. In addition, it can be seen from Additional 
file 2: Fig. S2 that all four genes showed worse prognosis 
after high expression. Except TNFRSF19, the other three 
genes were significantly correlated with prognosis (p < 
0.05).  Further correlation heat maps showed significant 
correlations between genes (FGF2 and SCG2) and all six 
immune cells.  POMC was significantly correlated with 
other immune cells except neutrophils.  There was also 
a significant correlation between TNFRSF19 and mac-
rophages and B cells (Additional file  3: Fig. S3).  These 
conclusions are basically consistent with the previous 
analysis results.

Fig. 3  Validation of IRGs associated with survival. A Expression level of NRG1 is positively correlated with overall survival. B Expression level of 
PGR is negatively correlated with survival time. The horizontal axis is survival time, the vertical axis is overall survival, red represents the high gene 
expression group, black represents the low gene expression group

Fig. 4  TF-IRG regulatory network in CRC. The circle represents IRG, 
red is up-regulated gene, green is down-regulated gene; the blue 
diamond represents TF
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Discussion
CRC is currently the second leading cause of cancer-
related death, with malignant progression and metastasis 
leading to high mortality in advanced CRC [1]. Immune 
components in the tumour microenvironment have 
recently been reported to influence tumour progres-
sion in various cancers, including CRC [27]. As some 
immune cells are further polarised, the adaptive immune 
response is reversed, ultimately accelerating cancer cell 
proliferation, tumour angiogenesis, progression, and 
metastasis [28]. Therefore, the regulation of the tumour 
immune microenvironment has become an attractive 
clinical strategy for cancer treatment. With the launch of 
the first cancer immunotherapy (recombinant cytokine 
interferon-α for hairy cell leukaemia) in 1986, more than 
a dozen immunotherapies have been approved for a vari-
ety of cancers, including melanoma, advanced stomach 
cancer, bladder cancer, hepatocellular carcinoma, pros-
tate cancer, kidney cancer, and non-small cell lung can-
cer [29]. Unlike chemotherapy, which kills cancer cells 

directly, cancer immunotherapies attack tumour cells 
by activating the host’s immune system with fewer off-
target effects [30]. However, the role of IRGs as impor-
tant immune signatures in CRC has not yet been fully 
explored. In this study, we acquired 409 differentially 
expressed IRGs in CRC from TCGA and IMMPort using 
the above screening methods. Furthermore, KEGG 
enrichment analyses indicated that these differentially 
expressed IRGs were significantly associated with 102 
cancer signalling pathways. In patients undergoing colo-
rectal cancer surgery, IRGs related to the enrichment 
pathway for natural killer cell-mediated cytotoxicity was 
significantly reduced after primary tumour resection 
[31]. This also confirms the value of these IRGs in the 
treatment of CRC. In addition, GO enrichment analysis 
suggested that these IRGs possess multiple molecular 
functions and engagement in various biological processes 
such as cell chemotaxis and receptor ligand activity, 
which are involved in tumour development and metasta-
sis [32, 33].

Fig. 5  MiRNA-IRG regulatory network in CRC. The triangle represents miRNA; Red circles represent up-regulated genes, green circles represent 
down-regulated genes
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Based on the prediction and interaction results, we 
obtained 59 TF-IRG and 48 miRNA-IRG interaction net-
works in CRC. TFs such as NFAT have been experimen-
tally confirmed to be involved in the development and 
progression of CRC [34]. Recent studies have also sug-
gested that the expression of NFATc1 is closely related to 
the clinical stage and metastasis of CRC, and the applica-
tion of Ca2+–calcineurin–NFAT signalling inhibitors can 
inhibit CRC metastasis in mouse models [35]. Moreover, 
another TF that we obtained, P53, not only controls the 
expression of anticancer genes through transcriptional 
activity, but also plays a tandem role with various sig-
nalling pathways in CRC [36]. The 43 miRNAs obtained 
also play a variety of roles in cancer genesis, progression, 
metastasis, and recurrence. For example, high miR-181c 
expression was significantly associated with recurrence 
in stage II CRC patients [37]. Furthermore, Hernandez 
demonstrated that the overexpression of miRNA-26a 
increased the proliferation and migration rates of CRC 
cells in vitro [38]. Finally, we constructed 214 drug–IRG 

regulatory networks based on the drug–gene interaction 
results of TF- and miRNA-regulated IRGs in CRC. These 
results provide a strong basis for precision immunother-
apy in CRC patients.

The latest global statistics show that the five-year rela-
tive survival rate of CRC reached 64% in the United States 
from 2009 to 2015, was nearly 57% in China from 2012 to 
2015, and was less than 50% in many Eastern and South-
ern European countries [39]. In particular, metastatic 
CRC has a five-year survival rate of only 14% in Europe, 
despite advances in treatment [40]. Therefore, early diag-
nosis and treatment of CRC is highly effective in order 
to significantly improve the survival rate of patients. In 
this study, we identified four prognostic genes for CRC 
(POMC, TNFRSF19, FGF2, and SCG2) by integrat-
ing 47 survival-related IRGs and 42 CRC characteristic 
genes. We believe that these findings may lead to more 
early diagnostic biomarkers for CRC and improvement 
of the five-year survival rate of patients. Furthermore, the 
expression of POMC, TNFRSF19, FGF2, and SCG2 was 

Fig. 6  Drug-IRG interaction network in CRC. The yellow hexagon represents small drug molecules; the red circles represent up-regulated genes and 
the green circles represent down-regulated genes
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Fig. 7  Screening and modeling of prognostic characteristic IRGs in CRC. A The characteristic genes were screened by LASSO method. B IRGs model 
was constructed in TCGA dataset. C Validation diagram of gene model
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significantly associated with immune cells, such as mac-
rophages, neutrophils, DCs, CD8+ T cells, CD4+ T cells 
and B cells. Immune cells in the tumour microenviron-
ment can antagonise or promote tumours. It has been 
demonstrated that a high proportion of infiltrating den-
dritic, CD8+ T, and CD4+ T cells leads to better clinical 
outcomes in CRC patients [41]. However, recent studies 
suggest that macrophages increase the migration, inva-
sion, and metastatic ability of tumours, reflecting their 
tumour-promoting effect in CRC [42]. Prognostic genes 
may therefore serve as targeted entry points for CRC 
immunotherapy.

We used the information from the group of Li [43] to 
discuss related analysis of MSI via R software. A total of 
342 samples who have MSI information and related gene 
expression information after matching our information 
and the data in Li’s database. Then, we conducted statisti-
cal analysis via using limma package to compare MSI and 

MSS. According to the threshold FDR<0.05 and | logFC 
| > 1, a total of 1294 differentially expressed genes were 
obtained. Next, we got 160 differentially IRGs after tak-
ing the intersection between the above 1294 differen-
tially expressed genes and the IRGs in IMMPort database 
(https://​www.​immpo​rt.​org/​shared/​home). However, no 
statistical difference of immune gene expressions was 
observed between MSI and MSS groups. In order to 
confirm the conclusion, we conducted an analysis about 
the levels of infiltration of 22 immune cells in each sam-
ple based on gene expression matrix via CIBERSORT 
[44]. Except for T cell Gamma Delta and Neutrophi, 
which showed a significant difference in the level of cell 
infiltration, the other cells showed no significant differ-
ence in infiltration between the two groups, which once 
again proved that there was little difference in immu-
nity between MSI and MSS groups in the samples of this 
study (Additional file 5: Fig. S5).

Fig. 8  Immunocorrelation of prognostic characteristic IRGs. A Immune cell correlation of FGF2. B Immune cell correlation of POMC. C Immune cell 
correlation of SCG2. D Immune cell correlation of TNFRSF19

https://www.immport.org/shared/home
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Conclusion
In this study, bioinformatics analysis revealed 59 TF-IRG 
and 48 miRNA-IRG regulatory networks in CRC, which 
provides theoretical basis for further improving the bio-
logical mechanism of CRC occurrence, development and 
metastasis. We also identified several valid character-
istic survival-related IRGs (POMC, TNFRSF19, FGF2, 
and SCG2) that could effectively assess the prognosis of 
patients with CRC. These potential immune biomarkers 
could be used to develop precise and effective personal-
ised immunotherapy strategies for CRC patients.
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Additional file 1. Fig. S1: The box diagram of expression of prognostic 
characteristic IRGs. From A to D, the expression box diagram of FGF2, 
SCG2, POMC, and TNFRSF19 is shown in the figure. Green is the paracan-
cer tissue, yellow is the cancer tissue, and the line in the middle indicates 
that they belong to the same sample. 

Additional file 2. Fig. S2: Correlation between IRGs and prognosis from 
GEO database. The survival curves of FGF2, SCG2, POMC, and TNFRSF19 
were shown from A to D. In the figure, red represents high expression 
group and black represents low expression group.

Additional file 3. Fig. S3: Validation of immunocorrelation of IRGs from 
GEO database. From left to right are heat maps of correlations between 
FGF2, POMC, SCG2, TNFRSF19 and immune cells. The top left corner of 
each small square in the figure represents significance, and * represents 
p < 0.05, ** represents p < 0.01. The lower right corner shows correlation, 
green to red shows significance from negative to positive, and the deeper 
the correlation coefficient is, the greater the absolute value.

Fig. 9  Mutation analysis of prognostic characteristic IRGs. A Summary statistical of TNFRSF19 and SCG2 mutation information including “Variant 
Classification”, “Variant Type”, “SNV Class”, “Variants per Sample”, “Variant Classification Summary” and “Top 10 mutated genes”. B Waterfall diagram: 
mutation statistics in each sample. C The overall distribution of six different mutational transformations
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Additional file 4. Fig. S4: The K-M survival curve of survival analysis 
adjusting for age and tumor stage. (A) K-M survival curve of patients under 
60 years in the high-low risk group. (B) K-M survival curve of patients over 
60 years in the high-low risk group. (C) K-M survival curve of patients in 
stage I-II. (D) K-M survival curve of patients in stage III-IV.

Additional file 5. Fig. S5: The levels of immune cells infiltration in MSI 
and MSS groups. T cell Gamma Delta and Neutrophi showed a significant 
difference in the level of cell infiltration (p < 0.05), while the other cells 
showed no significant difference in infiltration between the two groups 
(p > 0.05).

Additional file 6. Table S6: Details of 1793 different IRGs collected from 
the IMMPort database.
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