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Abstract 

Background:  Next generation sequencing for oncology patient management is now routine in clinical pathology 
laboratories. Although wet lab, sequencing and pipeline tasks are largely automated, the analysis of variants for clini-
cal reporting remains largely a manual task. The increasing volume of sequencing data and the limited availability of 
genetic experts to analyse and report on variants in the data is a key scalability limit for molecular diagnostics.

Method:  To determine the impact and size of the issue, we examined the longitudinally compiled genetic variants 
from 48,036 cancer patients over a six year period in a large cancer hospital from ten targeted cancer panel tests in 
germline, solid tumour and haematology contexts using hybridization capture and amplicon assays. This testing gen-
erated 24,168,398 sequenced variants of which 23,255 (8214 unique) were clinically reported.

Results:  Of the reported variants, 17,240 (74.1%) were identified in more than one assay which allowed curated 
variant data to be reused in later reports. The remainder, 6015 (25.9%) were not subsequently seen in later assays and 
did not provide any reuse benefit. The number of new variants requiring curation has significantly increased over 
time from 1.72 to 3.73 variants per sample (292 curated variants per month). Analysis of the 23,255 variants reported, 
showed 28.6% (n = 2356) were not present in common public variant resources and therefore required de novo cura-
tion. These in-house only variants were enriched for indels, tumour suppressor genes and from solid tumour assays.

Conclusion:  This analysis highlights the significant percentage of variants not present within common public variant 
resources and the level of non-recurrent variants that consequently require greater curation effort. Many of these 
variants are unique to a single patient and unlikely to appear in other patients reflecting the personalised nature of 
cancer genomics. This study depicts the real-world situation for pathology laboratories faced with curating increasing 
numbers of low-recurrence variants while needing to expedite the process of manual variant curation. In the absence 
of suitably accurate automated methods, new approaches are needed to scale oncology diagnostics for future 
genetic testing volumes.
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Introduction
Next generation sequencing (NGS) in clinical pathology 
laboratories for the management of patients with can-
cer is now routine. A number of factors have converged 
to allow the adoption of these technologies including 
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the declining costs of sequencing, the replacement 
of narrowly focussed gene and single exon tests with 
assays using improved sequencing technologies that 
allow broader and more detailed genomic changes to be 
assayed. However, the use of such genomic tests has led 
to a significant increase in the number of variants that a 
laboratory must analyse to determine pathogenicity and 
potential diagnostic, prognostic or therapeutic use. This 
increasing volume of variants to be analysed has exposed 
a bottleneck within molecular laboratories, namely—the 
expert curation of variants and their integration into a 
clinical report. Depending on jurisdiction, curation of 
variants is performed by either pathologists, medical 
scientists or genetic counsellors following international 
guidelines [1, 2]. This in-house expertise represents a 
scarce workforce that is difficult to scale in line with vari-
ant volumes. To address this shortcoming several com-
mercial solutions have been established that range from a 
complete testing service through to curation of individual 
variants [3–6]. Nevertheless, the variant curation bottle-
neck is likely to become an increasing problem and has 
been estimated that it will contribute to over half the cost 
of testing by 2026 [7].

We hypothesise that without some form of scalable 
artificial intelligence or other automated solution for 
variant analysis, the curation burden will become unsus-
tainable. To test this hypothesis, we have examined the 
generation of variants over six years of genomic testing 
within our institution. Our aims were to (1) document 
the number and type of variants generated over time (2) 
identify which genes require the most curation effort (3) 
assess the benefit of commonly used publicly available 
variant databases and (4) compare commercial solutions 
to reduce the curation burden.

Methods
All sequenced variants were uploaded to an in-house 
tertiary analysis decision support software system 
called PathOS [8] for filtering, analysis and report-
ing. Detailed descriptions of laboratory processes have 
been described previously [8]. Reported variants were 
manually curated using the ACMG or AMP guidelines 
[1, 2], to establish variant action in a patient’s clinical 
context. Curated variants with enriched expert anno-
tations were deposited within a common database ena-
bling subsequent patients presenting with the same 
variants to be matched to the existing variant annota-
tions so that only novel variants need be curated. The 
patient’s clinical context is also stored with curated 
variants to inform decisions on whether the same vari-
ant appearing in a different clinical context warrants 
using the same stored curation or whether a new dis-
tinct, and perhaps adapted, curation of the variant and 

context is required. For details of the pipelines and 
curation workflows please refer to the Supplementary 
Methods section.

Patient samples were aggregated into somatic, haema-
tology and germline sets depending on the sequencing 
panels used. Clinically reported variants in this study are 
from 453 distinct cancer associated genes (see Additional 
file  2: Figure S1). The genes were further broken down 
into overlapping categories of 63 germline genes, 401 
somatic genes and 109 haematology assayed genes. These 
genes were categorised as either tumour suppressor or 
oncogene based on The Cancer Gene Census [9].

Results
Analysis of variants from germline, somatic 
and haematology assays
Between the period October 2013 to May 2019, we 
performed next generation sequencing assays on sam-
ples from a cohort of hospital (n = 32,670) and exter-
nal (n = 15,365) patients, covering a broad range of 
tumour streams, over a period of six years. This yielded 
24,168,398 variants of which 23,255 were clinically 
reported from 95,954 patient samples from 48,036 
patients using a heterogenous set of cancer assays (see 
Fig.  1). The assays were targeted cancer gene panels 
covering a wide range of genomic capture regions rang-
ing from highly targeted panels of four genes through to 
comprehensive cancer panels of up to 701 genes. Ten dif-
ferent panels were employed covering varying regions of 
the genome using hybrid capture or amplicon technolo-
gies (see Table 1) comprising hereditary cancer germline 
panels, somatic panels and haematology panels for solid 
cancers and blood cancers respectively. A detailed break-
down by assay is provided in Additional file 1: Table S1.

Of the 23,255 clinically reported variants, 17,240 
(74.1%) were identified in subsequent assays and reused 
in reports. The remainder, 6015 (25.9%) were only 
observed in a single patient sample.

Curation workload growth
The total number of variants curated over the study is 
shown in Fig. 2 showing the significant increase with the 
introduction of hybrid capture assays in 2017. The solid 
line shows all curated variants (reported, benign and var-
iants of unknown significance (VUS)) compared to the 
pale lines of reported variants (69.1% of total).

The number of new variants requiring curation per 
sample per month increased from 3.38 to 3.73 from Janu-
ary 2017 until May 2019 (see Fig.  3). Over this period, 
curations of somatic hybrid capture assays rose signifi-
cantly from 0.90 to 2.55 samples per month until they 
accounted for 68% of the curation burden per month. 
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There was also more variability in the number of average 
variants per month for somatic hybrid capture assays as 
shown by the larger 95% confidence intervals (see Fig. 4).

Low overlap between in‑house and public databases
We compared the presence of reported variants with a 
number of common public genomic knowledgebases. 
Of the 8214 unique clinically reported variants within 
our in-house database, 28.6% (n = 2356) were not pre-
sent within key public cancer variant resources; COS-
MIC [10] (size = 11,453,569 coding mutations), ClinVar 
[11] (size = 789,593 variants), VICC [12] (incorporating 
CiVIC [13], size = 2528 variants) and GA4GH Beacon 
network [14] (see Fig. 5). The highest number of in-house 

(PathOS) variant matches was to COSMIC, 4049 (49.2%), 
followed by ClinVar matches with 2888 (35.1%), but only 
581 (7.1%) matched VICC variants. Variant matches to 
resources on the Beacon Network were 2127 (25.9%). 
Our clinically reported variants include prognostic and 
diagnostic variants in addition variants with a clear thera-
peutic option which is a focus of VICC. Further, the vari-
ants within PathOS but not present in VICC are enriched 
for TSGs as these variants are often loss of function vari-
ants (see Additional file 2: Figure S2 and Figure S3).

We then examined the variants (n = 2356) not found 
in external knowledgebases to more closely identify their 
characteristics. The majority of variants (87.6%: n = 2041) 
were non-recurrent, that is, only reported in a single 

Fig. 1  Monthly patient numbers by assay group and assay type analysed at PMCC since 2013. Amplicon assays have been used throughout while 
hybrid capture assays were introduced in 2017

Table 1  Breakdown of assays, panels, samples and variants contained within PMCC database (PathOS)

Analysis group Assay Average genes/
panel (range)

Average genome 
coverage in Kb 
(range)

Patients Samples Average reported 
variants/patient (std. 
err.)

Average 
variants/patient 
(std. err.)

Germline Hyb-capture 217 460.0 9283 10,728 0.3 (± 0.0) 1.4 (± 0.0)

Amplicon 6 (4–11) 52.7 (42–81) 17,950 24,818 0.0 (± 0.0) 0.7 (± 0.0)

Sub-total 35 (4–217) 130.3 (42–460) 27,233 35,839 0.1 (± 0.0) 1.0 (± 0.0)

Haematology Hyb-capture 337 (312–362) 2069.6 (2052–2086) 634 1420 1.1 (± 0.1) 34.3 (± 1.2)

Amplicon 29 (20–36) 39.2 (26–67) 9204 25,797 0.8 (± 0.0) 2.0 (± 0.0)

Sub-total 68 (20–362) 293.0 (26–2087) 9838 27,217 0.8 (± 0.0) 4.0 (± 0.1)

Somatic Hyb-capture 449 (90–701) 2083.7 (421–2994) 1820 3923 1.9 (± 0.1) 30.1 (± 0.5)

Amplicon 31 (13–119) 53.0 (22–158) 9145 29,268 0.6 (± 0.0) 1.2 (± 0.0)

Sub-total 161 (13–701) 705.3 (22–2994) 10,965 32,898 0.8 (± 0.0) 6.0 (± 0.1)

Grand Total 96 (4–701) 404.2 (22–2994) 48,036 95,954 0.4 (± 0.0) 2.8 (± 0.0)
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patient (see Fig.  6). Somatic assays contributed 65.5% 
(n = 1543), 24.8% (n = 585) from haematology assays, 
and 9.7% (n = 228) from germline assays. The category 

of variants without external knowledgebase data were 
curated de novo and stored in our internal database, 
where they provided little benefit for future patients due 

Fig. 2  Growth of expert curated variants (3 month rolling average). The curated variants that were reported (pale lines) represent 69.1% average 
of all curated variants. All curated variants (solid lines) are comprised of clinically reported variants, benign, likely benign and variants of unknown 
significance

Fig. 3  Stacked bar chart of monthly number of new variant curations per sample by analysis group and assay type (3 month rolling average). 
Hybrid capture technology assays were introduced at the start of 2017 (pale segments). Somatic hybrid capture variants (pink segments) dominate 
the reporting volume from 2017 onwards and are increasing
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to the large proportion that did not reoccur within other 
cancer patients over the study period.

Of the in-house only variants, 43.2% (n = 1017) were 
from somatic assays, of missense consequence and clas-
sified as VUS (see Additional file 2: Figure S4). Analysis 
of gene type shows a large number of the variants were 

missense VUS from oncogenes (n = 239), tumour sup-
pressor genes (n = 290), or within genes not listed in the 
Cancer Gene Census (n = 381) (see Additional file 2: Fig-
ure S5).

A gene level analysis of the in-house only curated vari-
ants reflects the mix of genes in our custom targeted 

Fig. 4  Longitudinal analysis by analysis group and assay type of mean curated variants/sample using a three-month rolling mean with 95% 
confidence intervals. (top chart) Hyb-capture somatic solid samples (red) are increasing in the number of new variants requiring curation. (bottom 
chart) Amplicon assay samples have required less than 0.5 curations each across all analysis groups over that last three years

Fig. 5  Overlap of 8214 clinically reported variants curated in PathOS with multiple public cancer variant annotation resources (COSMIC, ClinVar, 
VICC Meta-knowledgebase, The Beacon network). 2356 variants did not match any resources and appear novel
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gene panels (see Fig. 7). Key genes associated with hae-
matological cancers contribute significant numbers of in-
house only variants. In particular, the tumour suppressor 
TET2 is implicated in haematological malignancies [15] 
and 134 TET2 unique variants were reported, none of 
which were seen in external databases. Other genes fre-
quently mutated in haematological malignancy included 
ASXL1 [16], RUNX1 [17] and WT1 [18]. This may be 
attributed to the large number of haematology assays 
within PathOS and the underrepresentation of haemato-
logical genes within the compared public resources.

Commercial systems may increase misclassification risk
A subset of novel in-house only curated somatic and 
germline variants (n = 307) were submitted to a com-
mercial tertiary analysis platform (CTAP) for annota-
tion and pathogenicity assessment. The CTAP only used 
ACMG classifications for both germline and somatic 
variants. Although this framework is not a relevant cat-
egorisation for somatic variants, these were compared to 
our in-house classifications that were mapped to ACMG 
categories.

The subset comprised four pathogenicity classes 
using the ACMG classifications (‘benign’ n = 2, ‘VUS’ 
n = 249, ‘likely pathogenic’ n = 18 and ‘pathogenic’ 

n = 38). Although 81.1% (n = 249) variants were con-
cordant for pathogenicity, 18.9% (n = 58) were discord-
ant (see Table 2). Discordant classifications included 29 
classified as ‘VUS’ by CTAP but ‘pathogenic’ by PathOS 
and 17 variants classified as ‘VUS’ by CTAP but ‘likely 
pathogenic’ by PathOS (see Additional file 2: Table S2). 
Of these 29 discordant classifications, 17 were non-
synonymous, 11 nonsense non-synonymous and one 
within a splice site; 15 were substitution variants and 14 
were insertions.

A particular example is chr1:g.45799193dup 
( H G V S c : N M _ 0 0 1 1 2 8 4 2 5 . 1 : c . 2 4 0 d u p , 
HGVSp:NP_001121897.1:p.(V81Cfs*12)) classified 
as pathogenic due to a frameshift resulting in a stop 
codon leading to loss of function in the tumour sup-
pressor MUTYH [19] but CTAP has this annotated as 
VUS. Another example is chr16:g.23641608T > A (hgvsc: 
NM_024675.3:c.1867A > T, hgvsp: NP_078951.2:p.
(Lys623*) which we predicted as a truncated PALB2 
protein by approximately 46%, resulting in loss of sig-
nificant functional domains. Literature suggests ovarian, 
breast and other malignancies with a loss of HR proteins, 
including PALB2, have been shown to confer clinical sen-
sitivity to PARP inhibitors and platinum agents [20–22]. 
CTAP had this variant classified as VUS which may lead 

Fig. 6  Recurrence of novel variants (n = 2356) within Peter MacCallum Cancer Centre patient samples. All variants (black) are further broken down 
into germline (blue), haematological (green), somatic (red) analyses. The plot highlights the majority of variants are not recurrent (n = 2041) and 
mostly from somatic analysis
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to potential therapeutic approaches for the patient being 
missed.

Comparison of gene distributions by tumour stream
From the 10,965 somatic assay patients, 3939 variants 
were curated according to the clinical context reported 
with the patient sample. The top ten clinical contexts 
with the most variants show that these variants are domi-
nated by VUS classifications (see Additional file 2: Figure 
S6).

To examine the concordance at the gene level between 
databases in specific clinical contexts, we compared the 

top 20 genes across melanoma, colorectal and hema-
tological malignancies in our in-house knowledgebase 
(PathOS) to COSMIC and ICGC by matching the pri-
mary tumour site (see Additional file  2: Figure S7). The 
patient gene counts were positively correlated for the 
melanoma (ICGC: Pearson’s r = 0.80, p < 0.01; COSMIC: 
r = 0.81, p < 0.01) and also for colorectal (ICGC: r = 0.74, 
p < 0.01; COSMIC: r = 0.81, p < 0.01) cohorts (see Addi-
tional file  2: Table  S3). In contrast, the haematology 
stream shows marked difference in gene distributions 
and did not show a significant association with ICGC 
but did show a weak correlation with COSMIC (r = 0.63, 
p < 0.01). This may be attributed to the custom gene pan-
els of the PMCC haematology assays and differing ranges 
of blood cancers incorporated into ICGC and COSMIC 
analysis.

Discussion
This study conducted a longitudinal examination of clini-
cally reported variants to assess the current and future 
curation workload and burden. The curation burden has 
become a key limitation to the scalability of genomic test-
ing as current practices rely on the time and expertise of 
skilled genomic scientists to manually process the vari-
ants observed through NGS. The scalability covers the 
dimensions of numbers of patients assayed and the size 
of the genomic regions observed per assay or both.

Fig. 7  PathOS only variants by gene and analysis type (top 20 shown)

Table 2  Comparison of variant classifications between a subset 
of novel PathOS variants submitted to a commercial tertiary 
analysis platform showing concordance

CTAP PathOS

Benign Likely 
benign

VUS Likely 
pathogenic

Pathogenic

Benign 0 0 0 0 0

Likely benign 1 0 0 0 0

VUS 1 0 248 17 29

Likely pathogenic 0 0 1 1 9

Pathogenic 0 0 0 0 0
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This analysis has shown a long-term upward trend 
in patient numbers as well as the size of the genomic 
regions assayed. Both factors have resulted in an increas-
ing number of curated variants over the study period. 
The in-house caching of expert curated variants should 
ideally have the effect of needing to curate less variants 
over time as fewer and fewer novel variants are seen for 
each assay type. This is indeed the case for all the assay 
groups except for somatic assays in which we show 
novel variants are growing over time. The germline assay 
group is primarily used for screening a limited number 
of hereditary cancer genes. This together with multiple 
rich publically available databases built over many years 
of testing yield fewer reportable variants per patient. In 
contrast, the somatic and haematology assays are primar-
ily clinician requested assays for patients presenting with 
cancer. The rapid adoption of clinical testing of somatic 
cancer implicated genes has contributed significantly to 
the curation effort required for these assays.

The grouping of assays into germline, somatic and hae-
matology reflects the differing curation requirements 
between the groups. Both somatic and haem. groups 
must also allow for tumour purity and clonality and so 
analyse a greater number of variants at much lower allele 
frequencies and also distinguish between germline and 
somatic variants. Each group has distinct but overlapping 
gene sets with their own pathways and mechanisms (see 
Additional file 2: Figure S1). The specialisation of genetic 
scientists into these groups adds further pressure on the 
availability of trained curators.

Ideally, a set of global genomic variant knowledge-
bases would reduce the duplication of curation effort 
across laboratories (whose data is frequently unshared) 
while also harmonising classifications across knowledge-
bases [23]. Although this goal has not yet been realised 
[24], there are active efforts by the Global Alliance for 
Genomic Health (GA4GH) to create such resources [25]. 
A meta-knowledgebase has been developed by the Vari-
ants In Cancer Consortium (VICC) that has aggregated 
and harmonised six different cancer variant interpreta-
tion knowledgebases, including CIViC, to collect action-
able clinical interpretations for cancer associated variants 
[12]. An alternate model is the web-accessible Beacon 
Project [14], which allows aggregation of evidence for 
a given variant from over 100 variant resources [26, 
27]. From a clinical utility perspective, different anno-
tation resources can be ranked according to curation 
value offered (see Additional file 2: Figure S8). Manually 
curated resources such as CIViC [13] often provide the 
most reliable annotations and the highest clinical value, if 
from a trusted curator, however due to the effort required 
to accurately curate knowledge about a variant, these 
resources are limited in size. Observational resources e.g. 

ClinVar and COSMIC provide greater variant numbers 
but provide significantly less detail and less clinical bene-
fit [10, 11]. There are also increasing numbers of national 
level curation databases which aggregate variants from 
multiple laboratories under a common framework [28, 
29] as well as gene and disease specific databases such as 
ENIGMA [30] and IARC TP53 [31]. These inititives often 
provide a staging database which feeds into the larger 
consortium databases such as ClinVar and COSMIC.

We examined the extent to which public knowledge-
bases (COSMIC, ClinVar, VICC or GA4GH Beacon) 
and a commercial package could assist with expert 
curation by matching in-house clinically reported vari-
ants with external resources. We showed that at best, 
71.4% of our variants were also catalogued externally. 
The overlap between our in-house variants and the 
external knowledgebases varied widely from COSMIC 
(49.2%), followed by ClinVar (35.1%), while only (7.1%) 
matched VICC variants. The low number of variants 
matching in VICC is likely due the therapeutic focus of 
the VICC knowledgebase in contrast to the other data 
sources. As a molecular diagnostic lab, prognostic and 
diagnostic variants need to be reported in addition to 
the therapeutically actionable variants.

These external data sources provide some assistance 
to our internal curation effort but by no means replace 
the work needed to create a complete and trusted in-
house curation entry that complies with laboratory 
SOPs and accreditation standards. Consistancy of 
external knowledgebases is also a problem when incor-
porating external variants into in-house reports. A 
recent study has highlighted the difficulties in achieving 
consistent classifications of variants across commer-
cial knowledgebases and also reflected the variability 
in ascribing clinical actionability to variants [32]. Simi-
lar variability was also found between N-of-One, IBM 
Watson for Genomics and OncoKB in a a study by Kat-
soulakis, et  al. [33]. These issues will mitigate some of 
the benefits of public knowledge bases until there is a 
shared trust of the data and a common framework for 
variant sharing [12].

Analysis of the 28.6% of in-house only variants shows 
them to be mostly seen in a single patient and are 
enriched, relative to the set of reported variants, for 
indels and tumour suppressor genes. This characteri-
sation is not unexpected as they often represent loss of 
function (LOF) variants in tumour suppressor genes [34] 
that can be commonly disrupted by indel and splice junc-
tion variants but are non-recurrent in other patients. In 
contrast, gain of function (GOF) variants are typically 
focussed at a hotspot locus [34] and well documented 
in therapeutically focussed public knowledgebases if 
actionable.
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This study has shown the widespread use of variant 
knowledgebases by laboratories has limitations for the 
scalability of clinical diagnostic sequencing. This is the 
case even with a trusted in-house variant database which 
has been built up over many years or public genomic 
resources which are not yet comprehensive enough or 
sufficiently standardised to augment or replace in-house 
curated resources. Even when observed variants are 
matched with public resources, effort is needed to take 
external variants and apply laboratory SOPs and accredi-
tation standards prior to reporting and storing them as 
a trusted in-house entry. Further, there will always be 
classes of variants, such as loss of function variants, that 
are not commonly recurring and often won’t find their 
way into public resources. These variants still require 
expert analysis of their consequences within a patient’s 
clinical context although the clinical information about 
them may be scarce.

Sophisticated computational algorithms arguably 
have the greatest potential to relieve the variant cura-
tion bottleneck. There are currently a large number of 
pathogenicity prediction algorithms available but these 
software need to be applied with caution due to their 
high false positive rate and confounding data used to 
train some of the algorithms [35, 36]. This is recognised 
by the ACMG guidelines for germline variants and AMP 
guidelines for somatic variant curation by specifying 
pathogenicity predictors must only be applied as support-
ing evidence in variant classification [1]. A detailed com-
parison of pathogenicity prediction tools may be found 
in Suybeng et al. [37]. Machine-learning approaches such 
as natural language processing to train curation mod-
els from medical literature, and deep-learning methods 
for variants may provide greater value in increasing the 
throughput of clinical variant interpretation, and perhaps 
provide the greatest hope in relieving the curation bot-
tleneck [38, 39].

Conclusion
This study demonstrates the challenges faced by clinical 
cancer genomics laboratories to efficiently deliver clini-
cal genomic reports in the face of an increasing variant 
curation workload. Our work highlights that, particularly 
for somatic analysis, increasing the genomic coverage for 
clinical reporting can increase the curation workload and 
a large percentage of the newly identified variants will be 
absent from variant resources and require greater cura-
tion effort. Further, particular classes of variants, such 
as loss of function variants in tumour suppressor genes 
and private patient mutations do not appear recurrently 
in patients and their curation has little chance of reuse 
for subsequent patients. Although this study is from a 
large public cancer hospital, it is anticipated that genetic 

analysis in complex diseases other than cancer will 
involve many of the same issues and limitations described 
here. As personalised medicine is more widely adopted 
with greater sample numbers and larger genomic regions 
interrogated, we will have to be more reliant on develop-
ments in computational methods facilitating more auto-
mated approaches.

Supplementary methods
This section covers details of additional methods used in 
the study.

PathOS annotates variants from sequencing pipelines 
and presents them within a web application for patho-
genic classification prior to its generation of a clinical 
report. For this study we only consider SNVs and short 
indels. Although PathOS contains copy number vari-
ant data derived from off target alignments [40], this has 
only been captured across a subset of the cohort so not 
included for analysis. To identify relevant variants from 
the patient samples, sequenced samples are aligned to 
the GRCh37 reference genome and variants called using 
GATK best practice pipelines combined with in-house 
variant calling software [41, 42]. The called variants are 
normalised and 3’ shifted using custom software [8] and 
Mutalyzer [43] and annotated using Variant Effect Pre-
dictor [44] and other sources to enrich annotation for 
variant curation and pathogenicity classification. A single 
curated Refseq transcript is selected as representative of 
the variant locus and used as a basis for consistent call-
ing of variants within gene coding regions. All sequenced 
samples are quality assessed using FastQC [45] and 
variants are filtered for common sequencing artefacts. 
Curated variants are classified according to ACMG or 
AMP guidelines for pathogenicity by experienced molec-
ular post docs with specialisation in cancer biology using 
laboratory SOPs adhering to accredited standards includ-
ing ISO15189.

Of the variants analysed, curated and stored in PathOS, 
69.1% (n = 23,255) were clinically reported (see Fig.  4). 
The burden of curation remains as high for the non-
reported variants (typically VUS, likely benign and 
benign) to ensure that they are not false negatives for 
diagnostic reporting.

In this analysis, the PathOS variant data were com-
pared against four publicly available variant databases 
COSMIC, ClinVar, GA4GH beacons and VICC. Variants 
in normalised HGVSg nomenclature were compared to 
those present within VICC knowledgebase, queried on 
1st September 2019 [12]. ClinVar variants were down-
loaded on 6th September 2019 and matched on HGVSg. 
COSMIC [10] variants were downloaded on 11th July 
2019 and matched based on HGVSp position and refer-
ence allele, not the alternate allele to maximise matching. 
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The Beacon network [14] was also queried for presence 
of PathOS reported variants via the web service on 1st 
October 2019 using HGVSg position. If a variant was 
identified from ClinVar/COSMIC/VICC/Beacons, but 
not identified through matching the data downloads from 
the individual resources, the matching variants were 
consolidated. Beacons serving computationally derived 
datasets such as CADD [46], or aggregators of computa-
tionally derived datasets (i.e. dbNSFP [47]) were filtered 
out as they over estimate presence of the variant without 
the ability to assess its validity. A subset from PathOS 
variants with no matches in the previously described 
public resources were submitted to a well-known com-
mercial tertiary analysis platform to assess the value such 
resources can provide in variant annotation and patho-
genic assessment.

Amplicon based assays (n = 36) were used throughout 
the study period and genomic coverage for these assays 
ranged from 21.9 kilobases (Kb) through to 158.2  Kb. 
Hybrid capture assays (n = 8) with larger genomic cover-
age (421.8–2994 Kb) from 90 to 701 genes (see Table 1, 
Additional file  2: Figure S9) are replacing the ampli-
con assays over time. When creating Table  1, duplicate 
patient samples (n = 80) occurring in multiple analysis 
groups and assays were excluded from the patient and 
average counts, to prevent biasing the analysis.

Data analysis and linear modelling were conducted 
using R 3.5.1. MannKendall tests were conducted using 
the R package Kendall. Beta coefficients between mod-
els were compared by computing a Z-score to test for 
equality and rejecting at 5% level of significance if there 
was a difference in the coefficients. To forecast the num-
ber of curations per sample per month the Holt-Winters 
exponential smoothing with trend and without seasonal 
component was applied [48] using the HoltWinters func-
tion in R stats package [48]. A two-sample test of equal-
ity of proportions with continuity correction was applied 
to compare percentages using the R function prop.test 
[49]. Analysis of variance between groups was conducted 
using R stats package. Comparisons between mean val-
ues were performed with a two-tailed Student’s t-test. 
A P value of less than 0.05 was considered statistically 
significant.
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