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Abstract 

Background: Age-related hearing impairment (ARHI) has attracted increasing attention recently. It is caused by 
genetic and environmental factors. A number of ARHI-related genes have been found. This study aimed to detect the 
potential association between NR3C1 gene polymorphisms and ARHI by means of weighted allele score.

Methods: A total of 861 participants from Qingdao city were selected by means of cluster random sampling. We 
statistically evaluated the characteristics of individuals and used the Mann–Whitney U test or chi-square test for com-
parison. The publicly available expression quantitative trait locus (eQTL) was queried on the website of the Genotype-
Tissue Expression (GTEx). We used the weighted allele score and logistic regression analysis to explore the association 
between NR3C1 gene polymorphisms and ARHI. Finally, the prediction model was constructed by logistic regression 
and receiver operating characteristic (ROC) curve.

Results: All individuals over 60 years of age were enrolled in this study. The allele of rs61757411, rs41423247 and 
rs6877893 were significantly different between the ARHI group and the normal hearing group (P < 0.01). Though eQTL 
analysis, rs6877893 and rs33388 might affect the occurrence of ARHI by affecting the expression of NR3C1 gene in 
artery aorta. Then we performed two models: one without adding any covariates into model and the other adjusting 
for demographic characteristic, smoking and drinking, diet and exercise, and physical conditions. In the multivariate-
adjusted model 2, the odds ratio with 95% confidence interval for weighted allele score (NR3C1) was 0.841 (0.710–
0.995, P = 0.043). The area under the ROC curve was 0.755, indicating that the model had good predictability.

Conclusions: Our study suggests that NR3C1 gene polymorphisms was significantly associated with ARHI.
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Introduction
Age-related hearing impairment (ARHI) is a kind of sen-
sorineural hearing loss that shows a symmetrical bilateral 
and progressive hearing decline as people get older [1–
3]. With the increase of human life expectancy and the 

proportion of elderly people, the prevalence of ARHI is 
increasing. In China, more than half of middle-aged and 
elderly people suffer from hearing impairment [3]. In a 
study in northern China, all participants over the age of 
80 had hearing impairment [4]. More than 500 million 
people worldwide are estimated to suffer from ARHI by 
2025 [5]. Personal daily communication and quality of life 
are affected by ARHI, leading to depression and social 
isolation [6, 7]. Hearing impairment has been demon-
strated to be strongly linked to cognition decline that is 
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considered an important factor for elderly people to live 
independently [8–10].

Medical science has allowed us to obtain knowledge 
on genetic predisposition and related disease factors 
in ARHI [11–15]. Genetic predisposition factors (such 
as gender, genes) and related disease factors (such as 
hypertension, diabetes, atherosclerosis, smoking, alco-
hol abuse, noise exposure, drugs) together contribute to 
the occurrence and development of ARHI [11, 13, 15–
21]. Literature shows that 40%-50% of ARHI is related 
to genetic factors [22]. A study on twins and their fam-
ily members showed that heritability was 0.7 or higher, 
which indicated the important role of genetic factors in 
hearing [18]. Genetic studies on humans have reported 
many ARHI-related genes, such as GRM7, SIK3, ESRRG 
, SOD2, GSTM1, GRHL2, TRIOBP, and a study have 
shown that NR3C1 may be associated with sudden sen-
sorineural hearing loss [2, 18, 23]. However, few studies 
have explored the relationship between NR3C1 gene and 
ARHI.

Glucocorticoid receptor gene (nuclear receptor sub-
family 3, group C, member 1, NR3C1) is located on 
human chromosome 5. This gene can encode glucocor-
ticoid receptor (GR), which can combine with glucocor-
ticoids (GC) to play various biological activities [24, 25]. 
Human and experimental animal studies have shown 
that GR is distributed in spiral ganglion neurons, spiral 
ganglion, stria vascularis, and organ of Corti, with the 
highest expression in the spiral ganglion of the inner ear 
[26–28]. When a genetic mutation occurs in NR3C1 gene, 
it may affect the quantity and quality of GR. Moreover, 
GR in target tissues determines the biological response of 
these tissues to GC [29]. Therefore, GR is positively cor-
related with the degree of biological response of the inner 
ear to GC.

Variation of SNPs between different genes or multiple 
SNPs within the same gene may lead to the occurrence 
of ARHI [30]. However, the relationship between single 
SNP and ARHI is difficult to determine [31]. And the 
effect of single SNP is often very small, so the use of gene 
score can achieve higher detection efficiency. The allele 
score is a variable that integrates the variation informa-
tion of SNPs in one gene and reflects the overall variation 
of the gene [32, 33]. Through allele score, we may find the 
relationship between whole variation information and 
disease at the gene level. Many studies had used the allele 
score to explore the relationship between genetic varia-
tion and disease, such as in diabetes, fasting glucose, sub-
clinical atherosclerosis, and genetic variation that affects 
blood pressure and cardiovascular disease [34–36].

This study aims to explore whether NR3C1 polymor-
phism is related to ARHI by using the weighted allele 
score. It is hoped that findings will provide a theoretical 

basis for revealing the mechanism of ARHI and the 
development of etiology, and provide a scientific basis for 
further expansion of research in the future.

Research methods and procedures
Study subjects
A cluster random sampling method was used to select 
two communities in Qingdao City, and the elderly in 
these two communities were used as participants. A 
total of 863 individuals participated in the initial survey 
according to the inclusion and exclusion criteria. Among 
them, two participants did not complete all question-
naires, corresponding to a participation rate of 99.77%. 
Finally, a total of 861 participants took part in the study. 
Because all our participants were elderly, we adopted 
face-to-face survey. The investigators were trained before 
investigation in order to improve the research quality of 
our questionnaire survey. The inclusion criteria were as 
follows: (1) age ≥ 60  years and older and (2) permanent 
Han Chinese residents in Qingdao (> 5 years). The exclu-
sion criteria were as follows: (1) unable to cooperate and 
complete the listening test and questionnaire and (2) his-
tory of noise exposure, congenital hearing impairment, 
ear injury, head trauma, and use of ototoxic drugs.

Hearing and Bone mineral density test
We first cleaned the external auditory canal, then looked 
at the eardrum and finally did a listening test. We 
arranged the participants to enter a quiet room (≤ 40 dB 
(A)) for a short rest. The air conduction hearing test was 
conducted by a professional audiometric doctor. A Pure 
Tone Audiometer (Orbiter 922, Madsen) and headset 
(TDH39) were utilized. Starting from the self-reported 
better hearing ear of the participants, pure tone air con-
duction thresholds of 0.5, 1.0, 2.0, and 4.0 kHz of the two 
ears were measured and the reading was accurate to 1 dB 
HL. According to the recommended criteria of the WHO 
(1997), the pure tone average (PTA) of the better hear-
ing ear threshold at 0.5, 1.0, 2.0, and 4.0 kHz was used as 
the judgment standard of ARHI [1, 12]. So we divided the 
participants into normal hearing group (PTA ≤ 25  dB) 
and ARHI group (PTA > 25  dB) in accordance with this 
standard. The Bone mineral density test was performed 
by professionals using DXA Bone Densitometer com-
monly used.

Genotyping and quality controls
We selected 9 SNP in the NR3C1 gene based on 1) refer 
to the results of our previous genome-wide association 
study (GWAS). 2) we searched on NCBI-SNP (https:// 
www. ncbi. nlm. nih. gov/ snp/), East Asian Samples of 
1000 Genomes Project (https:// www. ncbi. nlm. nih. gov/ 
varia tion/ tools/ 1000g enomes/) and based on previous 
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studies to selected target and functional SNPs of NR3C1 
gene. SNPs must meet the minor allele frequency (MAF) 
greater than 0.05 in database of the Han Chinese in 
Beijing, China (CHB), and the minimum linkage dis-
equilibrium correlation  (r2) greater than 0.8. 3) through 
searching papers in the PubMed and Google, we carried 
out the literature research of validated hot SNPs. Based 
on the sequence information of SNPs, Assay Design 3.1 
was used to design the PCR and single-base extension 
primer. Blood samples were collected and stored in a pre-
prepared tube containing EDTA anticoagulant. White 
blood cells were isolated within 2 h after blood collection. 
DNA in venous blood samples was extracted by DNA 
extraction kit (BioTeke Corporation), and the OD value 
was detected with a NanoDrop 2000 spectrophotom-
eter. After 1.25% agarose gel electrophoresis, the quali-
fied DNA was transferred to a 96-well plate and stored 
at − 20 °C for future use. We obtained SpectroCHIP after 
PCR amplification, product alkaline phosphatase treat-
ment, single-base elongation reaction, resin purification, 
and chip spot sample. SpectroCHIP was analyzed using 
matrix-assisted laser desorption/ionization time of flight 
(MALDI-TOF) mass spectrometer to obtain genotyp-
ing data. We referred to the East Asian Samples of 1000 
Genomes Project and used the high-frequency allele as 
the major allele and the low-frequency allele as the minor 
allele.

Calculation of weighted allele score
In order to improve the efficiency of NR3C1, weighted 
allele score was used to estimate the size of genetic 
effects. Weighted allele score is the number of SNP 
mutant allele in a gene multiplied by the corresponding 
weight and then add them together [37]. The weights 
were obtained from the current data using a tenfold 
cross-validation [38]. Specifically, we first divided the 
data into 10 samples randomly. However, the total num-
ber of our subjects was 861; thus, we randomly selected 
the number of the first nine samples as 86 and the 10th 
sample as 87. Then, we used the SNPs data of the first 
nine samples as the independent variable and the hear-
ing levels as the dependent variable for logistic regression 
analysis. The obtained regression coefficients were used 
as the weights of the 10th sample. The weight calculation 
for the rest of the samples was the same.

The formula is as follows:

Allelescore =(W1× SNP1+W2× SNP2+ . . .

+Wi × SNPi)/(W1+W2+ · · · +Wi)

i: the number of SNPs involved in constructing the allele 
score.  SNPi: the number of minor alleles in a SNP.  Wi: the 
weight of each SNP.

Covariates
The following covariates were included in this study: 
demographic characteristic (age, gender, osteoporo-
sis awareness), smoking and drinking (smoking, drink-
ing, passive smoking), diet and exercise (green tea, milk, 
frequency of fruit intake, spicy food, meal times, intake 
quantity, exercise duration), and physical condition (diz-
ziness handicap inventory, antiosteoporosis medication, 
diabetes, hypertension, chronic liver disease, bone min-
eral density).

Statistical analysis
We used the Kolmogorov–Smirnov normality test to 
verify the normality of continuous variables. Data that do 
not conform to the normal distribution were described in 
terms of median and quad ranges. First, we statistically 
evaluated the characteristics of individuals and used the 
Mann–Whitney U test or chi-square test for comparison. 
Each SNP was used as three categorical variables, and 
the wild type was used as the reference group. We deter-
mined the Hardy–Weinberg equilibrium (HWE) of each 
SNP. The publicly available expression quantitative trait 
locus (eQTL) was queried on the website of the Geno-
type-Tissue Expression (GTEx).

We used binary logistic regression analysis to explore 
the relationship between NR3C1 gene polymorphisms 
and ARHI. We used two models: model 1without adjust-
ing for any covariables and model 2 adjusting for demo-
graphic characteristic, smoking and drinking, diet and 
exercise, and physical conditions. We conducted logistic 
regression analysis with weighted allele score (NR3C1) as 
the independent variable and whether living with ARHI 
as the dependent variable. Finally, the prediction model 
was constructed by logistic regression and receiver oper-
ating characteristic (ROC) curve. Two-sided P-value less 
than 0.05 was considered statistically significant.

Results
Compared with the normal hearing group, the ARHI 
group had significant differences in age, gender, drinking, 
smoking and PTA. The average age of participants in the 
ARHI group was higher than that in the normal hearing 
group. The prevalence of ARHI in males and females was 
84.01% and 71.51%, respectively. The prevalence of ARHI 
was higher in males than in females. We also found that 
the prevalence of ARHI in non-drinkers and drinkers was 
74.00%, 84.03%, respectively. The prevalence of ARHI in 
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non-smokers and smokers was 72.73%, 84.08%, respec-
tively (Table 1).

There were a total of eight SNPs and all SNPs are con-
sistent HWE (Table 2).

There was no significant difference in the genotype of 
all SNP between the ARHI group and the normal hearing 
group (P > 0.05), as shown in Table 3.

The allele of rs61757411, rs41423247 and rs6877893 
were significantly different between the ARHI group and 
the normal hearing group (P < 0.01), as shown in Table 4.

Our result showed that there was an association 
between rs33388 and ARHI in the additive model 
(OR = 0.731, 95%CI: 0.548–0.976, P = 0.034). Under the 
dominant model, individuals with (AT + AA) genotypes 
would have a reduced risk of having ARHI compared 
with individuals with TT genotypes (OR = 0.670, 95%CI: 
0.468–0.961, P = 0.029). However, no other SNP were 
found.

Though eQTL analysis, we found that rs41423247, 
rs6877893, rs12655166 and rs33388 were the signifi-
cant cis-eQTL in esophagus mucosa and artery aorta, 
as shown in Table  5. rs6877893 and rs33388 were asso-
ciated with ARHI in artery aorta (P = 9.453 ×  10–5 and 
P = 5.391 ×  10–5).

The odds ratios (ORs) and 95% confidence intervals 
(95%CIs) between weighted gene score (NR3C1) and 
ARHI are shown in Table  6. In the logistic regression 
analysis of model 1 showed that there was no signifi-
cant association of weighted allele score (NR3C1) with 
ARHI, and the OR (95%CI) was 0.971 (0.836–1.128, 
P > 0.05). However, the result changed that weighted 
allele score (NR3C1) was related with ARHI in model 2 
and the OR (95%CI) was 0.841 (0.710–0.995, P = 0.043).

Logistic regression was used to build the prediction 
model, and the area under the ROC curve was 0.755, 
indicating that the model had good predictability 
(Fig. 1).

Discussion
GC have been widely used in the clinical treatment of 
various hearing disorders and achieved good efficacy 
since a long time ago [28]. The bioactivity of GC in body 
is produced by binding to the GC receptor (GR) encoded 
by NR3C1[39]. BclI polymorphism (NR3C1, rs41423247), 
a change in the downstream intron of exon 2, may affect 
an individual’s response to GC [40]. Furthermore, study 
have shown that BclI polymorphisms exhibit insulin 
resistance that is detrimental to hearing ability [41]. And 
our results suggested that the allele of rs41423247 was 

Table 2 Hardy–Weinberg equilibrium (HWE) of each SNP

Gene SNP Allele Genotype P

Wild type (N %) Heterozygote (N %) Homozygote (N %)

NR3C1 rs6191 C > A 0 (0.00) 80 (9.30) 780 (90.70) 0.15

rs61757411 G > T 494 (57.44) 321 (37.33) 45 (5.23) 0.44

rs41400245 C > T 685 (79.56) 166 (19.28) 10 (1.16) 0.99

rs258751 G > A 771 (89.76) 88 (10.24) 0 (0.00) 0.11

rs6196 A > G 769 (89.52) 89 (10.36) 1 (0.12) 0.34

rs41423247 G > C 551 (64.29) 271 (31.62) 35 (4.09) 0.82

rs6877893 A > G 523 (60.88) 292 (33.99) 44 (5.13) 0.70

rs12655166 T > C 658 (76.69) 189 (22.03) 11 (1.28) 0.53

rs33388 T > A 525 (61.05) 288 (33.49) 47 (5.46) 0.37

Table 1 Characteristics of participants by hearing levels

1 Data are presented as median (interquartile range) and Mann–Whitney U test
2 Data are presented as N (%) and Person’s chi-square test

Variable Hearing levels P

Normal hearing group ARHI group

PTA (dB HL)1 21.00 (5.00) 35.00 (15.00)  < 0.01

Age (years)1 65.00 (6.00) 68.00 (9.00)  < 0.01

Gender2  < 0.01

 Male 55 (27.23) 290 (44.01)

 Female 147 (72.77) 369 (55.99)

Drinking2 0.02

 No 143 (70.79) 407 (61.76)

 Yes 59 (29.21) 252 (38.24)

Smoking2  < 0.01

 No 156 (77.23) 416 (63.13)

 Yes 46 (22.77) 243 (36.87)

Diabetes2 0.26

 No 33 (16.42) 132 (20.06)

 Yes 168 (83.58) 526 (79.94)

Hypertension2 0.69

 No 86 (42.57) 292 (44.31)

 Yes 116 (57.43) 367 (55.69)

Chronic liver  disease2 0.17

 No 10 (4.95) 18 (2.73)

 Yes 192 (95.05) 641 (97.27)

Bone mineral  density1  − 2.30  (1.10)  − 2.40  (1.10) 0.63
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significantly different between the ARHI group and the 
normal hearing group. Though eQTL analysis, rs6877893 
and rs33388 might affect the occurrence of ARHI by 
affecting the expression of NR3C1 gene in artery aorta. 
Mice lacking GRs developed more severe atherosclerosis 
in the aorta [42]. And atherosclerosis has long been rec-
ognized as an important risk factor for ARHI [43].

The GR-mediated hearing protection may be related 
to the regulation of the expression of apoptosis-related 

proteins, which play an anti-apoptotic role [44]. GR 
encoded by NR3C1 belongs to the nuclear hormone 
receptor superfamily and is distributed in the inner ear 
[26–28]. The protective effect of GC secreted by the 
hypothalamic–pituitary–adrenal axis (HPA) on hear-
ing depends on GR [28]. Animal experiments showed 
that ARHI mice had apoptosis of hair cells in the inner 
ear and degenerative changes of auditory nerve [45, 46]. 

Table 3 Genotype distribution of NR3C1 compared between 
ARHI group and normal hearing group

SNP ARHI group (N %) Normal hearing 
group (N %)

P

rs6191

 AA 590 (89.76) 190 (94.06) 0.060

 AC 68 (10.33) 12 (5.94)

 CC 0 (0.00) 0 (0.00)

rs61757411

 GG 373 (56.69) 121 (59.90) 0.668

 TG 251 (38.15) 70 (34.65)

 TT 34 (5.17) 11 (5.45)

rs41400245

 CC 522 (79.21) 163 (80.69) 0.751

 CT 130 (19.73) 36 (17.82)

 TT 7 (1.06) 3 (1.49)

rs258751

 GG 590 (89.80) 181 (89.60) 0.935

 AG 67 (10.20) 21 (10.40)

 AA 0 (0.00) 0 (0.00)

rs6196

 AA 588 (89.50) 181 (89.60) 0.857

 AG 68 (10.35) 21 (10.40)

 GG 1 (0.15) 0 (0.00)

rs41423247

 GG 428 (65.24) 123 (61.19) 0.577

 CG 202 (30.79) 69 (34.33)

 CC 26 (3.96) 9 (4.48)

rs6877893

 AA 408 (62.10) 115 (56.93) 0.348

 AG 218 (33.18) 74 (36.63)

 GG 31 (4.72) 13 (6.44)

rs12655166

 TT 501 (76.26) 157 (78.11) 0.823

 CT 147 (22.37) 42 (20.90)

 CC 9 (1.37) 2 (1.00)

rs33388

 TT 411 (62.46) 114 (56.44) 0.298

 AT 213 (32.37) 75 (37.13)

 AA 34 (5.17) 13 (6.44)

Table 4 The distribution of allele compared between ARHI 
group and normal hearing group

SNP ARHI group (N %) Normal hearing 
group (N %)

P

rs6191

 A 1248 (94.83) 392 (97.03) 0.067

 C 68 (5.17) 12 (2.97)

rs61757411

 G 997 (75.76) 312 (28.26)  < 0.001

 T 319 (24.24) 792 (71.74)

rs41400245

 C 1174 (89.07) 362 (89.60) 0.764

 T 144 (10.93) 42 (10.40)

rs258751

 G 1247 (94.90) 383 (94.80) 0.937

 A 67 (5.10) 21 (5.20)

rs6196

 A 1244 (94.67) 383 (94.80) 0.919

 G 70 (5.33) 21 (5.20)

rs41423247

 G 1074 (71.41) 315 (78.36) 0.005

 C 430 (28.59) 87 (21.64)

rs6877893

 A 1034 (67.49) 304 (75.25) 0.003

 G 498 (32.51) 100 (24.75)

rs12655166

 T 1149 (87.44) 356 (88.56) 0.552

 C 165 (12.56) 46 (11.44)

rs33388

 T 1035 (78.65) 303 (75.00) 0.123

 A 281 (21.35) 101 (25.00)

Table 5 The result of expression quantitative trait locus (eQTL) 
study

SNP Tissue P Gene

rs41423247 Esophagus Mucosa 9.453e−5 NR3C1

rs6877893 Artery Aorta 6.183e−5 NR3C1

rs12655166 Esophagus Mucosa 4.405e−10 NR3C1

rs33388 Artery Aorta 5.391e−5 NR3C1
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Inhibiting the expression of apoptosis-inducing fac-
tor (AIF) Fas or pro-apoptotic members in the Bcl-2 
protein family and upregulating the expression of anti-
apoptotic members of the Bcl-2 protein family exert an 
anti-apoptotic effect. For example, dexamethasone can 
resist the ototoxic effects of tumor necrosis factor-alpha 
(TNF-α), possibly by upregulating Bcl-2 and Bcl- × 1 
through genomic action [47]. When the polymorphisms 
of NR3C1 changes, it will not only affect the function of 
GR itself, but also affect the individual’s sensitivity to GC, 
thus leading to the occurrence of ARHI.

GC has significant anti-inflammatory and immuno-
suppressive effects and function through the GR signal 
pathway. Because the blood–labyrinth barrier (BLB) 
in the lateral wall of the cochlea strictly separates the 
cochlear microenvironment from the blood circula-
tion, the inner ear has long been regarded as an organ 
that cannot be immunized. However, several studies 
have shown that there was an inflammatory reaction 
in the cochlea in participants with ARHI. Serum con-
centrations of TNF-α and C-reactive protein (CRP) are 

significantly increased in people with hearing impair-
ment under the age of 60 [48]. Reactive oxygen species 
(ROS) was found in the cochlea of aged mice, and the 
levels of interleukin-1β, interleukin-6, interleukin-18 
and TNF-α were significantly increased [49]. These may 
affect indicate that inflammation and immune response 
are important mechanisms for the occurrence and devel-
opment of ARHI. After entering the nucleus, the GR-α, 
which plays a major anti-inflammatory role, binds to the 
GC response elements on the DNA, and its structure 
changes, affecting the transcription process and inhibit-
ing the inflammatory response through the expression of 
anti-inflammatory proteins [50, 51]. Changes in NR3C1 
polymorphisms may affect the binding of GC and GR, 
which may result in the failure of the immune response 
and anti-inflammatory effects.

Our study has notable advantages. We used allele score, 
which integrates the overall situation of SNP variation 
inside a gene and reflects the overall variation informa-
tion of the gene, so as to more comprehensively discuss 
the relationship between gene polymorphisms and dis-
ease at the gene level. However, this study also has a limi-
tation. Because our study is cross-sectional, it is difficult 
to determine the cause and effect.

Conclusions
This study of Qingdao Han Chinese elderly verifies the 
associations between NR3C1 gene and ARHI.
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