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Sex‑specific recombination patterns predict 
parent of origin for recurrent genomic disorders
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Abstract 

Background:  Structural rearrangements of the genome, which generally occur during meiosis and result in large-
scale (> 1 kb) copy number variants (CNV; deletions or duplications ≥ 1 kb), underlie genomic disorders. Recurrent 
pathogenic CNVs harbor similar breakpoints in multiple unrelated individuals and are primarily formed via non-allelic 
homologous recombination (NAHR). Several pathogenic NAHR-mediated recurrent CNV loci demonstrate biases for 
parental origin of de novo CNVs. However, the mechanism underlying these biases is not well understood.

Methods:  We performed a systematic, comprehensive literature search to curate parent of origin data for multiple 
pathogenic CNV loci. Using a regression framework, we assessed the relationship between parental CNV origin and 
the male to female recombination rate ratio.

Results:  We demonstrate significant association between sex-specific differences in meiotic recombination and 
parental origin biases at these loci (p = 1.07 × 10–14).

Conclusions:  Our results suggest that parental origin of CNVs is largely influenced by sex-specific recombination 
rates and highlight the need to consider these differences when investigating mechanisms that cause structural 
variation.
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Background
Genomic disorders are caused by pathological structural 
variation in the human genome usually arising de novo 
during parental meiosis [1–4]. The most common patho-
genic variety of these rearrangements are copy number 
variants (CNVs), i.e. a deletion or duplication of > 1  kb 
of genetic material [3, 5, 6]. The clinical phenotypes of 
genomic disorders are varied. They include congenital 
dysmorphisms, neurodevelopmental, neurodegenera-
tive, and neuropsychiatric manifestations, and even more 
common complex phenotypes such as obesity and hyper-
tension [7–12]. CNVs have been observed in 10% of spo-
radic cases of autism [13, 14], 15% of schizophrenia cases 

[15, 16], and 16% of cases of intellectual disability [17]. 
These and other associations highlight the importance 
of structural variation to human health and the need to 
understand the factors influencing how they arise.

There is an intense interest in understanding the mech-
anisms by which CNVs form [18, 19]. In several regions 
of the genome, de novo CNVs with approximately the 
same breakpoints recur in independent meioses (recur-
rent CNVs) [1, 20]. The presence of segmental duplica-
tions flanking these intervals is a hallmark feature of 
recurrent CNVs. It is hypothesized that misalignment 
and subsequent recombination between non-allelic low 
copy repeat (LCR) segments within the segmental dupli-
cation regions is the formative event giving rise to the 
CNV [21, 22], so-called non-allelic homologous recombi-
nation (NAHR). Risk factors that may favor NAHR have 
been investigated and include sequence composition and 
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orientation of the LCRs themselves [21, 23] as well as the 
presence of inversions at the locus [24, 25].

Parental sex bias for the origin of recurrent de novo 
CNVs remains unexplained. De novo deletions at the 
16p11.2 and 17q11.2 loci are more likely to arise on 
maternally inherited chromosomes [26–29]. Deletions 
at the 22q11.2 locus show a slight maternal bias as well 
[30]. In contrast, deletions at the 5q35.3 locus (Sotos syn-
drome [MIM: 117550]) display a paternal origin bias [31, 
32]. Deletions at the 7q11.23 locus (Williams syndrome 
[MIM: 194050]) do not show a bias in parental origin 
[24]. While it has been suggested that sex-specific recom-
bination rates might influence sex biases in NAHR [26], 
this hypothesis has not been formally tested.

The majority of recurrent CNVs are thought to form 
during meiosis when homologous chromosomes align 
and synapse during prophase I [33]. It is well established 
that meiosis differs significantly between males and 
females. In males, spermatagonia continuously divide 
and complete meiosis throughout postpubescent life with 
all four products of meiosis resulting in gametes. In con-
trast, in human females, oogonia are established in fetal 
life and enter into an extended period of prolonged stasis 
in prophase I of meiosis until they complete meiosis upon 
ovulation and fertilization [34]. Additionally, in female 
meiosis, only one of four products of meiosis result in 
a gamete. Sexual dimorphism in meiosis extends to the 
patterns and processes of recombination during meiosis 
[33]. Here we seek to ask whether local sex-specific rates 
in meiotic recombination can predict the parental bias 
for the origin of recurrent de novo CNVs.

Methods
Parent of origin determination
Literature search and parental origin data curation
For this analysis, we considered the 55 known genomic 
disorder CNV loci described in Coe et  al. [7]. A locus 
was eligible for inclusion in the current analysis if it 
is flanked by LCRs, i.e. mediated by NAHR, and not 
imprinted (n = 38 eligible loci). For each of these 38 loci, 
we performed a systematic PubMed search to identify 
published data on parental origin. Studies were admitted 
to this paper’s analysis when the following criteria were 
met: (1) the study detailed parent of origin data for one 
of the 38 eligible NAHR-mediated loci as designated by 
Coe et  al. [7], (2) the authors of the study interrogated 
the entire canonical CNV interval to confirm the pres-
ence of a deletion or duplication in the patients, (3) the 
authors determined the investigated CNVs were de novo, 
and (4) the study clearly treated monozygotic twins as 
one meiotic event and not two (Additional file  1: Sup-
plemental Methods, Additional file  2: Table  S1, and 
Additional file  3: Table  S2). The literature search led to 

a manual review of 1268 papers, out of which we iden-
tified 77 manuscripts across 24 loci with suitable data 
for analysis: 1q21.1 [35–39], 1q21.1 TAR [40], 2q13 [37], 
3q29 [37–42], 5q35 [31, 32], 7q11.23 [24, 40, 43–54], 
8p23.1 [55, 56], 11q13.2q13.4 [57], 15q13.3 [38, 40, 58], 
15q24 (AC, AD, BD, and BE intervals) [59–64], 15q25.2 
[65–67],16p11.2 [26, 37, 40, 68–70], distal 16p11.2 [37, 
38, 70], 16p11.2p12.1 [71], 16p31.11 [37], 17p11.2 [72–
76], 17q11.2 [28, 29, 77], 17q12 [37, 38, 78], 17q21.31 [19, 
25, 67, 79–84], 17q23.1q23.2 [69, 85] and 22q11.2 [30, 
43, 53, 86–102] (Table 1). For the remaining 14 loci, no 
published parent of origin data could be identified. At the 
3q29 locus, we generated new data to determine the par-
ent of origin for de novo events (http://​genome.​emory.​
edu/​3q29/).

Determination of parental origin for 3q29 deletion
Study subject recruitment  This study was approved 
by Emory University’s Institutional Review Board 
(IRB00064133). Individuals with a clinically confirmed 
diagnosis of 3q29 deletion were ascertained through the 
internet-based 3q29 registry (https://​3q29d​eleti​on.​patie​
ntcro​ssroa​ds.​org/) as previously described [103]. Blood 
samples were obtained from 14 families. SNP genotyp-
ing was performed on 12 of the 14 families (10 full trios, 
2 mother–child pairs) using the Illumina GSA-24 v 3.0 
array. For 2 full trios (6 samples), parent of origin was 
determined from whole-genome sequence data on Illu-
mina’s NovaSeq 6000 platform. Quality control was per-
formed with PLINK 1.9 [104] and our custom pipeline 
(Additional file 1:  Supplemental Methods).

Parental origin analysis  Parental origin of the 3q29 
deletion was determined for all 14 families using PLINK 
1.9 [104]. SNPs located within the 3q29 deletion region 
(chr3:196029182–197617792; hg38) were isolated for 
analysis and the pattern of Mendelian errors (MEs) were 
analyzed. The parent with the most MEs was considered 
the parent of origin for the 3q29 deletion (Additional 
file  1: Supplemental Methods). The mean age of fathers 
in our 3q29 cohort was collected from self-reported data 
in conjunction with the Emory University 3q29 project 
(http://​genome.​emory.​edu/​3q29/) and compared to the 
U.S. average (NCHS; https://​www.​cdc.​gov/​nchs/​index.​
htm) via a two-tailed two-sample t-test using R [105].

Calculation of recombination rates and ratios
Chromosome male and female recombination rates (cM/
Mb) were obtained from the deCODE sex-specific maps, 
which are based on over 4.5 million crossover recom-
bination events from 126,427 meioses, with an average 
resolution of 682 base pairs [106]. The recombination 
rate (cM/Mb) data from deCODE is publicly available as 
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recombination rates calculated for a physical genomic 
interval bounded by two SNP markers (Additional file 1: 
Supplemental Methods). Therefore, for our calculation of 
the average male and female recombination rates, each 
bounded recombination rate was weighted by the total 
number of base pairs contained within the respective 
SNP marker interval. Weighted rates were then averaged 

across the CNV interval for males and females, sepa-
rately. The ratio of the weighted average male and female 
recombination rates was then calculated for each CNV 
interval by dividing the weighted average male recom-
bination rate by the weighted average female recombi-
nation rate (Additional file 1: Figure S1). To account for 
slight differences in the recombination rate ratios cal-
culated for the different LCR22 intervals at the 22q11.2 
locus we used an adjusted recombination rate ratio com-
posed of the weighted recombination rate ratios calcu-
lated for each LCR22 interval. Weights were based on the 
estimated population prevalence of the different 22q11.2 
deletion intervals (Additional file 1: Table S3) [107].

Logistic regression analysis
Parental origin data was curated for CNVs at the 24 CNV 
loci from 77 independent studies; only independent sam-
ples were included in the analysis (duplicate or overlap-
ping samples were removed). For each CNV locus, the 
male to female recombination rate ratio was calculated 
as described above. A logistic regression model was fit-
ted to the data with the loge-transformed male to female 
recombination rate ratio as the predictor and parental 
origin (paternal vs. maternal) as the response variable. 
We performed a secondary analysis stratified by dele-
tions and duplications. See Table 2 and Additional file 4: 
Table S4 for the data calculated and used in the logistic 
regression analyses.

Linear regression analysis
For linear regression, locus-specific estimates for paren-
tal origin were derived by combining the data from 
all published studies for a given locus. To alleviate the 
uncertainty introduced by small sample sizes, only those 
loci with more than 10 observations were included. The 
loge-transformed combined male to female parental ori-
gin count ratio for each locus was regressed on the cal-
culated average loge-transformed average male to female 
recombination rate ratio for that locus’ CNV interval. 
Each locus was weighted based on its sample size.

Results
Recurrent genomic disorder loci literature search
We conducted a systematic literature search for the 38 
non-imprinted and NAHR-mediated CNV loci in Coe 
et al. [7] (Table 1, Additional file 2: Table S1). We iden-
tified parent-of-origin studies that met inclusion criteria 
as stated in “Methods” section. 77 studies met inclusion 
criteria; from these 77 studies, data were curated for 24 
loci, including copy number variants at 1q21.1 [35–39], 
1q21.1 TAR [40], 2q13 [37], 3q29 [37–42], 5q35 [31, 32], 
7q11.23 [24, 40, 43–54], 8p23.1 [55, 56], 11q13.2q13.4 
[57], 15q13.3 [38, 40, 58], 15q24 (AC, AD, BD, and BE 

Table 1  Summary of CNV loci included in literature search and 
curated studies

a Independent studies from which the parent of origin data for the current 
analysis were obtained. Studies may be repeated between loci
b Recombination rates could not be calculated for 15q11.2 as the breakpoints 
were outside the range of recombination maps
c 15q24 locus is represented as 6 different intervals in Coe et al. [7]
d 17p11.2p12 excluded due to inconsistencies in the mechanism of formation. 
See Additional file 1: Supplemental Methods

Locus MIM number # Studies 
includeda

Study references

1q21.1 612474/612475 5 [35–39]

1q21.1 TAR​ 274000 1 [40]

2q11.2 – 0 –
2q11.2q13 – 0 –
2q13 – 1 [37]

3q29 609425/611936 6 [37–42]

5q35 117550 2 [31, 32]

7q11.23 194050/609757 14 [24, 40, 43–54]

7q11.23 distal 613729 0 –
7q11.23 proximal – 0 –
8p23.1 – 2 [55, 56]

10q23 612242 0 –
11q13.2q13.4 – 1 [57]

15q11.2 615656 0b –
15q13.3 612001 3 [38, 40, 58]

15q24c – 6 [59–64]

15q25.2 614294 3 [65–67]

15q25.2 (Cooper) – 0 –
16p11.2 611913/614671 6 [26, 37, 40, 68–70]

16p11.2 distal 613444 3 [37, 38, 70]

16p11.2p12.2 – 0 –
16p11.2p12.1 – 1 [71]

16p12.1 136570 0 –
16p13.11 – 1 [37]

17p11.2 182290/610883 5 [72–76]

17p11.2p12d 118220/162500 0 –
17q11.2 613675/618874 3 [28, 29, 77]

17q12 614526/614527 3 [37, 38, 78]

17q21.31 610443/613533 9 [19, 25, 67, 79–84]

17q23 – 0 –
17q23.1q23.2 613355/613618 2 [69, 85]

22q11.2 188400/192430 20 [30, 43, 53, 86–102]

22q11.2 distal 611867 0 –
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Table 2  Summary of genomic disorder loci CNVs recombination calculations

Summarized CNV data. Data are consolidated by locus. BED coordinates correspond to hg38 (LiftOver from hg18 coordinates in Coe et al. [7])
a Male to female CNV parent of origin counts
b Average male and female recombination rates are the average of the recombination rates calculated for each sample observed for the locus, e.g., 0.123331689 is the 
average male recombination rate calculated from the male recombination rates of the  nine 1q21.1 CNVs
c Natural log-transformed average male to female recombination rate ratio for the locus
d Breakpoints cited by ClinGen for ~ 3.0 Mb LCR22A-LCR22D interval

Locus CNV type BED coordinates 
[7]

# Samples (%) M:F origin 
countsa

Del/dup 
counts

Avg. male 
recombination 
rate [106]b

Avg. female 
recombination 
rate [106]b

Loge M:F 
recombination 
ratio [106]c

1q21.1 Del/Dup chr1:147101794–
147921262

9 (0.46%) 6:3 7/2 0.12331689 0.50839541 − 1.416626

1q21.1 TAR​ Del chr1:145686999–
146048495

1 (0.05%) 1:0 1/0 0.15712388 0.77814863 − 1.599883

2q13 Dup chr2:110625954–
112335952

1 (0.05%) 1:0 0/1 0.44854539 1.64377881 − 1.298743

3q29 Del chr3:195988732–
197628732

22 (1.11%) 21:1 22/0 3.1305211 0.27775988 2.422197

5q35 Del chr5:176290391–
177630393

41 (2.07%) 36:5 41/0 1.29955355 0.97941355 0.282822

7q11.23 Del/Dup chr7:73328061–
74727726

618 (31.26%) 296:322 598/20 0.49353554 1.92657023 − 1.361890

8p23.1 Del/Dup chr8:8235068–
12035082

3 (0.15%) 1:2 1/2 0.67201752 1.81857951 − 0.995527

11q13.2q13.4 Del chr11:67985953–
71571306

1 (0.05%) 0:1 1/0 0.8431765 2.23501635 − 0.974828

15q13.3 Del/Dup chr15:30840505–
32190507

6 (0.30%) 5:1 5/1 1.63640726 1.89901039 − 0.148828

15q24 AC Del chr15:72670606–
75240606

1 (0.05%) 1:0 1/0 0.28479919 0.86129537 − 1.106653

15q24 AD Del chr15:72670606–
75720604

3 (0.15%) 1:2 3/0 0.27613544 0.82152961 − 1.090277

15q24 BD Del chr15:73720606–
75720604

1 (0.05%) 0:1 1/0 0.30739967 0.68432207 − 0.800280

15q24 BE Del chr15:73720606–
77840603

2 (0.10%) 0:2 2/0 0.23485125 0.72623183 − 1.128917

15q25.2 Del chr15:82513967–
84070244

5 (0.25%) 0:5 5/0 0.21225081 0.32633295 − 0.430177

16p11.2 Del/Dup chr16:29641178–
30191178

98 (4.96%) 11:87 79/19 0.06570935 1.28740565 − 2.974798

16p11.2 distal Del/Dup chr16:28761178–
29101178

4 (0.20%) 0:4 3/1 0.12150949 1.61662624 − 2.600350

16p11.2p12.1 Dup chr16:21341178–
29431178

1 (0.05%) 1:0 0/1 0.5534655 2.68382469 − 1.578799

16p13.11 Del/Dup chr16:15408642–
16198642

2 (0.10%) 1:1 1/1 1.67072378 2.46524529 − 0.389038

17p11.2 Del/Dup chr17:16805961–
20576095

71 (3.59%) 44:27 59/12 0.1888066 1.19115966 − 1.841959

17q11.2 Del chr17:30838856–
31888868

62 (3.14%) 10:52 62/0 0.26024285 1.85442774 − 1.963716

17q12 Del chr17:36460073–
37846263

6 (0.30% 4:2 6/0 0.64750654 3.64754421 − 1.728720

17q21.31 Del/Dup chr17:45626851–
46106851

39 (1.97%) 19:20 35/4 0.38234179 0.98304273 − 0.944338

17q23.1q23.2 Del chr17:59987857–
62227857

2 (0.10%) 0:2 2/0 0.56466054 1.30765625 − 0.839748

22q11.2 Del chr22:18924718–
21111383d

978 (49.47%) 411:567 978/0 1.45946494 3.69205976 − 0.920692

All Del/Dup – 1977 (100%) 870:1107 1913/64 – – –
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intervals) [59–64], 15q25.2 [65–67],16p11.2 [26, 37, 
40, 68–70], distal 16p11.2 [37, 38, 70], 16p11.2p12.1 
[71], 16p31.11 [37], 17p11.2 [72–76], 17q11.2 [28, 29, 
77], 17q12 [37, 38, 78], 17q21.31 [19, 25, 67, 79–84], 
17q23.1q23.2 [69, 85] and 22q11.2 [30, 43, 53, 86–102] 
(Table 2). Each locus has between one and twenty inde-
pendent studies representing in total 1977 de novo dele-
tion (N = 1913) and duplication (N = 64) events (Table 2).

Parent of origin of 3q29 deletion
We determined parent of origin in 12 full trios where a 
proband had a de novo 3q29 deletion; in 2 additional trios 
where only proband and maternal DNA samples were 
available, parent of origin was inferred. For the 12 trios 
evaluated by SNP arrays, in all cases, the number of Men-
delian errors between the presumed inherited (intact) 
parental allele was zero, and the mean Mendelian errors 
for the presumed de novo parent of origin allele were 41, 
with a range of 27–66. For the two trios evaluated with 
sequence data, Mendelian errors were 20–33-fold ele-
vated when comparing the inherited versus de novo par-
ent. In these 14 trios, 13 deletions (92.9%) arose on the 
paternal genome indicating a significant departure from 
the null expectation of 50% (p = 0.002, binomial exact). 
When accounting for only full trios, 11 of 12 (91.7%) dele-
tions arose on paternal haplotypes (p = 0.006, binomial 
exact), altogether indicating there is a paternal bias for 
origin of the 3q29 deletion (Additional file 1: Table  S5). 
We examined the age distribution of male parents in our 
cohort; the mean age is 34 years (median = 34 years) and 
is not significantly different from the 2018 U.S national 
average, (31.8  years) (p = 0.08, Two-tailed two-sample 
t-test), These data indicate the bias in the 3q29 sample is 
unlikely to be due to oversampling of older fathers (Addi-
tional file 1: Table S5).

Meiotic recombination and parental origin
We tested the hypothesis that sex-dependent differ-
ences in meiotic recombination could explain the 
parental biases observed for recurrent genomic disor-
der loci mediated by NAHR. We determined the male 
and female origin counts of the CNVs curated from the 
literature search. Of the 1977 CNVs, 870 were paternal 
in origin and 1107 were of maternal origin. We calcu-
lated the average male and female recombination rates 
(cM/Mb) across the CNV intervals at all 24 loci using 
recombination rates published by the deCODE genet-
ics group [106] (Additional file  1: Figure S2–S12). We 
fit a simple logistic model to the data, with the male-
to-female recombination rate ratio as the predictor and 
parental origin as the response variable (Table  2; Addi-
tional file  4: Table  S4). Our data reveal that the sex-
dependent recombination rate ratio significantly predicts 

parental de novo origin of a given CNV (p = 1.07 × 10–14, 
β = 0.6606, CI95% = (0.4980, 0.8333), OR = 1.936) (Fig. 1). 
In other words: for a given region, the higher the male 
recombination rate is relative to the female rate, the 
more likely a CNV formed in that region will be pater-
nal in origin. Stratified analyses on deletions and dupli-
cations separately lead to a nearly identical model 
(Deletions: p = 8.88 × 10–14, β = 0.6721, CI95% = (0.5009, 
0.8546), OR = 1.9584; Duplications: p = 0.02, β = 0.8304, 
CI95% = (0.1508, 1.6017), OR = 2.2942) (Additional file 1: 
Figure S13–S14, Table  S6–S7). Simple linear regression 
on the subset of CNV loci with more than 10 samples, 
shows the striking correlation between relative recombi-
nation rates and parental origin, where relative recombi-
nation rates explain 85% of the variance in parental bias 
(Additional file 1: Figure S15 and Table S8). Our logistic 
model can be used to predict paternal origin rates for 
any locus with estimable recombination in males and 
females, and we have done so (Additional file 1: Table S9). 
CNVs at the 15q13.3 and 17q23 both are predicted to 
have a paternal origin approximately 60% of the time, 
while at the 16p11.2 distal locus CNVs are predicted to 
have a maternal origin 76% of the time (Additional file 1: 
Table S9). If correct, our model would predict these loci 
exhibit a bias in parental origin.

Discussion
Parent of origin bias for de novo events at recurrent CNV 
loci has been well-documented but has lacked a compel-
ling explanation. Our analysis of data gathered on 1977 
CNVs from 77 published reports demonstrate that sex-
specific variation in local meiotic recombination rates 
predicts parent of origin at recurrent CNV loci. Human 
male and female meiotic recombination rates and pat-
terns differ greatly across the broad scale of human chro-
mosomes. Recombination events are nearly uniformly 
distributed across the chromosome arms in females but 
tend to be clustered closer to the telomeres in males 
[108]. We note that this pattern has been previously rec-
ognized [26]. Here we have formally tested the hypoth-
esis that recombination variation drives parent of origin 
variation using a rigorous, statistical framework (Fig.  1) 
and provided an estimate for the variance in parent of 
origin bias that is due to sex-specific recombination rates 
(Additional file 1: Figure S15).

Investigations into the mechanism by which recurrent 
CNVs arise have focused on LCRs and their makeup [1, 
109]. These regions are composed of units of sequence 
repeats that vary in orientation, percent homology, 
length, and copy number. Consequently, LCRs are mosa-
ics of varying units, imparting complexity to LCR archi-
tecture [23]. The frequency of NAHR events mediated 
by LCRs is a function of these characteristics and other 
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features of the genomic architecture [21]. Specifically, 
the rate of NAHR is known to correlate positively with 
LCR length and percent homology and decrease as the 
distance between LCRs increases [19, 21]. However, 
because LCRs are challenging to study with short-read 
sequencing technology, the population-level variability of 
these regions is not well described [110]. Recent break-
throughs with long-read sequencing and optical mapping 
have revealed remarkable variation in LCRs [111–113], 
and haplotypes with higher risks for CNV formation have 
now been identified [114]. LCRs are substrates for NAHR 
[1], and thus are subject to the recombination process. 
Local recombination rates may influence how likely an 
NAHR event will happen between two LCRs. Therefore, 
when analyzing LCR haplotypes and their susceptibil-
ity to NAHR, one would need to take into account sex 
differences in recombination. For example, at loci with 
maternal biases, specific risk haplotypes may be required 
for males to form CNVs and vice versa. Greater enrich-
ment of GC content, homologous core duplicons or the 
PRDM9 motifs, or other recombination-favoring factors 
may also be required [1, 19].

Variation in recombination rates between sexes is well 
established [108, 115–118]. Prediction of individual risk 
may also need to consider individual variation in meiotic 
recombination, particularly due to heritable variation 
and the presence or absence of inversion polymorphisms 
[117, 119]. Variants in several genes, including PRDM9, 
have been shown to affect recombination rates and the 
distribution of double-stranded breaks in mammals [120, 
121]. Common alleles in PRDM9 are evidenced to affect 
the percentage of recombination events within indi-
viduals that take place at hotspots [120], and variants in 
RNF212 are associated with opposite effects on recom-
bination rate between males and females [116, 121]. The 
unexplained variance in our study may be due to these 
additional factors, which are rich substrates for future 
study.

Many human genetic studies have observed correla-
tions between inversion polymorphisms and genomic 
disorder loci [25, 122]. Because these inversions are copy-
number neutral and often located in complex repeat 
regions, [123] they can be difficult to assay with current 
high-throughput strategies and their true impact remains 
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to be explored. One model proposes that during meiosis 
these regions may fail to synapse properly and increase 
the probability of NAHR [124, 125]. Another theory sug-
gests formation of inversions increases directly oriented 
content in LCRs leading to an NAHR-favorable haplo-
type [126]. Supporting these theories, inversion polymor-
phisms have been identified at the majority of recurrent 
CNV loci [24, 25, 30, 122, 124, 126, 127]. At the 7q11.23, 
17q21.31, and 5q35 loci [24, 25, 127], compelling data 
indicts inversions as a highly associated marker of CNV 
formation. However, heterozygous inversions are known 
to suppress recombination perturbing the local pat-
tern of recombination and altering the fate of chiasmata 
[119]. The analysis presented here strongly suggests that 
recombination is the driving force for CNV formation 
giving rise to an alternate explanation for the association 
between inversions and CNVs; they are both the conse-
quence (and neither one the cause) of recombination 
between non-allelic homologous LCRs. Inversions and 
CNVs appear to be associated because both are being 
initiated by aberrant recombination. Viewing the system 
in this manner also explains the frequency of individual 
inversions at CNV loci. Inversions are arising via rare 
aberrant recombination, like CNVs, but subsequently 
being driven to higher frequency by natural selection, 
because they act to suppress recombination and “save off-
spring” from deleterious genomic disorders. Of course, 
frequent mutations leading to inversions and the details 
of LCR structure such as relative orientation and homol-
ogy within a genomic region may promote or impede 
CNV formation in a locus-specific manner [128–130]. 
Further exploration of this relationship with improved 
genomic mapping can test these alternative models [131]. 
One testable prediction of the model described here is 
that inversions should be at higher frequency at loci giv-
ing rise to highly deleterious CNVs, as opposed to loci 
harboring recurrent benign CNVs.

To our knowledge, this study is the first comprehen-
sive investigation of parental origin of recurrent, NAHR-
mediated CNV loci. Investigations of predominantly 
nonrecurrent CNVs show paternal bias [132–134]. Unlike 
recurrent CNVs, nonrecurrent CNVs are mostly formed 
via non-homologous end joining (NHEJ) and replicative 
mechanisms [1, 135, 136]. The standing hypothesis is that 
replication-based mechanisms of nonrecurrent CNV 
formation, which are known to accumulate errors in 
male germlines, contribute to this bias [132]. Our study 
reinforces the idea that the factors influencing recur-
rent CNVs differ from those impacting nonrecurrent 
CNVs. Future genome-wide analyses with larger sample 
sizes can further help refine our understanding of the 

divergent forces at play affecting recurrent and nonrecur-
rent CNV formation.

We conducted a comprehensive literature search at 
38 loci and ultimately identified 1977 samples for analy-
sis. We note that the majority of the data come from 7 
well-studied loci (Table 1). While we thoroughly curated 
the data in a systematic way, it is possible that our data 
is subject to publication bias, where loci that exhibit par-
ent of origin biases are more likely to have parental origin 
reported. Further exacerbating potential publication bias, 
genetic testing for the affected patient (and even more so 
for the parents) can be difficult to obtain due to concerns 
such as insurance coverage, potential future discrimina-
tion, and privacy concerns [137–140]. However, we note 
individuals with CNVs are generally not ascertained 
or recruited under the expectation that recombination 
affects parent of origin, and therefore, any potential pub-
lication or ascertainment bias is unlikely to confound the 
results of our analysis. Analysis of a larger cohort of CNV 
loci including benign CNVs will give greater insight into 
the role of recombination, and sex differences in recom-
bination influencing parent of origin in CNVs.

Our estimates of recombination rates summarize 
CNV-scale (broad-scale) patterns of recombination, 
rather than fine-scale patterns near the sites of relevant 
recombination events that form these CNVs—LCRs. 
For example, local sex-specific hotspots within LCRs 
could be the underlying drivers behind the correlation 
between recombination rates and parental origin. Given 
the nature of repetitive regions like LCRs and our inabil-
ity to adequately interrogate them with current sequenc-
ing technologies, accurate recombination data across and 
within the LCR regions is not available. In other words, 
the data is currently insufficient to conclude whether or 
not these broad-scale patterns are tightly correlated with 
fine-scale recombination rates in and around the LCRs. 
The best available data in the field allows us to infer the 
following: broad-scale patterns of recombination tightly 
predict patterns of parental origin.

Conclusions
In this study, we determined male and female differences 
in meiotic recombination rates significantly predict par-
ent of origin for recurrent CNV loci. Combining the sex-
specific recombination landscape and the mechanistic 
factors underlying it with a more detailed understand-
ing of existing structural factors at genomic disorder loci 
can be expected to help guide standards used to identify 
and perform genetic counseling for individuals at risk of 
genomic rearrangement.
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