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In silico analysis suggests disruption 
of interactions between HAMP 
from hepatocytes and SLC40A1 
from macrophages in hepatocellular carcinoma
Liang Hu1 and Chao Wu2*   

Abstract 

Background:  Identification of factors associated with proliferation in the hepatocellular carcinoma (HCC) micro-
environment aids in understanding the mechanisms of disease progression and provides druggable targets. Gene 
expression profiles of individual cells in HCC and para-carcinoma tissues can be effectively obtained using the single-
cell RNA sequencing (scRNA-Seq) technique. Here, we aimed to identify proliferative hepatocytes from HCC and 
para-carcinoma tissues, detect differentially expressed genes between the two types of proliferative hepatocytes, and 
investigate their potential roles in aberrant proliferation.

Results:  Two respective gene signatures for proliferative cells and hepatocytes were established and used to identify 
proliferative hepatocytes from HCC and para-carcinoma tissues based on scRNA-Seq data. Gene expression profiles 
between the two types of proliferative hepatocytes were compared. Overall, 40 genes were upregulated in prolifera-
tive hepatocytes from para-carcinoma tissue, whereas no upregulated genes were detected in those from HCC tissue. 
Twelve of the genes, including HAMP, were specifically expressed in the liver tissue. Based on previous reports, we 
found that HAMP modulates cell proliferation through interaction with its receptor SLC40A1. Comprehensive analysis 
of cells in HCC and para-carcinoma tissues revealed that: (1) HAMP is specifically expressed in hepatocytes and signifi-
cantly downregulated in malignant hepatocytes; (2) a subset of macrophages expressing SLC40A1 and genes reacting 
to various infections is present in para-carcinoma but not in HCC tissue. We independently validated the findings with 
scRNA-Seq and large-scale tissue bulk RNA-Seq/microarray analyses.

Conclusion:  HAMP was significantly downregulated in malignant hepatocytes. In addition, a subset of macrophages 
expressing SLC40A1 and genes reacting to various infections was absent in HCC tissue. These findings support the 
involvement of HAMP-SLC40A1 signaling in aberrant hepatocyte proliferation in the HCC microenvironment. The col-
lective data from our in silico analysis provide novel insights into the mechanisms underlying HCC progression and 
require further validation with wet laboratory experiments.
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Background
Maintenance of proliferative signaling is a hallmark of 
cancer [1]. Healthy tissues carefully control their cell 
growth and division cycle and ensure cell number home-
ostasis, which preserves tissue architecture and func-
tion. Cancer cells emit sustained proliferative signals that 
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activate progression of the cell cycle as well as support 
the formation and growth of tumor tissue. Although the 
liver is susceptible to cancer invasion, it is also an organ 
with the capacity to regenerate after surgical removal or 
chemical injury [2]. The regenerative process of a normal, 
healthy liver is predominantly dependent on hepatocyte 
proliferation, growth, and programmed cell death [3]. 
The ability to distinguish proliferative hepatocytes from 
hepatocellular carcinoma (HCC) and normal liver tissues 
and comparison of their gene expression profiles will aid 
us in understanding the mechanisms underlying aberrant 
proliferative signaling in malignant cells.

Single-cell RNA sequencing (scRNA-Seq) is a power-
ful tool for profiling gene expression patterns in individ-
ual cells [4]. This technique provides an unprecedented 
opportunity to identify cells in vivo and comprehensively 
characterize their transcriptomes. Large-scale sequenc-
ing of single cells from multiple tissues of human and ani-
mal models, such as the Tabula Muris and the Mouse Cell 
Atlas (MCA) projects, facilitates the characterization of 
cells within their respective tissues, leading to enhanced 
understanding of the transcriptomes of individual cell 
types, especially those that are currently poorly charac-
terized [5–7].

Normal and tumor human liver tissues have been 
examined using scRNA-Seq since 2018 [8]. Recently, Lu 
et al. released their scRNA-Seq data from HCC and para-
carcinoma tissues (GSE149614). The non-tumor tissues 
include the para-carcinoma tissue, which is generally 
within 3 cm of the cancer foci’s edge and the normal tis-
sue that is at least 5 cm away from the cancer foci’s edge. 
These primary datasets are used to identify and compare 
proliferative hepatocytes between non-tumor and HCC 
tissues.

HAMP is a crucial regulator of iron entry into the cir-
culation in mammals [9]. In tumor cells, pathways of iron 
acquisition, efflux, storage, and regulation are disrupted, 
suggesting that the reprogramming of iron metabolism 
is a central aspect of tumor cell survival [10]. Previously, 
Vela and Vela-Gaxha [11] analyzed HAMP expression 
in HCC. Their results suggested that by lowering liver 
HAMP levels, HCC cells could secure abundant iron 
from sources such as enterocytes and macrophages. Shen 
et al. [12] reported that low HAMP expression is linked 
with higher rates of metastasis and poor disease-free sta-
tus in HCC, and that the role of HAMP in cellular prolif-
eration and metastasis is related to cell cycle checkpoints. 
The group proposed that HAMP serves as a tumor sup-
pressor gene.

HAMP is believed to be involved in host defense, and 
when induced, it depletes extracellular iron to prevent 
its use by invading pathogens [13]. However, the issue of 
whether HAMP exerts additional effects on host defense 

mechanisms remains unclear. Ramakrishnan et  al. [14] 
reported that HAMP-SLC40A1 signaling modulates the 
proliferation of human pulmonary artery smooth muscle 
cells (hPAMSC). Under conditions of increased expres-
sion, HAMP binds SLC40A1 to form a complex that 
undergoes internalization and degradation, leading to 
further enhancement of iron retention in cells. Simulta-
neously, higher proliferation of hPASMCs was observed, 
suggesting that iron retention encourages a proliferative 
state.

Based on the scRNA-Seq data from the Tabula Muris 
project and RNA-Seq data from the Genotype-Tissue 
Expression (GTEx) project, we identified a cell-type-spe-
cific gene signature for hepatocytes. In a previous study, 
our group determined a cell-type-specific gene signature 
for proliferative cells. Here, we identified proliferative 
hepatocytes in HCC and para-carcinoma tissues using 
the two above gene signatures with scRNA-Seq data and 
evaluated the gene expression profiles of the two types of 
proliferative hepatocytes. We found that HAMP was spe-
cifically expressed in hepatocytes and significantly down-
regulated in malignant hepatocytes. We also revealed 
that a subset of macrophages expressing SLC40A1 and 
genes reacting to various infections was present in para-
carcinoma but not in HCC tissue. These findings were 
independently validated with scRNA-Seq and large-
scale tissue bulk RNA-Seq/microarray analyses. The data 
obtained using our in silico approach strongly suggest the 
role of HAMP-SLC40A1 signaling in aberrant hepatocyte 
proliferation in the HCC microenvironment.

Methods
Data sets
We downloaded the scRNA-Seq dataset of cells from 
81 cell types from the Tabula Muris project. ScRNA-
Seq datasets of cells from HCC and para-carcinoma tis-
sues (GSE149614), normal liver tissue (GSE115469), 
and HCC tissue (GSE125449) from the GEO database 
were obtained. The RNA-Seq dataset for normal tissue 
samples of 54 tissue types from the GTEx project was 
downloaded. We also downloaded the RNA-Seq dataset 
of developing mouse liver samples from the GEO data-
base (GSE132034) and extracted the RNA-Seq dataset for 
tumor and para-carcinoma tissue samples of 32 tumor 
types, including HCC, from the TCGA project. Clinical 
information regarding the HCC samples was acquired, 
along with a microarray dataset for HCC and para-car-
cinoma tissues from the GEO database (GSE36376). 
Details are listed in Additional file 1: Table S11.

Gene expression data preprocessing
Acquisition and normalization of the expression of each 
gene from individual datasets are described below.
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1.	 For the scRNA-Seq dataset from the Tabula Muris 
project, we grouped all single cells into 81 types 
according to annotation and counted the number of 
cells belonging to each cell type. For gene and cell 
types, we counted the number of cells expressing the 
gene within the cell type, which was calculated as a 
percentage. The percentage value was selected as the 
normalized gene expression level for that cell type. 
Normalized expression levels for all Mus musculus 
genes in the 81 cell types were obtained using this 
technique.

2.	 For scRNA-Seq datasets of GSE149614 and 
GSE125449, we first downloaded the read count 
matrix. GSE125449 had two read count matrices, 
which were merged. Next, we recorded the reads for 
each gene in each cell in the datasets. For cell i , the 
read counts of all the genes were summed to obtain 
the read depth x . For gene j with a read count of y , 
we calculated expression levels (RP10K: Reads Per 10 
Kilo) in cell i as yx ∗ 10000 . Expression levels for all 
genes in cells were obtained using this technique.

3.	 For the scRNA-Seq dataset GSE115469, log2CPM 
(counts per million) gene expression values were 
directly downloaded.

4.	 For the tissue RNA-Seq dataset from the GTEx pro-
ject, TPM (transcripts per million) profiles for all 
genes were downloaded.

5.	 For the mouse liver development RNA-Seq dataset 
GSE132034, FPKM (fragments per kilobase of tran-
script per million mapped reads) gene expression val-
ues were directly downloaded.

6.	 For the tumor and para-carcinoma tissue RNA-Seq 
dataset from the TCGA project, the RSEM method 
was used to process gene-level normalized counts for 
all genes, which were used as gene expression levels.

7.	 For the HCC tissue microarray dataset GSE36376, 
the quartile normalized gene expression values were 
directly downloaded.

For each dataset listed in 2 to 7, expression levels of a 
single gene across all samples were determined and nor-
malized via the Z-score transformation. We normalized 
the expression levels of all genes in a dataset using this 
method.

Expression heatmap and hierarchical clustering analysis
Hierarchical clustering analysis was conducted to group 
genes based on normalized expression levels within dif-
ferent types of RNA-Seq data. We employed the R pack-
age "factoextra" for clustering analyses. The "Euclidean" 
method was employed to measure the distance between 
the observations, "ward.D2" was selected for agglom-
eration of the observations, and the "fviz_dend" function 

was used to visualize the dendrogram. Expression heat-
maps were generated, and the hierarchical clustering 
analyses conducted are described below.

1.	 The scRNA-Seq dataset from the Tabula Muris pro-
ject

In Fig. 1a, normalized expression levels of all Mus mus-
culus genes in the 81 cell types were obtained from the 
Tabula Muris project. We subsequently identified genes 
with normalized expression levels less than a threshold 
of 0.1 in eight cell types, specifically, (1) stem cells of the 
epidermis, (2) Slamf1-positive multipotent progenitor 
cells, (3) megakaryocyte-erythroid progenitor cells, (4) 
late pro-B cells, (5) granulocyte monocyte progenitor 
cells, (6) granulocytopoietic cells, (7) common lymphoid 
progenitors, and (8) pre-natural killer cells. Genes with 
normalized expression levels greater than 0.5 were fur-
ther selected from the other 73 cell types, leading to a 
total of 1817 genes. Next, genes were clustered by their 
normalized expression levels across the 81 cell types, and 
the clustering tree was subdivided into twelve groups. 
Genes were finally sorted according to clustering results, 
and a heatmap was generated based on normalized gene 
expression levels.

2.	 The tissue RNA-Seq dataset from the GTEx project

Normalized expression levels of 225 genes in all 17,382 
tissue samples were initially obtained (Fig.  1b). Genes 
were clustered by their normalized expression profiles, 
and the clustering tree was sectioned into two groups. 
Finally, genes were sorted according to clustering results, 
and a heatmap was generated based on normalized 
expression levels.

3.	 The RNA-Seq dataset of tumor and para-carcinoma 
tissues from the TCGA project

We initially obtained normalized expression levels of the 
142 genes comprising the Hep gene signature in all 9630 
tumor/para-carcinoma tissue samples (Fig.  1d), which 
were used to subsequently generate a heatmap. A heat-
map was constructed with normalized expression levels 
of genes from the Hep and S1 gene signatures (Fig. 2b).

4.	 The mouse liver development RNA-Seq dataset 
GSE132034

We initially obtained normalized expression levels of the 
142 genes of the Hep signature and the 87 genes from the 
S1 signature in 15 samples (Fig. 2c), which were used to 
generate a heatmap.
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Gene set expression analysis
We identified two gene signatures, S1 and Hep. The 
methods used to calculate the expression levels of the 

gene sets are described below.

1.	 Bulk RNA-Seq datasets from the GTEx and TCGA 
projects and mouse liver development.

We assessed expression of the Hep gene signature (Hep 
index) in the datasets, as shown in Figs. 1c, e, 2a, d, f. For 
a gene i(1 ≤ i ≤ 142) in the Hep gene signature and sam-
ple k ( 1 ≤ k ≤ N  ) in a dataset with sample number N  , 
normalized expression was obtained as Zik . For the sam-
ple k , the Hep index ( Hepk ) was calculated as follows:

Using this technique, the Hep index of each sample was 
calculated.

Expression of the S1 gene signature (S1 index) of each 
sample was calculated in a similar manner (Fig. 2a, b, d).

2.	 ScRNA-Seq data for GSE149614, GSE115469, and 
GSE125449.

The Hep index in the datasets was calculated (Figs.  3c, 
4, Additional file 5: S3a–d). For a gene j(1 ≤ j ≤ 142) in 
the Hep gene signature and cell l ( 1 ≤ l ≤ M ) in a dataset 
with the cell number of M , normalized expression was 
measured as Zjl . For the cell l , the Hep index ( Hepl ) was 
calculated as follows:

Using this method, the Hep index of each cell was cal-
culated. The Hep index was assessed as the mean and not 
median value of normalized expression levels of the 142 
genes, because the sequencing depth of scRNA-Seq is 
low, and a Hep index value of zero would be obtained for 
most cells if the median value is used as the Hep index. 
The S1 index of each cell was similarly calculated (Addi-
tional file 3: Figure S1, Fig. 4, Additional file 5: Figure S3c, 
d).

Single‑cell clustering
Cell clustering was performed with Seurat (version 3.1.5) 
as shown in Figs. 3a, 5a, 6b, and Additional file 6: Figure 
S4b. Initially, we removed the cells with mapped reads 
of < 2000 and subsequently used read count matrices to 
conduct the clustering analysis (Fig.  7a). The processed 
log2CPM matrix was used for the clustering analysis, as 
depicted in Additional file 6: Figure S4a. We employed a 
uniform parameter set to perform cluster analyses. The 
code is listed in Additional file 2.

Hepk = median(Z1k ,Z2k , . . . ,Z142k).

Hepl = mean(Z1l ,Z2l , . . . ,Z142l).

Fig. 1  A set of 142 genes specifically expressed in human 
hepatocytes. a Gene expression profiles of 81 cell types. Columns 
present the gene expression profiles of specific cell types. The 
listed cell types match the 81 types in Additional file 2: Table S1 in 
sequence. Hierarchical clustering according to gene expression was 
conducted across the 81 cell types. The "group" marker represents 
their classifications. b Expression profiles of the 225 genes, showing a 
specific transcription pattern in mouse hepatocytes in samples across 
54 human tissues from the GTEx project. Each column presents the 
gene expression profile of a sample. Hierarchical clustering according 
to gene expression was conducted. The "group" marker represents 
their classifications. c Expression of the Hep gene signature (Hep 
index) of samples across the 54 human tissues. d Expression profiles 
of the 142 genes belonging to the Hep gene signature in samples 
across 32 tumor types from the TCGA project. Each column presents 
the gene expression profile of a sample. e Hep index of samples 
across 32 tumor types from the TCGA project
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Analysis of differentially expressed genes
As shown in Additional file  1: Tables S5, S6, and S8, 
the "FindMarkers" function of Seurat (version 3.1.5) 
was employed to detect DEGs between cells. All the 

parameters were set as defaults, and genes with Bonfer-
roni-corrected P values less than 0.05 were selected as 
DEGs.

Fig. 2  The Hep and S1 indexes are negatively correlated in tissues from HCC or developing liver. a Hep and S1 indexes from different histologically 
graded groups of HCC patients. The t-test was applied to compare the Hep and S1 indexes of patients from different groups. *** Signifies P 
values < 0.001 and * signifies P values < 0.05. b Expression profiles of genes from the S1 and Hep gene signatures and scatter plot of S1 and Hep 
indexes for HCC tissues. The Pearson correlation coefficient ( r  ) between the two indexes was calculated, and the P value of r  was estimated. c 
Expression profiles of genes from the S1 and Hep gene signatures in liver tissues from different development stages. E, D and W denote embryonic 
day, day and week, respectively. d Plot of S1 and Hep indexes for liver tissues from different development stages. The Pearson correlation coefficient 
( r  ) between the two indexes was calculated, and the P value of r  was estimated
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GO term and KEGG pathway enrichment analysis
GO term enrichment analyses on gene sets were con-
ducted (Fig. 5c; Additional file 1: Tables S4, S7, and S9) 
using DAVID 6.8 as the analysis tool [15]. GO terms from 
the biological process branch (GOTERM_BP_DIRECT) 
with Bonferroni-corrected P values < 0.05 were selected.

As depicted in Fig.  6d, KEGG pathway enrichment 
analysis of gene sets was conducted using DAVID 6.8 
[15]. Pathways with Bonferroni-corrected P values < 0.05 
were selected.

Fig. 3  Identification of hepatocytes using the Hep index. a UMAP plot of cells from para-carcinoma tissue. b Heatmap of expression of known 
cell-type markers in the UMAP plot. c Distribution of the Hep index of all cells from para-carcinoma tissue. d Comparison of hepatocytes identified 
using cell-type markers and the Hep index. We counted cells with Hep index above 0.5, which were those in clusters 6, 14, and 17 of the UMAP plot, 
and shared cells between them in each para-carcinoma tissue sample. HCC03 to HCC10 represent patient codes. N indicates that three samples are 
from para-carcinoma tissue
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Fig. 4  Scatter plots of S1 and Hep indexes for cells from HCC and para-carcinoma tissue samples of a patient. Each dot within the plot represents a 
cell. HCC01 to HCC10 represent patient sample codes. T, N, P, and L denote samples from tumor, para-carcinoma, portal vein tumor thrombus, and 
metastatic lymph node tissue samples, respectively. Thresholds of the Hep index (0.5) and S1 index (0.1) are additionally indicated in each plot
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Results
Identification of gene signatures for proliferative cells 
and hepatocytes from scRNA‑Seq data
The Tabula Muris project has facilitated the sort-
ing of 50,000 cells from 20 organs and tissues of Mus 
musculus using a fluorescence-activated cell sorter 
(FACS) and provides a compendium of single-cell 
transcriptomes for 81 Mus musculus cell types (Addi-
tional file  1: Table  S1). The gene expression profiles 
for each cell type (see "Gene expression data preproc-
essing" in the "Methods" section) were inferred and 
used as profiles for their respective human counter-
parts. In our previous study, we identified 87 genes 
specifically expressed in stem/progenitor cell types 
that were associated with cell proliferation functions. 
These genes were used as a cell-type-specific gene 
signature for proliferative cells, designated as the "S1 
gene signature" (Additional file  1: Table  S2). Next, 
genes expressed in stem/progenitor cell types were 
excluded, and the remaining genes were clustered 
(see "Expression heatmap and hierarchical cluster-
ing analysis" in the "Methods" section). Consequently, 
we identified a set of 225 genes showing a specific 
transcription pattern in hepatocytes (Fig.  1a) and 
explored their expression patterns across 54 human 
tissues from the GTEx project [16]. In total, 142 genes 
(Additional file 1: Table S3), grouped as the "Hep gene 
signature", showed specific transcription in liver tis-
sue (see "Expression heatmap and hierarchical clus-
tering analysis" and "Gene set expression analysis" in 
the "Methods" section; Fig. 1b, c). We further investi-
gated the expression of the Hep gene signature, des-
ignated "Hep index", in tumor and para-carcinoma 
tissues of 32 tumor types from The Cancer Genome 
Atlas (TCGA) project [17]. The Hep gene signature 
was consistently expressed in tumor and para-carci-
noma tissues of HCC (see "Expression heatmap and 
hierarchical clustering analysis" and "Gene set expres-
sion analysis" in the "Methods" section; Fig.  1d, e) 
and enriched with genes participating in hepatocyte-
specific functions (see "GO term and KEGG pathway 
enrichment analysis" in the "Methods" section; Addi-
tional file 1: Table S4). Based on the collective results, 
the Hep gene signature was inferred as a cell-type-
specific gene signature for hepatocytes.

The hep and S1 gene signatures are respectively 
associated with the differentiation and proliferation states 
of hepatocytes
The histological grades of HCC samples in the TCGA 
project are recorded in the TCGA Clinical Explorer [18]. 
We categorized the HCC samples into high-, intermedi-
ate- or low- tumor-grade groups and calculated the Hep 
index and S1 index (expression of the S1 gene signature) 
for samples from each group (see "Gene set expression 
analysis" in the "Methods" section). Taking P < 0.05, we 
found that the low-tumor-grade group exhibited the 
highest Hep index, with the second-highest Hep index 
for the intermediate-tumor-grade group, and the third-
highest for the high-tumor-grade group (Fig.  2a). Addi-
tionally, the opposite tendency was observed for the S1 
index of the three tumor-grade groups. Expression of 
genes from the Hep and S1 gene signatures tended to be 
mutually exclusive in HCC tissues from the TCGA pro-
ject (see "Expression heatmap and hierarchical clustering 
analysis" in the "Methods" section; Fig. 2b). The Pearson 
correlation coefficient between the Hep index and S1 
index for the samples is − 0.56 (P < 0.0001), which indi-
cates that the two indexes were negatively correlated (see 
"Gene set expression analysis" in the "Methods" section; 
Fig. 2b).

Gong et al. [19] profiled the gene expression of mouse 
liver tissues collected from embryonic day 12.5 to post-
natal week 8. Expression of genes from the Hep and S1 
gene signatures at different time points is illustrated in 
Fig. 2c (see "Expression heatmap and hierarchical cluster-
ing analysis" in the "Methods" section; Fig. 2c). The Pear-
son correlation coefficient between the Hep index and S1 
index is − 0.92 (P < 1.29e−06), which confirmed a nega-
tive correlation between the Hep and S1 indexes (Fig. 2d). 
The proliferative ability of liver progenitor cells is down-
regulated and the functional capacity upregulated during 
the development process, with a gradual progression into 
differentiated hepatocytes [20]. The collective findings 
from HCC and the developing liver support the utility 
of the Hep and S1 indexes as respective indicators of cell 
differentiation and the proliferation states of hepatocytes.

Detection of proliferative hepatocytes from HCC 
and para‑carcinoma tissues
Lu and co-workers conducted 10X genomics scRNA-
Seq on tumor and para-carcinoma tissues obtained 

(See figure on next page.)
Fig. 5  Proliferative hepatocytes in HCC and para-carcinoma tissues. a UMAP plot of all cells from HCC and para-carcinoma tissues. b Heatmap of 
proliferative hepatocytes from different samples in the UMAP plot. HCC01 to HCC10 represent patient sample codes. T and N signify samples from 
HCC and para-carcinoma tissue, respectively. c GO term enrichment of genes upregulated in proliferative hepatocytes from para-carcinoma tissue. 
d Heatmap of HAMP expression in proliferative hepatocytes from HCC and para-carcinoma tissue (HCC03N). e Heatmap showing hepatocytes 
(normal or malignant) from HCC and para-carcinoma tissue in the UMAP plot. f Heatmap showing HAMP expression in the UMAP plot
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from ten HCC patients (GSE149614). In our study, cells 
were selected from para-carcinoma tissue, clustered 
with the Seurat program [21], and the Uniform Mani-
fold Approximation and Projection (UMAP) technique 
was employed for visualization (see "Single-cell cluster-
ing" in the "Methods" section; Fig. 3a). Various cell-type 
markers were used to clarify the clusters, including ALB 
for hepatocytes; PTPRC for immune cells; CD79A for B 
cells; EPCAM for hepatic progenitors; DCN for hepatic 
stellate cells, fibroblasts, and myofibroblasts; and PTPRB 
for hepatic sinusoidal endothelial cells. Integrated marker 
analysis led to the classification of clusters 6, 14, and 17 
as hepatocytes (Fig. 3b).

Next, we calculated the Hep index for individual cells 
from HCC and para-carcinoma tissues (see "Gene set 
expression analysis" in the "Methods" section). Cells from 
para-carcinoma tissue samples were selected, and the 
Hep index of cells was able to fit a mixture of exponential 
and normal distributions (Fig. 3c). This suggests that the 
cells are from different populations, and the cells under 
normal distribution with a higher Hep index are hepato-
cytes, and those under exponential distribution are non-
hepatocytes. We found that 0.5 is a likely threshold to 
distinguish the two cell populations, and used it for the 
identification of hepatocytes. The identified hepatocytes 
shared the same group of cells in clusters 6, 14, and 17 of 
the UMAP plot (Fig. 3d).

The S1 index for cells from HCC and para-carcinoma 
tissues was calculated (see "Gene set expression analysis" 
in the "Methods" section). Cells with a Hep index > 0.5 
were selected as hepatocytes from para-carcinoma tis-
sues. The S1 index of the cells was able to fit an exponen-
tial distribution (Additional file  3: Figure S1). Because 
cells with S1 index > 0.1 were very rare (1%), we arbitrar-
ily selected 0.1 as the threshold for cells with high prolif-
erative ability.

The Hep and S1 indexes were plotted for cells in HCC 
and para-carcinoma tissues of each patient (see "Gene 
set expression analysis" in the "Methods" section; Fig. 4). 
Using 0.5 as the Hep index threshold and 0.1 as the S1 
index threshold, we identified proliferative hepatocytes in 
all HCC tissues, except sample HCC08T. Eight prolifera-
tive hepatocytes were detected in the para-carcinoma tis-
sue sample HCC03N.

Differential gene expression between proliferative 
hepatocytes from HCC and para‑carcinoma tissue samples
We focused on the molecular differences between prolif-
erative hepatocytes from HCC and para-carcinoma tis-
sues, which may elucidate the mechanisms underlying 
aberrant proliferative signaling in malignant cells. Cells 
from HCC and para-carcinoma tissues were visualized, 
and proliferative hepatocytes were identified (see "Sin-
gle-cell clustering" in the "Methods" section; Fig.  5a, b). 
Proliferative hepatocytes from five HCC tissue samples 
(HCC10L, HCC09T, HCC02T, HCC03T, and HCC04T) 
were located in individual clusters. Additionally, those 
from three other HCC tissue samples (HCC06T, 
HCC05T, and HCC01T) shared one cluster, and those 
from the para-carcinoma tissue sample HCC03N were in 
an individual cluster (cluster 22).

Differentially expressed genes (DEGs) between pro-
liferative hepatocytes from para-carcinoma and HCC 
tissues were examined. Overall, 40 genes were upregu-
lated in proliferative hepatocytes from para-carcinoma 
tissue and none in proliferative hepatocytes from HCC 
tissue (see "Analysis of differentially expressed gene" in 
the "Methods" section; Additional file  1: Table  S5). GO 
term enrichment analysis revealed they were enriched in 
terms related to cellular response to ion and acute phase 
response (see "GO term and KEGG pathway enrich-
ment analysis" in the "Methods" section; Fig.  5c). We 
further explored expression patterns of the genes across 
54 human tissues from the GTEx project. Notably, 12 
of the genes were specifically expressed in liver tissues 
(Additional file  4: Figure S2). Hepatocytes (normal or 
malignant) from HCC and para-carcinoma tissues were 
identified as shown in Fig.  5e. The observed specific 
expression of these 12 genes in hepatocytes supports 
their participation in cell-type-specific roles in prolifera-
tive hepatocytes.

We subsequently examined the functions of the 12 
genes in HCC based on reports in the PubMed data-
base. Three genes downregulated in relation to induc-
tion of cell proliferation were identified, specifically, 
HAMP [12], LINC01093 [22], and CFHR3 [23]. An earlier 
study by Ramakrishnan et al. [14] reported that HAMP-
SLC40A1 signaling modulates the proliferation of human 
pulmonary artery smooth muscle cells (hPAMSC). We 

Fig. 6  Macrophages in HCC and para-carcinoma tissue samples. a Heatmap of expression of known macrophage markers (ITGAM, CD68, CD163, 
CD14, and FCGR3A) and SLC40A1 in the UMAP plot. b UMAP plot of all cells from HCC and para-carcinoma tissues. Clusters of macrophages are 
indicated. c Macrophages in the UMAP plot from different groups were counted. The N_exp group includes cells from para-carcinoma tissue 
expressing SLC40A1, and the N_noexp group includes cells from para-carcinoma tissue with no SLC40A1 expression. The T_exp group includes 
cells from HCC tissues expressing SLC40A1, and the T_noexp group includes cells from HCC tissues with no SLC40A1 expression. d KEGG pathway 
enrichment of marker genes of cluster 10 in the UMAP plot. e Heatmap showing expression of CD5L, CETP, MARCO, CXCL12, PLAC8, VACM1, CFP, 
LYVE1, and SDC3 in the UMAP plot

(See figure on next page.)
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discovered that HAMP was specifically expressed in 
hepatocytes and SLC40A1 was specifically expressed 
in macrophages in HCC and para-carcinoma tissues 
(Figs. 5e, f, 6a, b). We focused on HAMP-SLC40A1 sign-
aling and intended to clarify the interactions between dif-
ferent cell types and determine their impact on aberrant 
proliferative signaling in the HCC microenvironment.

HAMP was expressed in seven of the eight proliferative 
hepatocytes from para-carcinoma tissue and three of the 
545 proliferative hepatocytes from HCC tissue samples 
(Fig. 5d). We further investigated HAMP expression in all 
hepatocytes from HCC and para-carcinoma tissues. The 
previous analysis of the Hep index for cells from para-
carcinoma tissue suggested that 0.5 could be an adequate 
threshold to distinguish hepatocytes from non-hepat-
ocytes (Fig.  3c). Thus, hepatocytes were identified as 
cells with Hep index > 0.5. Specific HAMP expression in 
hepatocytes from para-carcinoma tissue was confirmed 
(Fig.  5e, f ). DEGs between hepatocytes from para-car-
cinoma and HCC tissues were detected (see "Analysis of 
differentially expressed genes" in the "Methods" section; 
Additional file  1: Table  S6). We further conducted GO 
term enrichment analysis on the 282 upregulated genes 
in para-carcinoma tissue. The genes were enriched in 
terms related to cellular response to ion and acute phase 
response (see "GO term and KEGG pathway enrichment 

analysis" in the "Methods" section; Additional file  1: 
Table S7).

A subset of macrophages expressing SLC40A1 is specifically 
present in para‑carcinoma tissue
We identified clusters of macrophages in the UMAP 
plot with the cell-type markers ITGAM, CD68, CD163, 
CD14, and FCGR3A (Fig.  6a, b) and observed specific 
expression of SLC40A1 in macrophages. Next, mac-
rophages were classified according to their origin (HCC 
or para-carcinoma tissue), and SLC40A1 expression sta-
tus (whether they expressed SLC40A1 or not) into four 
groups: (1) from para-carcinoma tissue and expressing 
SLC40A1 (N_exp group), (2) from para-carcinoma tissue 
but not expressing SLC40A1 (N_noexp group), (3) from 
HCC tissue and expressing SLC40A1 (T_exp group), and 
(4) from HCC tissue but not expressing SLC40A1 (T_
noexp group).

For identified macrophages in the UMAP plot, we 
counted cell numbers from the four groups (Fig.  6c). In 
HCC tissue, macrophages from the T_exp and T_noexp 
groups were located mainly in the same cluster (cluster 
3), suggesting that the expression of SLC40A1 does not 
influence the transcriptional program of the majority of 
macrophages. However, in para-carcinoma tissue, most 
macrophages from the N_exp and N_noexp groups were 
assembled into distinct cell clusters (Fig. 6c), implying an 

Fig. 7  Expression of Cd51, Marco, and Cfp in macrophages from mouse organs and tissues. a UMAP plot of cells expressing Emr1 in 20 mouse 
organs and tissues from the Tabula Muris project. b Heatmap showing expression of the mouse macrophage markers Emr1, Cd51, Marco, and Cfp in 
the UMAP plot
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effect of SLC40A1 transcription on the gene expression 
patterns of macrophages. Cluster 10 contained the high-
est number of SLC40A1-expressing macrophages in para-
carcinoma tissue (indicated by the column of "N_exp" in 
Fig. 6c). SLC40A1-expressing macrophages were also the 
predominant cell type in this cluster (indicated by the 
row of "Cluster10" in Fig. 6c). HAMP-SLC40A1 signaling 
was only potentially activated in macrophages from the 
N_exp group because both HAMP and SLC40A1 were 
expressed under this circumstance. Cluster 10 may there-
fore present the subset of macrophages linked to HAMP-
SLC40A1 signaling.

We further identified marker genes of the cluster by 
comparison with other macrophages in the UMAP plot 
(see "Analysis of differentially expressed genes" in the 
"Methods" section; Additional file 1: Table S8) and con-
ducted GO term as well as KEGG pathway enrichment 
analyses (see "GO term and KEGG pathway enrich-
ment analysis" in the "Methods" section). Genes impli-
cated in response to various infections were enriched 
(Fig.  6d, Additional file  1: Table  S9), suggesting roles of 
cluster 10 macrophages in the antimicrobial immune 
response in the liver. Next, we prioritized marker genes 
and generated heatmaps of the top 9 markers (CD5L, 
CETP, MARCO, CXCL12, PLAC8, VACM1, CFP, 
LYVE1, and SDC3, Fig.  6e). The top genes specifically 
expressed in macrophages and highly expressed in clus-
ter 10 (CD5L, CETP, MARCO, and CFP) were ultimately 
selected. CD5L encodes a secreted protein that is mainly 
expressed by macrophages in lymphoid and inflamed tis-
sues and regulates the mechanisms underlying inflam-
matory responses, such as those involved with infection 
or atherosclerosis [24]. CETP is involved in the transfer 
of neutral lipids, including cholesteryl ester and triglyc-
eride, among lipoprotein particles [25]. MARCO encodes 
a protein that belongs to the class A scavenger receptor 
family and is part of the innate antimicrobial immune 
system [26]. It has been proposed that the protein binds 
Gram-negative and Gram-positive bacteria via an extra-
cellular C-terminal scavenger receptor cysteine-rich 
(SRCR) domain. CFP encodes a plasma glycoprotein that 
positively regulates the alternative complement pathway 
of the innate immune system [27]. This protein binds sev-
eral microbial surfaces and apoptotic cells and stabilizes 
C3 and C5 convertase enzyme complexes in a feedback 
loop that ultimately leads to the formation of a mem-
brane attack complex and lysis of target cells. Both CD5L 
and CETP participate in lipid metabolism and are related 
to inflammatory responses, whereas MARCO and CFP 
are involved in the antimicrobial immune response. We 
employed the above four genes as biomarkers of cluster 
10 macrophages.

Emr1 was used as a marker gene of macrophages in 
mice. We collected Emr1-expressing cells from 20 mouse 
organs and tissues in the Tabula Muris project as mac-
rophages. Cells were clustered with Seurat, the UMAP 
technique employed for visualization, and those express-
ing Marco, Cd5l, and Cfp were highlighted (see "Single-
cell clustering" in the "Methods" section; Fig. 7a, b). The 
gene homolog of CETP was not identified in mice. Addi-
tionally, cluster 15 was the only cell cluster expressing all 
three marker genes. The liver was determined as the tis-
sue origin of cells in the cluster from the Tabula Muris 
project. Thus, the subset of macrophages expressing 
CD5L, CETP, MARCO, and CFP appears to be liver-spe-
cific, indicating a unique role of HAMP in the regulation 
of macrophages associated with liver function.

Interactions between HAMP from hepatocytes 
and SLC40A1 from macrophages are disrupted in HCC
We analyzed HAMP and SLC40A1 expression patterns 
in two additional scRNA-Seq datasets. Previously, Mac-
Parland and co-workers [28] sequenced parenchymal and 
non-parenchymal cells obtained from fractionation of 
fresh hepatic tissue from five human livers (GSE115469). 
We designated this dataset as the "normal liver dataset". 
Ma et al. [29] sequenced cells from liver cancer biospeci-
mens obtained from nine HCC and ten intrahepatic chol-
angiocarcinoma patients (GSE125449). This dataset was 
designated as the "HCC dataset".

We calculated the S1 and Hep indexes for individual 
cells in the two datasets (see "Gene set expression analy-
sis" in the "Methods" section). The Hep index of cells fits 
a mixture of exponential and normal distributions in each 
dataset (Additional file 5: Figure S3a, b). The cells under 
normal distribution with a higher Hep index are inferred 
as hepatocytes, and the cells under exponential distribu-
tion are non-hepatocytes. We used zero as the threshold 
in the normal liver dataset and one as the threshold in 
the HCC dataset to identify hepatocytes. The Hep and S1 
indexes of cells in the two datasets were plotted, and cells 
expressing HAMP are highlighted in Additional file  5: 
Figure S3c and d. Our results showed that 2212 of 3507 
hepatocytes in the normal liver dataset and 10 of 320 
hepatocytes in the HCC dataset expressed HAMP. Fur-
thermore, with the S1 index > 0.1 as a threshold for pro-
liferative cells, we found that 14.5% of proliferative cells 
in the normal liver dataset and 1.7% of proliferative cells 
in the HCC dataset expressed HAMP. The significant 
differences in HAMP-expressing cells between the two 
datasets reflect the on/off state of HAMP expression in 
normal liver and HCC tissue.

Cells in each dataset were clustered with Seurat, and 
the UMAP technique was employed for visualization (see 
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"Single-cell clustering" in the "Methods" section; Addi-
tional file  6: Figure S4a, b). We highlighted cells with a 
Hep index above the threshold and identified the clusters 
belonging to hepatocytes. Macrophages with ITGAM, 
CD68, CD163, CD14, and FCGR3A expression were iden-
tified, and cells expressing CD68 are highlighted in the 
UMAP plots. HAMP was specifically expressed in hepat-
ocytes from normal liver tissue. For SLC40A1-expressing 
macrophages in each dataset, we calculated the percent-
age of cells expressing CD5L, CETP, MARCO, and CFP. 
Our data showed that > 35% of macrophages in the nor-
mal liver dataset but < 16% of macrophages in the HCC 
dataset expressed CETP, MARCO, and CFP (Additional 
file 1: Table S10). In Lu and co-workers’ scRNA-Seq data-
set (GSE149614), > 66% of macrophages in para-carci-
noma tissue expressed CD5L, CETP, MARCO, and CFP, 
in contrast to < 22% of macrophages in HCC tissue.

UMAP plots of the three scRNA-Seq datasets sug-
gest that HAMP is specifically expressed in hepatocytes 
and CD5L, CETP, MARCO, and CFP are predominantly 
expressed in macrophages (Figs.  5e, f, 6b, e, Additional 
file 6: Figure S4a, b). We employed two large-scale bulk 
HCC RNA-Seq/microarray datasets to compare the 
expression of HAMP, CD5L, CETP, MARCO, and CFP 
between HCC and para-carcinoma tissue samples. One 
dataset is from the TCGA project containing 369 HCC 
and 50 para-carcinoma tissue samples and the other is 
from the study of Lim et al. [30] containing 240 HCC and 
193 para-carcinoma tissue samples (GSE36376). Notably, 
all five genes were significantly downregulated in HCC 
tissues (Additional file 7: Figure S5).

Discussion
Based on previous and current findings, we specu-
late that in the HCC environment, downregulation of 
HAMP in hepatocytes activates the iron export channel 
SLC40A1 on macrophages, which subsequently promotes 
iron transport from macrophages and fuels cancer cells 
with iron to sustain their proliferative ability. Moreo-
ver, HAMP-SLC40A1 signaling may induce a subset of 
macrophages to initiate responses to various infections. 
The downregulation of HAMP may lead to the disap-
pearance of this subset of macrophages and consequent 
weakening of antimicrobial activity in the HCC micro-
environment. Although our current experiments eluci-
date the involvement of HAMP-SLC40A1 signaling in the 
HCC microenvironment, further wet laboratory experi-
ments are warranted to sort the subsets of macrophages 

responding to changes in HAMP expression and clarify 
their functions.

In addition to HAMP, it has also been reported that 
TFR1 (TFRC), TFR2, HFE, HJV (HFE2), and SLC40A1 
play important roles in the iron metabolism process [31]. 
Evaluation of the expression of TFR1 (TFRC), TFR2, HFE, 
HJV (HFE2), and SLC40A1 in proliferative hepatocytes 
of HCC and para-carcinoma tissues (Additional file  8: 
Figure S6) revealed no significant differences in expres-
sion between the two types of proliferative hepatocytes 
and between hepatocytes from HCC and para-carcinoma 
tissues (Additional file 1: Tables S5, S6). These data sug-
gest that the iron metabolism ability associated with 
these genes is not different between hepatocytes from 
HCC and para-carcinoma tissues. Previous studies have 
reported that HAMP limits iron flux to the bloodstream 
by promoting degradation of the iron exporter SLC40A1 
in target cells [32]. The lack of HAMP may contribute to 
increased iron flux from circulating macrophage cells in 
the HCC microenvironment. Whereas the iron metabo-
lism ability of proliferative hepatocytes from tumor and 
para-carcinoma tissues may be similar, the iron flux 
around the cells may differ; although confirmatory evi-
dence supporting this theory is lacking.

Here, we used an in silico approach to identify prolif-
erative cells in tumor and para-carcinoma tissues from 
scRNA-Seq data. Determination of the molecular differ-
ences between the two proliferative cell types aids in clar-
ifying the mechanisms underlying aberrant proliferative 
signaling and provides druggable targets, which may be 
of significant interest to researchers focused on evaluat-
ing tumors in silico with scRNA-Seq.

Conclusion
The HAMP-SLC40A1 signaling between hepatocytes and 
macrophages is disrupted in the HCC microenviron-
ment, which contributes to the aberrant proliferation of 
hepatocytes. However, these conclusions are from in sil-
ico analysis and require further validation with wet labo-
ratory experiments.
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