
Aoki et al. BMC Med Genomics          (2021) 14:111  
https://doi.org/10.1186/s12920-021-00956-5

RESEARCH ARTICLE

Susceptibility loci for pancreatic cancer 
in the Brazilian population
Mateus Nóbrega Aoki1* , Angelika Stein2, Jaqueline Carvalho de Oliveira3, Roger Chammas4, Miyuki Uno4, 
Francielle Boçon de Araújo Munhoz1, Anelis Maria Marin1 and Federico Canzian2 

Abstract 

Background: Pancreatic adenocarcinoma (PA) is a very aggressive cancer and has one of the poorest prognoses. 
Usually, the diagnosis is late and resistant to conventional treatment. Environmental and genetic factors contribute to 
the etiology, such as tobacco and alcohol consumption, chronic pancreatitis, diabetes and obesity. Somatic mutation 
in pancreatic cancer cells are known and SNP profile by GWAS could access novel genetic risk factors for this disease 
in different population context. Here we describe a SNP panel for Brazilian pancreatic cancer, together with clinical 
and epidemiological data.

Methods: 78 pancreatic adenocarcinoma and 256 non-pancreatic cancer subjects had 25 SNPs genotyped by real-
time PCR. Unconditional logistic regression methods were used to assess the main effects on PA risk, using allelic, 
co-dominant and dominant inheritance models.

Results: 9 SNPs were nominally associated with pancreatic adenocarcinoma risk, with 5 of the minor alleles confer-
ring protective effect while 4 related as risk factor. In epidemiological and clinical data, tobacco smoking, diabetes 
and pancreatitis history were significantly related to pancreatic adenocarcinoma risk. Polygenic risk scores computed 
using the SNPs in the study showed strong associations with PA risk.

Conclusion: We could assess for the first time some SNPs related with PA in Brazilian populations, a result that could 
be used for genetic screening in risk population such as familial pancreatic cancer, smokers, alcohol users and diabe-
tes patients.

Keywords: Pancreatic cancer, SNP, Brazil, Association study, Genetic susceptibility

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Pancreatic adenocarcinoma (PA), although relative rare, 
is the seventh leading cause of cancer death worldwide 
[1] and is one of the cancers with the poorest prognosis, 
with a five year survival rate close to 10% [2]. A major 
cause for the poor prognosis is the late diagnosis and the 
resistance to conventional treatment [3] and, differently 
from other tumor types, mortality rates for PA are not 
improving [4, 5]. In Brazil, PA was responsible for more 

than 11,000 deaths in 2018, and PA incidence and lethal-
ity are increasing in the country [6, 7].

Environmental and genetic factors contribute to the 
etiology of PA, as the consumption of tobacco is an 
important risk factor [8, 9]. Other risk factors include the 
excessive consumption of alcohol, chronic pancreatitis, 
diabetes, obesity and dietary-endocrine factors [10, 11].

Somatic mutation in pancreatic cells is an essential 
carcinogenesis event and strongly related with genes 
such as KRAS, CDKN2A, TP53, SMAD4. KRAS missense 
mutations include mainly three hot spots: glycine-12 
(G12), glycine-12 (G13), or glutamine-61 (Q61), and 
occurs virtually in all PA cases [7–9]. Individuals with 

Open Access

*Correspondence:  mateus.aoki@fiocruz.br
1 Laboratory for Applied Science and Technology in Health, Carlos Chagas 
Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5166-2897
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-021-00956-5&domain=pdf


Page 2 of 12Aoki et al. BMC Med Genomics          (2021) 14:111 

family history of pancreatic cancer have a higher risk of 
developing the disease and genetic susceptibility may be 
related to germinal mutations in known genes for heredi-
tary cancer including CDKN2A, BRCA2, PALB2, STK11 
and PRSS1[6]. CDKN2A mutation are important in spo-
radic and familial events and it is estimated that this gene 
is altered in more than 90% of PA, with 0.6–3.3% of cases 
described to carry deleterious germline mutations in this 
gene [12, 13]. BRCA2 also represents a hot-spot for rare 
variants/mutation for risk factor in PA[14, 15].

Also single nucleotide polymorphisms (SNPs) have 
been extensively studied for a possible association 
with the risk of PA, for example, polymorphisms in the 
cytochrome P450 enzyme (CYP2A6) have been linked to 
an increased risk of sporadic PA (independent of smok-
ing) [16].

More recently, genome-wide association studies 
(GWAS) have identified common variants associated 
with risk of PA mainly in North American, European and 
Asian populations [17–20]. These studies highlight differ-
ent loci but their frequency and PA risk association in the 
Brazilian population is unknown.

Based on this, the present study evaluated 25 SNPs, 
previously associated with PA risk in GWAS to inves-
tigate the influence of these loci in the Brazilian 
population, including 78 patients with pancreatic ade-
nocarcinoma and 256 controls without cancer history. 
From the analyzed loci, 10 variants were associated with 
PA risk in some of the models analyzed, highlighting the 
importance of these regions.

Methods
Study population
In this prospective and consecutive study, we used 78 
PA patients recruited from 2018 to 2019 with confirma-
tion by histopathology and/or surgery provided from 
Academic Biobank of Research on Cancer from the 
University of São Paulo, located in Centro de Investi-
gação Translacional em Oncologia, Instituto do Câncer 
do Estado de São Paulo (ICESP), São Paulo, Brazil. The 
Biobank protocol was approved by the Local Ethics 
Committee (CEP no. 031/12 and National Ethics Com-
mittee (CONEP no.023/2014). As control we used 256 
subjects with non-pancreatic cancer, healthy blood 
donors or orthopedic patients provided from Hospi-
tal do Trabalhador, Curitiba PR, Brazil, with Local Eth-
ics Committee (CEP CAAE no. 77979417.8.0000.5248 
and 77979417.8.3001.5225) and National Ethics Com-
mittee (CONEP 77979417.8.0000.5248) approval. All 
approvals contemplated demographic and epidemiologi-
cal data collection for both groups, while for PA cases 
clinical data were also collected. For all participants, the 
project was described and informed consent form was 

obtained in writing format. All the participants had 4 mL 
of peripheral blood collected and buffy-coat DNA was 
extracted with QIAmp DNA Blood Mini Kit (QIAGEN) 
as indicated. A quantification and purity of DNA were 
performed using NanoDrop One/OneC Microvolume 
UV Spectrophotometer® (Thermo Scientific).

SNP selection
For this study we initially selected 26 SNPs reported 
to be statistically associated with PA susceptibility 
or survival in previously GWAS studies [18, 21–26] 
to look for in the Brazilian population: rs11655237, 
rs2736098, rs351365, rs3790844, rs1486134, rs16986825, 
rs17688601, rs9581943, rs35226131, rs1561927, 
rs9854771, rs73328514, rs7310409, rs1517037, 
rs2853677, rs2941471, rs6971499, rs10991043, 
rs401681, rs13303010, rs9543325, rs4795218, rs7190458, 
rs10094872, rs684559 and rs353630. The last two SNPs 
were selected from a GWAS aimed at finding loci associ-
ated with survival of PA patients [26].

Genotyping
The SNP genotyping was conducted in the Genomic Epi-
demiology laboratory at the German Cancer Research 
Center (DKFZ), Heidelberg using TaqMan (ABI, Applied 
Biosystems, Foster City, CA) and KASP (KBioscence, 
Hoddesdon, UK) Technologies and TaqMan Genotyp-
ing Master Mix (Applied Bioscience) technology, accord-
ing to the manufacturers’ instructions. All samples were 
included in a 384-well plate. For quality control, dupli-
cates of 5% of the samples were included. Polymerase 
chain reaction plates were read on a ViiA7 real time 
instrument (Applied Biosystems). The ViiA7 RUO Soft-
ware, version 1.2.2 (Applied Biosystems), was used to 
determine genotypes. The genotyping concordance 
between duplicate samples exceeded 99%, and samples 
with a call rate lower than 75% were discarded from the 
statistical analysis. rs35226131 was monomorphic in 
our population, therefore it was not included in further 
analyses.

Statistical analysis
Chi-square tests were used to compare sex, ethnicity, 
smoking and alcohol use, diabetes, pancreatitis between 
cases and controls, while for age we used t-student test, 
all conducted with Prism GraphPad. Hardy–Weinberg 
equilibrium was assessed in control subjects for each 
polymorphism. For each SNP, the more common allele 
in controls was assigned as the reference category. All 
analyses were adjusted for age and sex. Unconditional 
logistic regression methods were used to assess the main 
effects for the 25 selected genetic polymorphisms on PA 
risk, using allelic, co-dominant and dominant inheritance 
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models. We used a p < 0.05 threshold to assess statistically 
significant associations between SNPs and PA risk. Chi-
square and Fisher’s exact test was used to compare allele 
frequency between ethnic ancestry from PA patients, 
controls and reported in database, with statistically sig-
nificant by p < 0.05.

Polygenic risk score
We used the SNPs investigated in this study to assem-
ble a polygenic risk score (PRS). We included all SNPs 
except rs684559 and rs353630, which were originally 
not reported to be associated with PA risk but rather 
with survival. For each SNP the number of alleles asso-
ciated with higher PA risk were counted and added up 
for each study subject, resulting in an unweighted PRS. 
Additionally, we built a weighted PRS by using the ORs 
of the original GWASs. For each SNP in the weighted 
PRS a value of 0 was assigned if 0 risk alleles were pre-
sent, ln(OR) was assigned if 1 risk allele was present, and 
2*ln(OR) if 2 risk alleles were present. Then all the values 
were summed among them for each subject. Only a sub-
set of the study subjects (67 cases and 228 controls) had a 
100% SNP call rate. Therefore, in order to be able to com-
pute comparable score values for all study subjects, we 
also considered “scaled” scores, in which the PRS values 
for each subject were multiplied by the ratio between the 
total number of SNPs and the number of effectively gen-
otyped SNPs for the subject in question. For both PRSs 
(weighted and unweighted) we calculated quintiles based 
on the distribution of values in the controls.

The formulas for the unweighted and weighted scores 
are respectively 

m∑

1

aj and 
m∑

1

aXj , where a = number of 

risk alleles (0,1,2), m = total number of SNPs, j = jth sub-
ject, X = ln(OR).

Additionally, we created also PRSs using only the 9 
SNPs that show association with PA in this population. 
We analyzed the association between the quintiles of 
PRSs and PA risk by logistic regression, adjusting for age 
and sex.

Results
Study population data
Table  1 summarizes the epidemiological data for both 
groups. For the age, PA patients shows a mean age of 
62.46 years old and the median age was 62, while for the 
control group the ages were 56.62 and 57, respectively. 
Age was not statistically different between cases and 
controls. The gender distribution was very similar with 
slightly more females among both cases and controls, 
which was also not statistically different. About ethnic-
ity, collected as a self-reported variable, European ances-
try people were more frequent in both groups (66.7% in 

PA and 81.3% in controls), while African ancestry peo-
ple were more frequent in PA than controls (32% and 
17.5%, respectively), again not statistically different. 
Other epidemiological data such as tobacco and alcohol 
usage, diabetes and personal pancreatitis history are also 
shown in Table 1. Statistical analysis showed a significant 
association between tobacco use (p = 0.002), diabetes 
(p < 0.0001) and pancreatitis history (p < 0.0001) and PA 
risk while alcohol use and familial PA history was not sig-
nificant associated.

When we look for clinical data of the pancreatic can-
cer patients, almost 75% of then had the tumor located at 
pancreas head, while 8% was located in pancreatic body 
and 7% in tail and tail/body. For all 78 pancreatic cancer 
patients, 38 (49%) were submitted to lymph node dissec-
tion, and 24 of then (64%) present positivity with differ-
ent ratio (Fig. 1). For treatment, 33% of the patients were 
treated with FOLFIRINOX, while 12% were submitted to 
surgery and 9% treated with gemcitabine.

For the genotyping analysis, all SNPs were in HWE 
in controls (p > 0.05). Results of association analysis 
between SNPs and PA risk are shown in Table  2. We 
found 8 SNPs that were nominally associated with pan-
creatic cancer risk (p < 0.05) with allelic model analysis 
and one more SNP with both codominant and dominant 

Table 1 Epidemiological data for age, sex, ethnicity distribution, 
tobacco and alcohol use, diabetes, pancreatitis history and 
familial history of pancreatic cancer for both groups

PA cases Controls p value

Mean age (years) 62.46 56.62 0.0842

Median Age (years) 62 57 –

Sex

Male 41% 43% 0.9560

Female 59% 57%

Ethnicity

African ancestry 32% 17.5% 0.1303

European ancestry 66.7% 81.3%

Asian ancestry 1.3% 1.2%

Tobacco

Yes 51.32 32.31 0.0002

No 48.68 67.69

Alcohol

Yes 31.58 32.31 0.7774

No 68.42 67.69

Diabetes

Yes 35.53 9.62 < 0.0001

No 64.47 90.38

Pancreatitis history

Yes 10.53 0.77 < 0.0001

No 89.47 99.23
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model analysis. Of these, the minor allele in 5 SNPs 
showed a protective effect for PA (OR < 1), while for 4 
SNPs the minor allele was associated with increase in 
risk (OR > 1). The most significant findings were related 
to SNPs rs3790844, rs9854771, rs2941471, rs401681, 
rs13303010 and rs9543325. For the first one the minor 
allele represents a protective effect in pancreatic can-
cer patients. In the same way, in the SNP rs9854771 the 
minor allele also represents a protective effect. The third 
SNP where the minor allele represents a protective effect 
is rs2941471. In a different way, at the SNP rs401681 the 
minor allele represents a risk factor for pancreatic cancer. 
At the SNP rs13303010 the minor allele also represents 
a risk factor for pancreatic cancer, again showed in SNP 
rs9543325. The complete results for analysis of the SNPs 
are shown in Table 2.

In Table  3 we demonstrate MAF for all nine statisti-
cally different SNPs obtained in dbSNP (https:// www. 
ncbi. nlm. nih. gov/ SNP/) database for African, European 
and Asian population. In the same table we demonstrate 
MAF for both PA patients and controls in the Brazilian 
population we studied, divided by ethnic ancestry.

All PRSs were associated with an increase in risk of 
PA, as expected. When we computed the association 
between the PRSs and PA risk considering only 67 cases 
and 228 controls with a call rate of 100%, we observed 
an OR = 6.83, 95% CI 2.76–16.89, p = 3.26 ×  10–5 for the 

highest vs. lowest quintile of the unweighted score and 
OR = 16.77, 95% CI 3.80–74.07, p = 1.99 ×  10–4 for the 
highest vs. lowest quintile of the weighted score. Results 
were similar when we considered the whole dataset 
including 78 cases and 256 controls and “scaled” PRSs 
(Table 4), as well as when we assembled PRSs with only 
the 9 SNPs showing association with PA risk in this pop-
ulation (data not shown).

Discussion
The genetic PA risk factors in SNP context inherent 
to the Brazilian population have not been studied so 
far. Here we observed 9 SNPs associated with PA risk 
(p < 0.05) with the most significantly associated being 
rs3790844, rs9854771, rs2941471, rs401681, rs13303010 
and rs9543325. A very important aspect in our results for 
these SNPs is that for all of them the OR is in the same 
direction of the original GWAS work.

The first SNP is located at the first intron of NR5A2, 
with MAF in global population of 25%, and we observed 
a similar value of 27% in our control group, while in 
PA patients this value was 18%, returning an OR that 
represents a protective effect of this allele for PA. In a 
meta-analysis by Chen et  al., this SNP had a protective 
effect in Caucasians, although not in Asian populations 
[27]. However, another study with 360 pancreatic can-
cer patients and 400 controls suggested that this SNP is 

Fig. 1 Clinical data for lymph node dissection and positivity in PA patients

https://www.ncbi.nlm.nih.gov/SNP/
https://www.ncbi.nlm.nih.gov/SNP/
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Table 3 MAF frequency for ethnic ancestry obtained in dbSNP database, PA patients and controls

For dbSNP Database values indicated are MAF followed by sample number. For Brazilian PA and controls, MAF are represented according to self-reported ethnic 
ancestry followed by sample number
* Statistical difference (p < 0.05) between allele frequency in Brazilian PA patients and controls related to the same ancestry
** Statistical difference (p < 0.05) between allele frequency in Brazilian controls and dbSNP Database related to the same ancestry

MAF frequency

dbSNP database Brazilian PA Brazilian controls

SNP African European Asian African (30) European (62) Asian (2) African (45) European (206) Asian (4)

rs3790844 0.13 (6740) 0.23 (158,742) 0.66 (414) 0.23 0.21 1.0 0.26** 0.26 0.88

rs17688601 0.07 (2012) 0.26 (119,368) 0.05 (280) 0.22 0.18 0.00 0.27** 0.25 0.00

rs9854771 0.28 (3086) 0.36 (93,526) 0.14 (238) 0.23 0.27 0.00 0.47*/** 0.38 0.00

rs7310409 0.32 (6064) 0.40 (153,574) 0.38 (370) 0.48 0.47 0.5 0.34 0.42 0.25

rs2941471 0.13 (82) 0.42 (2072) 0.50 (4) 0.65 0.67 0.5 0.41*/** 0.44* 0.375

rs401681 NA NA NA 0.42 0.5 0.5 0.45 0.45 0.25

rs13303010 0.64 (3306) 0.10 (117,068) 0.27 (186) 0.35 0.33 0.25 0.35** 0.19* 0.25

rs9543325 0.85 (5580) 0.37 (153,016) 0.46 (370) 0.45 0.49 0.25 0.61*/** 0.40 0.5

rs4795218 0.06 (82) 0.21 (2072) 0.5 (4) 0.13 0.15 0.00 0.14 0.22 0.2

Table 4 Associations between PRSs and PA risk

M, major allele; m, minor allele for each SNP; MAF, minor allele frequency
a OR: odds ratio; CI: confidence interval; all analyses were adjusted for age and sex
b The unit for the analysis with the continuous variable was the increment of one quintile

Type of score Quintiles ORa 95%CIa p value

Unweighted, subjects with 100% call rate 1 1.00 – Ref

2 0.44 0.09–2.25 0.327

3 2.61 0.97–7.01 0.057

4 3.29 1.15–9.37 0.026

5 6.83 2.76–16.89 3.26 ×  10–5

Continuousb 1.73 1.40–2.15 4.30 ×  10–7

Unweighted scaled, all subjects 1 1.00 – Ref

2 0.65 0.16–2.60 0.539

3 2.22 0.86–5.73 0.097

4 4.03 1.57–10.37 0.004

5 6.70 2.86–15.69 1.21 ×  10–5

Continuousb 1.72 1.41–2.10 1.02 ×  10–7

Weighted, subjects with 100% call rate 1 1.00 – Ref

2 2.15 0.39–11.75 0.376

3 3.51 0.71–17.29 0.122

4 4.90 1.02–23.56 0.047

5 16.77 3.80–74.07 1.99 ×  10–4

Continuousb 2.05 1.58–2.65 4.98 ×  10–8

Weighted scaled, all subjects 1 1.00 – Ref

2 1.37 0.41–4.62 0.613

3 2.07 0.67–6.44 0.209

4 3.22 1.08–9.60 0.036

5 8.13 2.95–22.43 5.12 ×  10–5

Continuousb 1.76 1.42–2.17 2.28 ×  10–7
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related with pancreatic cancer risk in Japanese subjects 
[27]. A large study using 3851 pancreatic cancer cases and 
3934 controls participants from the previously conducted 
GWAS in the Pancreatic Cancer Cohort Consortium and 
the Pancreatic Cancer Case Control Consortium (PanC4) 
[17, 28] showed this SNP as the most significant risk fac-
tor for pancreatic cancer, with an OR of 0.77, again repre-
senting a protective effect of minor allele [29].

The SNP rs9854771 has a MAF in global population of 
37%. In our control group we observed a similar MAF of 
39%, while in PA cases it was 25%. This SNP is located 
near TP63 gene, that is a p53 homologue and impli-
cated in tumorigenesis and metastasis [30], and previous 
GWAS studies have demonstrated significant evidence of 
association for SNPs in TP63 in lung cancer and bladder 
cancer [31–35]. The first description of its role in pan-
creatic cancer was revealed by Childs[25] with an OR of 
0.89 and a subsequent study [36] returned a similar result 
with an OR 0.76.

A third SNP where the minor allele is associated 
with a reduction in PA risk is rs2941471 and its MAF 
in global population is 41%. Here, the control group 
show a MAF of 44%, while in the PA cases it is 35%. 
This SNP is located is an intronic region of HNF4G 
gene, at chromosome 8q21.11, which encodes hepato-
cyte nuclear factor 4 gamma, a transcription factor of 
the nuclear receptor superfamily whose expression level 
was increased in five of six clinical human hepatocellu-
lar carcinoma samples[37]. When related with pancreas, 
mice lacking HNF4G have higher numbers of pancre-
atic β-cells, increased glucose-induced insulin secretion 
and improved glucose tolerance [38]. A research show-
ing GWAS pathways associated with pancreatic cancer 
susceptibility factors proposed a link between HNF4G 
inherited variation for pancreatic development [29]. A 
very consistent research with 2737 pancreatic cancer 
patients and 4752 controls also yielded this SNP as a 
genome-wide significant locus (OR = 0.87) [21].

For SNP rs9543325, the global MAF is 38%, similar the 
frequency of 44% found in our control Brazilian popu-
lation. In PA, this value increased to 56% and was asso-
ciated with increased risk for pancreatic cancer in all 
models analyzed. This association was previously showed 
in Europeans [28, 39], including Jewish and non-Jewish 
[40], and in the Taiwanese population [41]. This inter-
genic SNP maps at 13q22.1 locus, and has been showed 
to be strongly associated with pancreatic cancer [1, 3, 
36, 40–42]. The locus 13q22.1 has other SNPs associ-
ated previously with PA, mainly in European and Chinese 
populations, some studies suggest a potential long-range 
enhancer activity but mechanisms are still unknown [43].

The SNP rs13303010 has a global population MAF of 
12%. In our control group this value was increased to 

22% and, among PA patients this frequency increased to 
37% and was associated with high cancer risk. The minor 
allele was also associated with increased PA risk in Euro-
pean [21] and Japanese populations [44]. In European 
populations, it was highlighted in PA susceptibility only 
in the largest pancreatic cancer GWAS to date, including 
11,537 patients and 17,107 controls from the Pancreatic 
Cancer Cohort Consortium (PanScan I + II, III), Pan-
creatic Cancer Case–Control Consortium (PanC4) and 
PANcreatic Disease ReseArch (PANDoRA) consortium 
[21]. In the Japanese population, 664 pancreatic cancer 
cases and 664 controls were analyzed and this SNP was 
highlighted as PA risk factor [44]. This SNP is mapped at 
1p36.33, in the first intron of the NOC2L gene and prob-
ably influences the host expression. The presence of the 
risk-increasing allele was associated with higher NOC2L 
expression [21] and this gene encodes the NOC2 like 
nucleolar associated transcriptional repressor, a protein 
that represents a novel histone deacetylases-independent 
inhibitor of histone acetyltransferase [45]. NOC2-like 
protein has also been associated with the inhibition of 
p53 and p63 tumor suppressor [46, 47], notably associ-
ated with cancer.

The rs401681 is a SNP located in the intron of 
CLPTM1L and 27 kb from the TERT gene, being associ-
ated with many tumor types [48, 49]. The global popu-
lation MAF is 43% and, in the Brazilian population, we 
found a similar frequency of 45% in the control group. In 
the present study, the presence of the minor allele rep-
resents a risk factor for pancreatic cancer. This high risk 
for PA was also shown in European [17, 39, 50] and Asian 
populations [51, 52]. It is suggested that rs401681 confers 
cancer susceptibility by regulating CLPTM1L and TERT 
expression [53], both genes implicated in carcinogenesis. 
CLPTM1L gene may be associated in apoptosis processes 
and high expressed in cisplatin-resistant cell lines [54], 
TERT gene produce catalytic subunit of telomerase, asso-
ciated with telomere maintaining and usually active in 
cancer cells [55]. An interesting aspect in rs401681 is that 
the minor allele is usually associated with increased risk 
in pancreatic cancer and in melanoma [56] whereas the 
C allele was associated with increased risk of other tumor 
types, such as lung, prostate and bladder [48].

Some other SNPs showed statistically significant asso-
ciations with PA risk in this work. The minor allele of 
rs17688601, in SUGCT  gene, and rs4795218, in HNF1B 
gene, were associated with reduced risk in the European 
population [21, 25]. In the Brazilian population we found 
them also associated with protection, but only in allelic 
model. On the other hand, another SNP previously asso-
ciated SNP in Europeans, the rs7310409 in HNF1A, was 
associated with risk in dominant and co-dominant mod-
els, but not in allelic analysis (p = 0.065). The other SNPs 
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analyzed were not associated with PA in the Brazilian 
population in the present study.

Ethnic differences in pancreatic cancer incidence have 
been reported, especially regarding higher incidence in 
African in relation with European ancestries [57–59]. 
Some studies suggested that this higher pancreatic cancer 
incidence in African ancestry may be partially explained 
by the greater prevalence of smoking, diabetes, and obe-
sity among these group with no genetic investigation [58, 
60]. A recent report demonstrated that family history of 
pancreatic cancer, diabetes, body mass index ≥ 30 kg/m2, 
current smoking, and red meat intake were associated 
with pancreatic cancer. More than that, after adjustment 
for these risk factors, Native Hawaiians, Japanese Ameri-
cans, and African Americans but not Latino Americans 
had a higher risk of pancreatic cancer compared to Euro-
pean Americans, showing the genetic influence in pan-
creatic cancer incidence [61]. Regarding ethnic ancestry 
on this report, Brazil represents a heterogeneous country 
with European, African and Asian descendants. Interest-
ingly, statistically significant difference between MAF 
in PA patients and controls in Brazilian population was 
observed just in 3 SNPs in African and 2 in European 
ancestry. In this context, SNPs rs9854771 and rs9543325 
were observed as a higher MAF in African ancestry Bra-
zilian controls than PA African Brazilian patients. On 
the other hand, SNP rs2941471 represent a lower MAF 
in Brazilian controls than PA patients for both African 
and European ancestry, the same trend observed for SNP 
rs13303010 in European ancestry. But when MAF fre-
quency was compared between Brazilian controls and 
dbSNP data, six SNPs were statistically significantly dif-
ferent, but all in African ancestry. These data demon-
strate that self-reported African ancestry from Brazilian 
controls presents a different genetic SNP profile when 
compared to African population, probably due to ethnic 
miscegenation.

PRSs computed with the SNPs we included in the study 
show a strong association with PA risk when comparing 
the 20% of the population with highest and lowest PRS 
values. The small sample size results in very wide confi-
dence intervals of our risk estimates, but the results are in 
line with a those of a recent study in a much larger popu-
lation of European origin [62]. It is expected that smaller 
groups at the extremes of the PRS distribution (e.g. the 
5% or 1% with highest/lowest PRS values) will show even 
more marked differences in risk.

Conclusion
The main limitation of this study is small sample size. 
However, as our target SNPs were previously reported 
as susceptibility loci for PA in large GWAS studies, 
mainly conducted with European population, this small 

sample size could establish for the first time SNPs as 
genetic risk factor for PA in Brazil. Despite a consid-
erable percentage of Amerindian, African and Asian 
descent in the Brazilian population, the largest ethnic 
component is European ancestry, showing that genetic 
risk factors related to Europeans are at least partially 
reflected in the Brazilian population. This was par-
tially demonstrated by MAF frequency from European 
ancestry in Brazilian controls and dbSNP database, 
where no difference was observed. In contrary, Brazil-
ian controls from African ancestry showed MAF sta-
tistically significantly different in six out of nine SNPs. 
Associations of several SNPs reported to affect PA risk 
in populations of European descent were successfully 
replicated in our study. Given the limitation of sample 
size it is not possible to assess whether the SNPs that 
did not replicate in this work are relevant or not in the 
Brazilian population. However, it is worth nothing that 
even for the SNPs that do not reach p < 0.05, the direc-
tion of the associations (i.e. whether the minor allele is 
associated with increase or decrease in risk) was con-
sistent with the GWAS data. Our group is recruiting 
more PA patients and with this data we will have more 
power in future analyses.

These data can be used for stratification of PA risk, 
especially in groups that are already known to be at 
increased risk, such as people with positive family history 
of pancreatic cancer, and in subjects with high tobacco 
and alcohol use. PRS can be particularly useful in this 
context, as shown by our results. More important, this is 
the first genetic susceptibility study for pancreatic adeno-
carcinoma in Brazilian population.
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