Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88
https://doi.org/10.1186/512920-020-0723-0 BMC Medical Genomics

RESEARCH Open Access

Privacy-preserving semi-parallel logistic ®
regression training with fully homomorphic
encryption

Sergiu Carpov'?, Nicolas Gama?, Mariya Georgieva®>" and Juan Ramon Troncoso-Pastoriza

Check for
updates

3

From 7th iDASH Privacy and Security Workshop 2018
San Diego, CA, USA. 15 October 2018

Abstract

Background: Privacy-preserving computations on genomic data, and more generally on medical data, is a critical
path technology for innovative, life-saving research to positively and equally impact the global population. It enables
medical research algorithms to be securely deployed in the cloud because operations on encrypted genomic
databases are conducted without revealing any individual genomes. Methods for secure computation have shown
significant performance improvements over the last several years. However, it is still challenging to apply them on
large biomedical datasets.

Methods: The HE Track of iDash 2018 competition focused on solving an important problem in practical machine
learning scenarios, where a data analyst that has trained a regression model (both linear and logistic) with a certain set
of features, attempts to find all features in an encrypted database that will improve the quality of the model. Our
solution is based on the hybrid framework Chimera that allows for switching between different families of fully
homomorphic schemes, namely TFHE and HEAAN.

Results: Our solution is one of the finalist of Track 2 of iDash 2018 competition. Among the submitted solutions, ours
is the only bootstrapped approach that can be applied for different sets of parameters without re-encrypting the
genomic database, making it practical for real-world applications.

Conclusions: This is the first step towards the more general feature selection problem across large encrypted
databases.

Keywords: Fully homomorphic encryption, Logistic regression, Genome privacy, Genome-wide association study

*Correspondence: mariya@inpher.io

’Inpher, Innovation Park A, CH-1015 Lausanne, Switzerland
3EPFL, Route Cantonal, CH-1015 Lausanne, Switzerland

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-0723-0&domain=pdf
mailto: mariya@inpher.io
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88

Background

The advent of next generation sequencing and the pro-
gressive reduction of costs in sequencing processes result
in an increasing amount of available genomic data, which
is essential for better modeling the relation between geno-
typic traits, predisposition to diseases, response to treat-
ments, effect of drugs, and, in general, for achieving more
accurate models that enable personalized and precision
medicine. While machine learning computations on large
scale genomic data present obvious outsourcing needs
and can benefit from Cloud services, the high sensitivity of
genomic data and the impossibility of properly anonymiz-
ing it [1, 2] call for effective protection methods that
enable accurate and efficient computation without leaking
information about the individual genomic sequences to
untrusted cloud service providers. In order to become fea-
sible and usable for the purpose of personalized medicine,
these protection mechanisms must optimize the trade-off
between the accuracy of the results, the efficiency of the
computation, and the security level.

In this context, the iDASH Privacy and Security Work-
shop has joined together experts on privacy enhancing
techniques, applied cryptography and secure computation
to design and implement secure and privacy-preserving
solutions to fundamental genomics and bioinformatics
problems. iDASH has pushed the state of the art on prac-
tical secure computation by organizing a world-wide com-
petition to evaluate the most advanced techniques in the
field. In particular, in its 2017 and 2018 editions, iDASH
featured a track focused on training logistic regression
models on encrypted genomic datasets, by relying on
Homomorphic Encryption (HE), which enables certain
operations (additions and/or multiplications) to be per-
formed on encrypted ciphertexts without the need to
decrypt them first.

Linear and logistic regressions are one of the most com-
mon and versatile machine learning tools used in genomic
studies. These are the core of Genome Wide-Association
Studies (GWAS), and its privacy-preserving implementa-
tion represents a first step towards effective and efficient
outsourced machine learning on genomic data.

During the last years, there have been numerous
approaches to implement these operations securely on
medical data; these involve, on the one hand, (a) dis-
tributed settings where two or more parties collectively
compute a function such as a linear or logistic regres-
sion, by applying technologies such as garbled circuits
[3], in settings limited to two parties, or secret shar-
ing and multiparty computation [4], through interactive
protocols; these solutions require non-colluding comput-
ing parties and heavily rely on communication between
them; on the other hand, (b) outsourced scenarios move
the bulk of the computation to an untrusted third party
in a non-interactive setting, either relying on trusted

Page 2 of 10

hardware such as Intel SGX [5-8], therefore requiring
some degree of trust on the hardware manufacturer, or
homomorphic encryption [9-14]. The latter does not
need any assumption on the hardware, as it is solely based
on the cryptographic guarantees of the used cryptosys-
tems, so it can be seen as the most promising approach for
outsourcing medical computations.

In 2016, Aono et al. [9] proposed a solution for train-
ing a logistic regression based on additive homomor-
phic encryption, which requires the client to precompute
some intermediate values in order to account for the
limited range of operations (additions) supported under
encryption. Afterwards, most of the finalists of the HE
track in iDASH 2017 leveraged input packing and some-
what homomorphic cryptosystems (SHE), enabling both
encrypted additions and a limited number of encrypted
products, to implement the basic logistic regression block;
i.e., a Gradient descent algorithm with an approximated
Sigmoid function on an encrypted matrix of input data;
the sought output is the vector of regression coefficients.
Bonte et al. [12] implemented one iteration of a sim-
plified fixed Hessian method with the Fan-Vercauteren
(FV) SHE cryptosystem; Kim et al. [11] employed a Nes-
terov’s accelerated Gradient descent algorithm with the
HEAAN SHE cryptosystem, which supports homomorphic
rescaling and approximate arithmetic; Chen et al. [13]
implemented 1-bit Gradient descent with a modified FV
cryptosystem featuring rescaling and bootstrapping, but
the used bootstrapping introduces a notable performance
penalty. In 2018, in parallel with our work, Crawford
et al. [10] introduced a fully homomorphic encryption
(FHE)-based method for the same problem that relies
on the BGV cryptosystem, and requires to solve a lin-
ear system of equations in the client after decryption;
despite the many optimizations used in the work, the
bootstrapping takes 75% of the computation time, and
this is still notably higher than the previous SHE-based
solutions.

The HE track in iDASH 2018 has evolved in complexity,
targeting a more advanced semi-parallel logistic regres-
sion algorithm that outputs the p-values of the trained
regression estimates. In this paper, we propose a solution
to semi-parallel logistic regression on encrypted genomic
data based on fully homomorphic encryption, that lever-
ages on a novel framework, Chimera [15], to (a) seam-
lessly switch between different Ring-LWE-based cipher-
text forms, therefore combining the advantages of each of
the existing Ring-LWE-based cryptosystems to perform
each of the steps of the process in a more efficient way, and
(b) is generic, in such a way that it can cope with arbitrary
input sizes (number of covariates, number of records, and
number of genomic variants), and (c) features two con-
figurations depending on the sought trade-off between
accuracy and confidentiality.

Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88

Methods

Notation We denote by T the real Torus R/Z, the
set of real numbers modulo 1. We denote by Zy[X]=
Z[X] /(XN41) the ring of polynomials with integer coeffi-
cients modulo XN 41. Respectively, Ry [X] = R[X] /(XN +
1) is the ring of real polynomials modulo XN + 1. We
denote the Zy[X]-module Tn[X] = Ry[X] /Zn[X] (a.k.a
R[X]modX™ + 1 mod 1). We denote also By[X] as the
subset of Zx[X] with binary coefficients.

We provide now a brief description of the two Ring-
LWE homomorphic schemes used in this work, namely
TFHE [16, 17] and HEAAN [18] (a.k.a CKKS), both enabling
error-tolerant decryption functions, and hence approx-
imated arithmetic, and we present then the Chimera
framework [15] unifying both.

TFHE (Torus Fully Homomorphic Encryption) [16]
defines messages and ciphertexts over the torus modulo 1
(T = R/Z), and keeps track of the noise standard devia-
tion @ <« 1, a dynamic parameter that changes after each
operation. Therefore, plaintexts have ¢ = —log, («) frac-
tional bits of precision. TFHE can represent three plain-
text spaces, with various morphisms or actions to switch
between them:

e TLWE encodes individual (continuous) messages over
the torus T;

e TRLWE encodes (continuous) messages over
R[X] mod (XN + 1) mod 1, which can be viewed as
the packing of N individual coefficients;

e TRGSW encodes integer polynomials in Zy [X] with
bounded norm.

We describe below the main algorithms that are used for
the TFHE with TRLWE encryption scheme, considering a
security parameter A = 128, and a minimal noise standard
deviation «; these parameters implicitly define a minimal
key size N ~ max(256, 32«) (see Section 6 of [17]).

KeyGen/Phase: A uniformly random binary key s €
B[X], this implicitly defines the secret phase func-
tion ¢ : Ty[X]?> — TnX], (@, b) — (b — sa).

Encrypt (i, s, a): Pick a uniformly random a € Ty[X],
and a small Gaussian error e from Tx[X] with stan-
dard deviation «, and return (a, s.a + i + e).

DecryptApprox(c,s): Return ¢g(c), which is close to the
actual message. The error (the distance between the
plaintext and the output of DecryptApprox(c, s)) has
the same order of magnitude as «.

Decrypt(c, s, M): Round ¢s(c) to the nearest point in M.

Arithmetic operations supported by TFHE are the addi-
tion and the multiplication of plaintext messages. We
differentiate 2 types of multiplication: (i) internal — multi-
ply 2 TRLWE samples and (ii) external — multiply a TRGSW
and a TRLWE sample. The external multiplication is faster

Page 30f 10

and the noise increase is smaller. The public key switch
operation allows to evaluate a linear function with integer
coefficients over TLWE or TRLWE input samples. A pri-
vate key switch allows to hide the integer coefficients. The
sample extract operation allows to obtain a TLWE sample
that encodes the i-th polynomial coefficient of an input
TRLWE sample with at most the same noise variance or
amplitude.

Bootstrapping traditionally evaluates the rounding
function (homomorphic decryption) on the encrypted
plaintext, in order to refresh a noisy ciphertext c. The gate
bootstrapping in TFHE can refresh a noisy TLWE ciphertext
¢, but it can be more general, by also changing the plaintext
space; i.e., the gate bootstrapping algorithm allows to eval-
uate any pointwise defined negacyclic functionf : T — T
to the phase of a TLWE sample.

Finally, it is worth noting that any TLWE, TRLWE, TRGSW
ciphertext, bootstrapping key or keyswitching key given at
a given precision, can always be rounded and truncated to
match the current (lower) precision o. Whenever « varies
(e.g. increases after each multiplication, or decreases after
a bootstrapping), we always use the last keyswitching and
bootstrapping operation to switch to a new encryption
key whose entropy is as close as possible to the lower
bound N ~ max (256, 32«) from the security estimates.

HEAAN [18] also supports approximate arithmetic; its
message space is the set of small-norm polynomials with
coefficients in R;. The least significant bits of a message
w are considered as noise, and only its most significant
bits are required to have a correct decryption. A HEAAN
ciphertext is a Ring-LWE tuple (4, b) € R?], where 4 is uni-
formly random in R, and b is close toa - s + 11, up to a
Gaussian error of small amplitude. Plaintexts and cipher-
texts share the same space, and homomorphic multipli-
cation of two ciphertexts involves a relinearization with
a keyswitch operation, followed by a modulus-rescaling
operation that rescales both plaintext and ciphertext; this
helps managing not only the noise growth but also the
plaintext growth, keeping a constant upper bound on the
message.

Chimera: unifying HEAAN and TFHE

As shown in [15], both HEAAN and TFHE use the same
ciphertext space (up to rescaling by a factor g), and the
TFHE notion of phase can be extended to HEAAN. The
Chimera framework interprets the plaintext spaces as
subsets of the same module Ty[X], and uses the dis-
tance function on the torus to quantify the transformation
error; then, both schemes use the same ciphertext space
Tx[X]?, the same key space By[X] and the same phase
function ¢s(a, b) = b—s-a. In this framework, decryption
finds two definitions: the first one, common to HEAAN and
TFHE, considers that the phase is always close (within dis-
tance < «) to the actual message and is a good enough

Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88

approximation thereof. Then, accumulated errors are not
corrected by the cryptosystem (but rather by the numeri-
cal stability of the homomorphically evaluated algorithm).
The second decryption, unique to TFHE, restricts the valid
message space to a discrete subset of Ty [X] with a pack-
ing radius > «. Then, the exact message is recovered by
rounding the phase to the closest valid message.

In this unified plaintext space Ty[X], it is important to
preserve the notion of user-side slots, which corresponds
to the way the end-user actually employs the schemes.
Following HEAAN formulation, homomorphic operations
are presented as N/2 SIMD (Single Instruction Multiple
Data) slots containing complex numbers in fixed-point
representation with the same public exponent and the
same precision. By interpolating the complex roots of
XN 4+ 1, the native plaintext can be mapped to small
polynomials of Txn[X]. Hence, it is possible to repre-
sent (pack) a plaintext message either with slot packing
(enabling component-wise products) or with coefficient
packing (enabling convolution products), and both repre-
sentations are related to each-other by a homomorphic
linear transform.

Finally, Chimera also preserves the notion of levels com-
mon to TFHE and HEAAN: the level L > 0 bounds the ratio
between the ciphertext modulus and the native plain-
text modulus, and therefore the number of homomorphic
operations supported by the ciphertext. Each homomor-
phic product reduces the level of the resulting ciphertext;
when the level 0 is reached, the ciphertext must be boot-
strapped to continue operating on it.

Semi-parallel logistic regression and our simplification

The HE track in iDASH 2018 consists in executing a semi-
parallel logistic regression [19] with encrypted phenotypic
and genotypic features; the former are represented as a
covariate matrix X (k + 1 covariates x n patients), and the
latter as a binary SNP matrix S (n patients xm SNPs).
The original method in [19] is sketched in Algorithm 1;
it comprises two parts: first, it builds a logistic regres-
sion model using only phenotype features (i.e. covari-
ates matrix X) through an iterative process (i.e. gradient
descent); afterwards, it updates this model with geno-
type features (matrix S). The outputs of the algorithm
are the p-values of the estimates after training the model.
The obtained acceleration factor (compared to doing indi-
vidual logistic regressions) comes mainly from the fact
that the second part is performed once and includes all
genotype features S.

In this work we have further simplified the approach
proposed in [19], resulting in Algorithm 2. First, let E be
the subspan generated by the columns of X' = JWX,
7 be the vector ~/Wz, z* be the vector v Wz*, S’ be
the matrix ~/WS, and S* be the matrix ~/WS*. With

Page 4 of 10

this change of variable, Line 7 and 9 result: z* = 7/ —
X/(X/TX/)le/TZ/ S/* — S/ _X/(X/TX/)flx/Ts/‘

In other words, z”* and z™* are the orthogonal projection
of 7 and S’ over EL. Note that by definition, 2’ = X'8 +
A/ W (y— p). In this sum, the first operand is in E by con-
struction, and we verify that the second operand is in EL.
Indeed, the dot product X'7 ./ W_l(y —p)=X@y—p)is
the gradient of the cost function of the logistic regression,
and is null at the point of convergence. Therefore, the pro-

jection z'* is equal to +/ w! (y — p), and the numerator of
the stat (line 11) simplifies to the FHE-friendly expression:
Z*TWS* — Z/*TS/* — (y—p)T.S

For the denominator of the stat, we note that for all

2
j €[1,m], s}‘z = S;‘TWS]’." = ‘S]’* where S;* is the
j-th column of S§™*. By definition of the orthogonal projec-
2

tion, we therefore have s;‘z = ‘ S; — HnE(S]/.)
7g(S)) is the orthogonal projection of S} on E. Namely, if

2
where

2
we call 4 = X'TS' = XTWS, then |7£(5)| = ATG14;.
Therefore, once we have precomputed A and G~1, line
10 can be simplified as: s*> = colsums (W - (S® S)) —
colsums (A 0 G™ 1A) , and any other intermediate variable
that does not appear in this formula can be removed from
the pseudocode. As a bonus, for binary valued matrices S,
(S©S) is equal to S, and due to the geometric interpre-
tation of the logistic regression and the projections, the
input matrix X can be replaced by any basis of the same
vector span without affecting the final result.

The algorithm must also be transformed to use fixed-
point data type instead of floating-point, due to the homo-
morphic encryption libraries we use. Hence, input data
must be carefully scaled so that no overflow happens dur-
ing the execution. We have performed simulations with
the optimized algorithm in order to determine the ranges
of intermediary variables. Table 1 depicts the obtained
simulation results. These ranges are used for scaling input
data. The inverse sigmoid function applied on the prob-
ability vector p gives us an input range —1.6...1.8 of
the sigmoid function; this input corresponds to elements
of vector X - B, This range is extended to —4...4
(Omin - - - Omax) to allow a margin of error. By mapping
this range to the plaintext space of Torus based homo-
morphic libraries, the scaling factor % of X . Biters ig
obtained. Note that only the —% . % part of Torus is used
in our computations because of the negacyclic property
of functions evaluated by the TFHE bootstrapping proce-
dure. Propagating the range of X - g backward and
forward in Algorithm 2 the scaling factors for other vari-
ables (including input data) are obtained. An automatic
tool, or semi-automatic, for computing fixed-point range
and scale for algorithm variables together with respective

Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88

Page 5 0f 10

Algorithm 1 Algorithm from [19]

—_

. Bliters) « LOGISTIC REGRESSION(X,)
. p (_U(Xﬂ(iters))
32 W « diag(p * (1 — p))
P y-p
(1—p) T r—p
G XT.w.X
6 U2 <~ G 1. XT.w.z

N

. Z < In

=

[l

722" <—z2—X- U2

g Ud <~ G 1.XT.w.s

9. §* <~ S—X-U4

10: 8*2 <« colsums (W - (§* © §%))
11: stat < (z*T W S*) /52

12: p-value < 2 - p-Norm (— [stat|)

mapping to encryption scheme parameters would have
been very helpful. We leave this research and development
issue for a future work.

FHE algorithm

The proposed solution is split into 3 sequentially executed
parts, which are implemented using different homomor-
phic encryption techniques and libraries. As shown in
Algorithm 2, our solution features two options, depend-
ing on the sought trade-off between confidentiality and
accuracy. The first solution outputs both numerator and
denominator of the stats, while the second solution out-
puts only the quotient, which is equivalent to the p-value.
We explain in detail each part and the encryptions of input
data in the next sub-sections.

Step1 - logistic regression

Algorithm 3 illustrates a more explicit version of the
implemented logistic regression algorithm. We have used
the TFHE library [16] to homomorphically execute this
algorithm.

Input data encryption. Input covariates matrix X and

and HE scheme types. Each column of the covariate
matrix is encrypted in a TRGSW ciphertext. A total of k
ciphertexts are used for matrix X. The outcome vector
is encrypted in a single TRLWE ciphertext. Besides these
encryptions we use additional ones used by the boot-
strapping procedure. For the sake of simplicity we omit
input data scaling factors, mentioned in previous subsec-
tion, from our discourse. In what follows we describe the
encoding we use:

® j-th column of matrix X is coefficient packed into a
polynomial Px ;(Z) = ;‘;01 X;j - Z" and encrypted in
a TRGSW ciphertext (L1 and L2)

e vector y (scaled by step «) is coefficient packed in
reverse order into a polynomial
Py2Z)=a- Z::ol Yn—i—1 - Z' and encrypted in a L2
TRLWE ciphertext

® test polynomials for gate bootstrapping encode
sigmoid function (defined over the range [0min, Omax]

and discretized on d = [N /k] — 1 levels) multiplied
by matrix X rows and encrypted as L2 TRLWE

i)) ciphertexts:
outcome vector y are encrypted using different encoding
Algorithm 2 Optimized plaintext algorithm
1. BUrS) « LOGISTIC REGRESSION(X,Y) > Logistic regression
2 p <« U(Xﬁ(iters))
32" «— (y— p)T.S > Numerator
4. W <« diag(p * (1 — p))
5 G« XTwx~ % x Id (assumed that X orthogonal)
6 A< XT.w.s
7. §*2 = colsums(W - (S ® S)) — colsums(4 © G~14) > Denominator
(A[0] %/n — 4 * colsums(A © A))
Solution 1 Solution 2

Post-process
*

9. stat; = z—"z,‘v’i el 1, m]
¥4

10: p-value; = p-Norm(stat;), Vi €[1, m]

8 1; =[2-In(]z*;]) — In(|s*%;])], Vi €[1, m]

Post-process
11: p-value; = p-Norm(— exp(r;/2)), Vi €[1, m]

Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88

Table 1 Data ranges of intermediary variables in the plaintext

Algorithm 2

Variable avg stdev min max

p 0.440816 0.0975715 0.176397 0.853487
w 0.236977 0.0201871 0.125047 0.25

z* -3.33092 7.36068 -30.9426 31.2008
G 0.0577846 0.0953495 -0.011997 0.236977
A 0.0621965 0.301255 -0.317312 2236

52 244243 4.11085 0.111961 14.5044
I 0.200039 1.84459 -13.7207 436158
p-value 0310218 0.24083 0 0.999163

The average, standard deviation, minimum and maximum statistics are shown

- TP(Z) =Y 4 ga-

k—1
o (Umin + % (Omax — Umin)) Z,‘:o Xij
Zak+j—N/2

TFHE implementation. Subsequently we explain how
each operation in Algorithm 3 is performed using the
TFHE library.

Line 2. Firstly, L2 encryptions of matrix X column (Px ;)
and outcome vector (Py) are multiplied together (external
product). This results in an encryption of Z;:ol o-Xij-yi-
7"~ 4 ... The (n — 1) -th coefficient of this polynomial

Algorithm 3 Logistic regression — homomorphic imple-
mentation
Require: X — covariates matrix, y — outcome vector
Require: « — step, iters — number of iterations
Ensure: X - gliters)
1: forj=0...k—1do > Compute initial beta
a- X' (y—o()anda-X -y

2: € < Z:lz_ol o 'Xi,j Vi

3 B e e Xy (- 3)

4: end for

5. for t = 1 to iters do

6: fori=0...n—1do su=X-8

7: U <]k=_01 Xij - ﬂj(til)

8: end for

9: if t = iters then

10: returnuy;, i=0...n—1 > coefficients of
result X - B9 = (u);_p1

11: end if

12: forj=0...k—1do s>a-XT o)

13: Aj < Z?:_OI o -X,'J' e (ul)

14: ,Bj(t) <« IBj(til) +e — A

15: end for

16: end for

Page 6 of 10

is the scalar value e;. The coefficient extraction procedure
is used to obtain a L2 TLWE encryption of e;.

Line 3. This operation is similar to the previous one
except that: (i) beforehand plaintext o -), % - Z! (note that
% = 0(0)) is subtracted from the encryption of P, and (ii)
a key-switching procedure is used to obtain a L1 TRLWE
encrypting ﬂj(o) from the L2 TLWE sample after the coeffi-

cient extraction. A copy of L2 TLWE encryption of /3/§0) is
kept for update performed in algorithm line 14.

Line 7. L1 TRLWE encryption of ,Bj(tfl) (from previous
iteration) and L1 TRGSW encryption of Py ; are multiplied
together for all j = 0...k — 1. Encryptions of polyno-
mials), X;; - ,Bj(t_l) - Z! are obtained. These L1 TRLWE
ciphertexts are summed-up and an encryption of poly-
nomial }; > X;j - ,3/‘@_1) - Z' = Y .u; - Z! is obtained.
Coefficient extraction and key-switching procedures are
used afterwards to obtain # individual LO TLWE encryp-
tions of u;, i = 0...n — 1. These LO TLWE ciphertexts
represent logistic regression algorithm outputs over the
last iteration.

Line 13. The blind rotate procedure (a fundamental
building block of the TFHE gate bootstrapping) allows to
multiply a polynomial TP(Z) (called test polynomial) by
Z™ where m is the message encrypted in a TLWE cipher-
text. Moreover, the resulting TRLWE ciphertext noise
(encrypting polynomial TP(Z) - Z™) is independent of the
noise of input TLWE ciphertext encrypting m.

In this step of algorithm we use the blind rotate proce-
dure # times to obtain TRLWE encryptions of TP; - Z* for
i=0...n—1.Observe that TP; - Z% =]]-:01 oo (u) -
Xij- Z/ + ... thanks to the special form of test polyno-
mials 7P;. Summing up these ciphertexts (i.e. obtaining
>°; TP; - Z*) and extracting the first k coefficients from
the result we obtain k L2 TLWE ciphertexts encrypting
Aj,j=0...k—1.

Line 14. Finally, we update the L2 TLWE encryptions of
ﬂj(t_l), j = 0...k — 1, by adding e¢; and subtracting A;
obtained in previous step.

Step2 - incorporate S into the regression model

The second part of the Algorithm 2 consists of large-
scale linear algebra computation in order to integrate the
matrix S in the regression model calculated in the previ-
ous phase. We use the following input data encryptions
with parameters given in Table 2:

e X isencrypted as (k + 1) * n individual TRGSW
samples (level L2),

e yisencrypted in n TRLWE samples (level L2),

e Sisencrypted as TRGSW matrix sample packed in
slots by line in level L3.

We describe now the homomorphic evaluation of each
step of Algorithm 2.

Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88 Page 7 of 10
Table 2 Encryption parameters, also used to encrypt TRLWE or TRGSW ciphertexts
Step Level Type n/N stdv Security Sample size
1 Lo LWE n=612 P ~128 48 KB

L1 RLWE N = 2048 2753 ~128 32 KB

L2 RLWE N = 8192 2753 ~128 128 KB
2 Lo LWE n==612 P >128 48 KB

L1 RLWE N = 4096 273 >128 32KB

L2 RLWE N = 4096 2748 >128 32KB

L3 RLWE N = 4096 2764 >128 64 KB

L4 RLWE N = 4096 2780 >128 64 KB

L5 RLWE N = 4096 27105 ~130 64 KB
3 LO RLWE N = 4096 3.2/qwith g = 232 >128 32KB

L1 RLWE N = 32768 3.2/q with g = 2581 ~128 45MB

Line 2. We first bootstrap the probability vector to a
fixed level, and we use Chimera framework described
in [15] to simultaneously change the key size to sup-
port lower noise, convert TFHE into HEAAN ciphertexts,
and evaluate the sigmoid function homomorphically.
Although this bootstrapping takes more than 90% of the
evaluation time, it has the advantage that the encryption
of the database S is independent from the previous com-
putations: we can iterate the initial logistic regression loop
as many times as it is needed for the model to converge,
which is required to support a larger number of features.
We use a single coefficient per TRLWE ciphertext at this
step (no packing).

Line 3. The coefficients of S are packed row-wise to
form a matrix of n x ([m/4096]) of TRGSW ciphertexts.
The external homomorphic product between a single-
coefficient TRLWE ciphertext and a packed TRGSW cipher-
text provides 4096 slots of z* at once. For m = 10643 and
n = 245, we need a total of n x 3 external products. At
this depth, the TRGSW-TRLWE external product is indeed
at least twice as fast as its internal TRLWE-TRLWE equiv-
alent, whenever one of the operand is a fresh ciphertext.
At this step, we support either the coefficient packing or
the slot packing, depending on the encoding of the needed
output.

Line 4. The result is a vector of n TRLWE ciphertext, each
one holds a single coefficient w; = p; — p?, each square
uses one TRLWE internal product.

Line 5. We need the matrix G and its inverse to ful-
fill the algorithm. However, inverting G is a relatively
large depth operation, so we considered two approaches:
(1) we note that G = %Ik.'_l + & where the norm of &
is very small (unless the input dataset is exceptionnaly
biased in one direction). Thus, G~ can be approximated
with its Taylor series: 4([x;; — & + €2 — ...). On the
iDASH dataset, G™! = 4l already provides a suffi-
cient approximation. (2) the second approach consists in

evaluating the Gaussian elimination loop (or better in this
case, the Cholesky factorization) using one TFHE boot-
strapping everytime a coefficient needs to be inverted.
Since G is a very small matrix (k < #), this step remains
very fast even if an individual bootstrapping lasts a few
seconds. This bootstrapping uses look-up tables to deal
with the non-linearity of the inverses and simultane-
ously refreshes the noise of ciphertexts to the same level
throughout the inversion loop. If the required precision
is too large for look-up tables, we can switch to binary
gates evaluating the IEEE754 floating-point division cir-
cuit. The coefficients of G~! are computed as individual
TRLWE ciphertexts.

Line 6. As in Step 3, the coefficients of X are stored as
individual TRGSW ciphertexts, and the coefficients of S are
packed row-wise (using the same ciphertext as in Step 3).
The resulting k x m matrix is row-packed.

Line 7. Since S has binary entries, the element-wise
product SO S is equal to S, so only the element-wise prod-
uct on the right needs to be computed. If A is slot-packed,
this hadamard product corresponds to the internal prod-
uct of TRLWE. If A is coefficient packed, the squaring is
merged to the next non-linear function (here, the loga-
rithm), and handled via the HEAAN bootstrapping.

Depending on the choice of packing (coefficients or
slots), the final output of the second phase is either (a)
z* and s*? packed as slots (which can be decrypted and
divided as postprocessing to reveal the t-stat), or (b) z* and
A coefficient-packed, ready to pass to phase 3.

Step3 - stats computation in the logarithmic domain

The target outcome of the protocol is the vector of p-
values of the obtained results. It must be noted that the
p-values are a monotonic (but non-polynomial) func-

«
tion of the t-stats sz*—”z, so they both convey the exact

1
same information. Therefore, the computation of the p-
values themselves under encryption would produce an

Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88

unjustified overhead, whereas computing the t-stats
and releasing them is optimal in terms of secu-
rity/efficiency. Consequently, depending on the desired
trade-off between accuracy and leakage, it is possible
to produce the target p-values by computing the t-stats
either (a) in the client-side, after decrypting (and leak-
ing) both numerator and denominator separately, or (b)
by performing a third homomorphic step that leaks only
the t-stats. For option (a), the second phase outputs the
slot-packed version of both numerator and denomina-
tor. Here, we detail option (b), for which we leverage on
SIMD operations on HEAAN ciphertexts, taking as input
the coefficient-packed (fully packed) versions of z; and s
from phase 2.

HEAAN-based implementation This phase is focused
on the computation of line 8 of Solution 2 in Algo-
rithm 2, which takes as inputs the terms z; and s} as
fully-packed level 0 RLWE encryptions. There are two
options to compute the t-stats: either approximate the
inverse of the denominator and multiply numerator and
inverted denominator, or apply a logarithm and avoid fur-
ther homomorphic products that will further reduce the
precision of the results due to the approximate arith-
metic used in HEAAN. Hence, we have chosen the second
approach. This phase applies the following operations:

1. As the logarithm computation requires more levels
than what the input encryptions can withstand, the first
step is key-switching both encryptions z} and s} to an
expanded key with higher-degree polynomials (from Ny =
4096 to N1 = 32768), resulting in (sparsely) coefficient-
packed ciphertexts. At this stage, the encryptions are
completely exhausted, so a bootstrapping is needed to
keep computing on them.

2. HEAAN boostrapping is applied to the expanded
ciphers, hence achieving level 1 encryptions. After the
bootstrapping, we keep slot-packing, in order to per-
form the coefficient-wise computation of the squaring and
logarithm operations.

3. The numerator z; is still a signed number, so we
compute the logarithm of the absolute value by resorting
to a least-squares symmetric (even-degree) polynomial
approximation of the logarithm. In order to improve on
the error and due to the fact that most of the relevant
inputs should be far from the vertical asymptote, we use
as objective function a smoothed version of the logarithm,
defined as

if |x| > th
otherwise,

log(|x]),

smoothed logabs(x) = { ax® 4 b

where th < 1 is a pre-calculated threshold adapted to the
dataset features, and a and b are computed to make the
function continuous and differentiable at x = th. For the

Page 8 of 10

implementation, we use a degree-8 polynomial approxi-
mation of smoothed logabs in the plausible range for
the numerator values.

4. The denominator term s is first squared and cen-
tered, in order to arrive at an encryption of slz*, and then
a least-squares degree-8 polynomial approximation of the
smoothed logarithm is applied to the result.

5. The numerator is rescaled to the same quantization
factor as the denominator, and both are homomorphically
subtracted, hence achieving the desired encrypted result
stat; = \/z%, that can be sent to the client for decryption.

s

Results

Implementation details

The three parts of the homomorphic algorithm were
implemented as separate applications which are executed
one after another. The first application performs the logis-
tic regression part and outputs encryptions of X - g{rs),
The second one does the generalization of the previous
logistic regression model with genotype data S. Finally, the
last application computes the quotients on the stats, that
can be used to obtain the sought p-values. Besides these
applications performing homomorphic computation sev-
eral helper applications were implemented for generating
keys, encrypting input data and decrypting the result.
Data exchange (ciphertext data) between application exe-
cutions is done via the file-system. That is, each applica-
tion reads input data from files and writes the results to
files.

C/C++ programming language was used for implemen-
tation. Two open-source HE libraries are employed: (i)
TFHE library (https://github.com/tfhe/tfhe), in particular
the torus_generic branch, optimized using AVX and
FMA instructions, (ii) HEAAN library (https://github.com/
snucrypto/HEAAN). Besides these two HE libraries, a
prototype of the Chimera framework [15] was coded for
the purpose of this project.

Table 3 Timing and memory results

Steps Timing (4 cores) Timing (96 cores) RAM
KeyGen Solution 1 5.5 mins 20 mins 44 GB
KeyGen Solution 2 6.2 mins 2.5 mins 14 GB
Encryption 7.2 mins 1.3 mins 8.6GB
Step 1 6.5 mins 0.5 mins 56GB
Step 2 Bootstrapping 164 mins 3.2 mins

Step 2 Total 180 mins 3.5 mins 79GB
Step 3 32 mins 10 mins 15 GB
Total Cloud run time 186 mins 4 mins 79GB
Solution 1

Total Cloud run time 218 mins 14 mins 15GB

Solution 2

https://github.com/tfhe/tfhe
https://github.com/snucrypto/HEAAN
https://github.com/snucrypto/HEAAN

Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88

Page 9 0of 10

10

-10 !

T T
FHE evaluation versus plaintext — +

y=X

-10 -5
Fig. 1 Accuracy Homomorphic versus plaintext computed stat vector

Benchmarks and dataset details
The dataset used for the HE Track of iDASH 2018 has the
following features: m = 10643 SNPs, n = 245 patients,
k = 3 covariates. The test environment is an Amazon T2
Xlarge VM, with 4 vCPU, 16GB memory, and 200GB of
disk space. We have also tested on a m5.24xlarge VM with
96 vCPU machines to verify that the execution scales with
the number of CPU without increasing the memory.
Table 3 shows the running time and the used memory
for our solution, broken down in each of the steps. The
size of the input encryptions is 5GB, including the encryp-
tion of X, y and S. The size of the output is 640KB includ-
ing the encryption of the numerator and the denominator.
The encryption parameters are given in Table 2. The
numerical accuracy is depicted in Fig. 1, that plots the
homomorphic versus plaintext computation of the stat
coefficients.

Discussion

The main part of the computation is consumed during the
bootstrapping at the beginning of step 2 (more that 90%
of the total evaluation time). But this bootstrapping allows
us to use different values for k and for the number of itera-
tions during the logistic regression phase; hence, it makes
the solution much more generic than other approaches
(as the depth of our circuit does not depend on the these

parameters). Additionally, this is the only bootstrapped
solution submitted to the iDASH competition that can
be applied for different sets of parameters without re-
encrypting the genomic database, making it practical for
real-world applications.

One possibility to further improve the running time is
to use the HEAAN bootstrapping instead of the several
TFHE bootstrappings in Step 2 of the solution.

Conclusions

The HE Track of iDash 2018 competition succeed the
improvement of the actual state of art for privacy-
preserving computation on genomic data. In this work
we proposed fully homomorphic based solution, one of
the most generic solution, that can be used with different
sets of parameters. This is the first step towards the more
general feature selection problem across large encrypted
databases.

Acknowledgments
The authors would like to show gratitude to Malika Izabachene and Rasoul
Akhavan Mahdavi for their comments on an earlier stage of this work.

About this supplement

This article has been published as part of BMC Medical Genomics Volume 13
Supplement 7, 2020: Proceedings of the 7th iDASH Privacy and Security Workshop
2018. The full contents of the supplement are available online at https://
bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-
supplement-7.

https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7

Carpov et al. BMC Medical Genomics 2020, 13(Suppl 7):88

Authors’ contributions

All authors designed the method, conducted the experiments, analyzed the
results and wrote the paper. SC implemented algorithm step 1. NG and MG
implemented algorithm step 2 and JTP implemented algorithm step 3. All
authors read and approved the final manuscript

Funding

This work and its publication costs were funded by the grant #2017-201
(DPPH) of the Strategic Focal Area “Personalized Health and Related
Technologies (PHRT)" of the ETH Domain.

Availability of data and materials
The evaluation data can be found at http://www.humangenomeprivacy.org/
2018/competition-tasks.html

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

TCEA, LIST, Point Courier 172, 91191, Gif-sur-Yvette cedex, France. 2\npher,
Innovation Park A, CH-1015 Lausanne, Switzerland. >EPFL, Route Cantonal,
CH-1015 Lausanne, Switzerland.

Published: 21 July 2020

References

1. Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying
personal genomes by surname inference. Science. 2013;339(6117):321-4.

2. Lippert C, Sabatini R, Maher MC, Kang EY, Lee S, Arikan O, Harley A,
Bernal A, Garst P, LavrenkoV, Yocum K, Wong T, Zhu M, Yang W-Y,
Chang C, LuT, Lee CWH, Hicks B, Ramakrishnan S, Tang H, Xie C, Piper
J, Brewerton S, Turpaz Y, Telenti A, Roby RK, Och FJ, Venter JC.
Identification of individuals by trait prediction using whole-genome
sequencing data. Proc Natl Acad Sci. 2017;114(38):10166-71.

3. Jagadeesh KA, Wu DJ, Birgmeier JA, Boneh D, Bejerano G. Deriving
genomic diagnoses without revealing patient genomes. Science.
2017;357(6352):692-5. https://doi.org/10.1126/science.aam9710.
http:/science.sciencemag.org/content/357/6352/692 full.pdf.

4. BouraC, Chillottil, Gama N, Jetchev D, Peceny S, Petric A.
High-precision privacy-preserving real-valued function evaluation. In:
Financial Cryptography and Data Security - FC 2018; 2018. https://doi.org/
10.1007/978-3-662-58387-6_10.

5. ChenF, Wang S, Jiang X, DingS, LuY, Kim J, Sahinalp S, Shimizu C,
Burns J, WrightV, Png E, Hibberd M, Lloyd D, Yang H, Telenti A, Bloss
C, Fox D, Lauter K, Ohno-Machado L. PRINCESS: Privacy-protecting Rare
disease International Network Collaboration via Encryption through
Software guard extensionS. Bioinformatics. 2016;33(6):871-8.

6. Ohrimenko O, Schuster F, Fournet C, Mehta A, Nowozin S, Vaswani K,
Costa M. Oblivious multi-party machine learning on trusted processors.
In: 25th USENIX Security Symposium (USENIX Security 16). Austin: USENIX
Association; 2016. p. 619-636. https://www.usenix.org/conference/
usenixsecurity 16/technical-sessions/presentation/ohrimenko.

7. Sadat MN, Aziz MMA, Mohammed N, Chen F, Jiang X, Wang S. SAFETY:
Secure gwAs in Federated Environment through a hYbrid Solution.
|IEEE/ACM Trans Comput Biol Bioinforma. 2019;16(1):93-102.

8. Carpov S, Tortech T. Secure top most significant genome variants search:
iDASH 2017 competition. BMC Med Genomics. 2018;11(4):82.

9. AonoY, HayashiT, Trieu Phong L, Wang L. Scalable and secure logistic
regression via homomorphic encryption. In: Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy, CODASPY
"16. New York: ACM; 2016. p. 142-4.

10. Crawford JLH, Gentry C, Halevi S, Platt D, Shoup V. Doing Real Work with
FHE: The Case of Logistic Regression. In: Workshop on Encrypted
Computing & Applied Homomorphic Cryptography; 2018. https://doi.
0rg/10.1145/3267973.3267974.

Page 10 of 10

11. Kim A, Song Y, Kim M, Lee K, Cheon JH. Logistic regression model
training based on the approximate homomorphic encryption. BMC Med
Genomics. 2018;11(4):83.

12. Bonte C, Vercauteren F. Privacy-preserving logistic regression training.
BMC Med Genomics. 2018;11(4):86.

13. ChenH, Gilad-Bachrach R, Han K, Huang Z, Jalali A, Laine K, Lauter K.
Logistic regression over encrypted data from fully homomorphic
encryption. BMC Med Genomics. 2018;11(4):81.

14. Singh K, Sirdey R, Carpov S. Practical personalized genomics in the
encrypted domain. In: 2018 Third International Conference on Fog and
Mobile Edge Computing (FMEC); 2018. p. 139-46. https://doi.org/10.
1109/fmec.2018.8364056.

15. BouraC, Gama N, Georgieva M, Jetchev D. CHIMERA: Combining
Ring-LWE-based Fully Homomorphic Encryption Schemes. Cryptology
ePrint Archive, Report 2018/758. 2018. https://eprint.iacr.org/2018/758.

16. Chillotti I, Gama N, Georgieva M, Izabachene M. Faster fully
homomaorphic encryption: Bootstrapping in less than 0.1 seconds. In:
ASIACRYPT 2016, Proceedings, Part |, LNCS, volume 10031; 2016. p. 3-33.
https://doi.org/10.1007/978-3-662-53887-6_1.

17. Chillottil, Gama N, Georgieva M, Izabachéne M. TFHE: Fast Fully
Homomorphic Encryption over the Torus. J Cryptol. 20181-58. https://
doi.org/10.1007/500145-019-09319-x.

18. Cheon JH, Han K, Kim A, Kim M, Song Y. Bootstrapping for approximate
homomorphic encryption. In: EUROCRYPT 2018, Proceedings, Part I, LNCS,
volume 10820; 2018. p. 360-84. https://doi.org/10.1007/978-3-319-
78381-9_14.

19. Sikorska K, Lesaffre E, Groenen PF, Eilers PH. GWAS on your notebook:
fast semi-parallel linear and logistic regression for genome-wide
association studies. BMC Bioinformatics. 2013;14(1):166.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

® rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

http://www.humangenomeprivacy.org/2018/competition-tasks.html
http://www.humangenomeprivacy.org/2018/competition-tasks.html
https://doi.org/10.1126/science.aam9710
http://arxiv.org/abs/http://science.sciencemag.org/content/357/6352/692.full.pdf
https://doi.org/10.1007/978-3-662-58387-6_10
https://doi.org/10.1007/978-3-662-58387-6_10
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://doi.org/10.1145/3267973.3267974
https://doi.org/10.1145/3267973.3267974
https://doi.org/10.1109/fmec.2018.8364056
https://doi.org/10.1109/fmec.2018.8364056
https://eprint.iacr.org/2018/758
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Notation
	Chimera: unifying HEAAN and TFHE
	Semi-parallel logistic regression and our simplification
	FHE algorithm
	Step1 – logistic regression
	Input data encryption.
	TFHE implementation.

	Step2 – incorporate S into the regression model
	Step3 – stats computation in the logarithmic domain
	HEAAN-based implementation

	Results
	Implementation details
	Benchmarks and dataset details

	Discussion
	Conclusions
	Acknowledgments
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

