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Overview
Genome privacy is a twenty-first century challenge that
has received relatively low publicity relative to risk, espe-
cially when compared to privacy issues surrounding so-
cial media or electronic health records [1–3]. This low
profile is misleading because (1) the consequences of
privacy breaches can be as ominous as those of other
data types, and more extensive, since they can affect
blood relatives; and (2) the ability for a motivated indi-
vidual, a particular group, or a nation’s government to
conduct an effective attack has increased sharply in the
past few years due to improvements in technology. The
research community will benefit in the long run from
characterizing privacy risks derived from genome data
sharing, as well as developing and applying responsible,
cost-effective solutions to mitigate these risks. The sci-
entific community must be the first to recognize that, if
biometrics such as fingerprints, iris or retinal images,
and portraits are considered identifying information and
thus redacted from publicly shared datasets, so should

be genomes, exomes, and many other downstream data
such as transcriptomes, proteomes, etc. It is important
to understand that once genomes and related informa-
tion are made accessible and thus linkable to other data,
it is impossible to control what type of inferences can be
obtained and what type of sensitive information can be
inadvertently disclosed. On the other hand, it is possible
to quantify risk and provide commensurate protections
for data that are made available for research. Moreover,
it is possible to engage the privacy technology commu-
nity around the theme of responsible genomic data
sharing. A growing community of genome privacy re-
searchers has emerged in the past decade. Our purpose
is to test the limits of technology that protects genome
privacy, while promoting the development of practical
strategies that control the risk but preserve the utility of
the data as much as possible. The goal is to be proactive,
as oppose to wait for a major scandal to set the whole
community back for decades, potentially erasing decades
of progress in genome analysis and scientific discoveries.
The 5th iDASH Secure Genome Analysis Competition

[4] was co-organized in 2018 by the University of
California San Diego (UCSD), the University of Texas
Science Center (UT Health) and Indiana University Bloom-
ington. Continuing the success of past competitions, our
aim was to scaling the protection of the security and priv-
acy of analyses on increasingly large genomic datasets. Spe-
cifically, we focused on bridging theory and practice of
computational algorithms via community participation. In
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2018, we devised three competition tracks, which included
(1) blockchain-based genomic dataset access logging (Track
1), (2) secure homomorphic encryption on Genome Wide
Association Studies (Track 2), and (3) secure DNA segment
searching (Track 3). These three tracks attracted 64 regis-
tered teams from 17 countries across America, Europe, and
Asia. After 4.5months of development, 17 teams submitted
their solutions by the deadline. We evaluated the submis-
sions in 1 month, using approximately 100 Virtual Ma-
chines (VMs). The team from Yale University won Track 1,
a joint team from UT Health and UCSD and a joint team
from Duality Technologies and Dana Farber Cancer Insti-
tute co-won Track 2. A joint team from Microsoft Research
and Massachusetts Institute of Technology as well as a joint
team from CNRS, ISAE and UQAM co-won Track 3. This
special issue of BMC Medical Genomics highlights some
most advanced methods and techniques reported during
the competition for the three tracks.

Track 1: Blockchain-based immutable logging and
querying for cross-site genomic dataset access
audit trail
Introduction
Auditing data access behavior on genomic data reposi-
tories, such as GTEx, is needed because the mismatching

of the proposed and the actual data usage should be rec-
ognized to avoid research misconduct. For example, if
user X claimed to use dataset Y for analysis Z in an insti-
tutional review board (IRB) protocol or a data usage
agreement (DUA) and actually performed analysis Z’ on
Y, this behavior should be identified during the audit
process. Although each genomic data repository may
have its own local logging system, there is currently no
global logging system to oversee the cross-site data ac-
cess behaviors (Fig. 1). Intuitively, one can construct a
centralized global logging system to collect the access
logs from each repository. However, such a centralized
logging server presents risks such as mutability (i.e., the
records may be changed on the central server) and
single-point-of-failure (i.e., the global logging system
stops working if the central server is under maintenance
or being attacked). Additionally, the logging process is
not transparent, the interoperability is challenging, and
credibility can be questioned.

Threat model considered in this track
Among various types of potential weaknesses mentioned
above, the biggest threat comes from the modification of
the genomic data access log when the centralized log-
ging server is compromised and the root privilege is

Fig. 1 A local logging system. The local logs are managed by each genomic data repository. Cross-site data access behaviors can hardly be
detected due to the lack of a global logging system [5]
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obtained by an attacker. The data misuse records could
be eliminated without being noticed, and furthermore,
the fake records could also be created to frame a re-
searcher. This is even more critical for the data sets from
sensitive populations (e.g., HIV+ patients) where the
data is especially valuable and requires additional protec-
tion. In this case, technology might be desirable to gain
trust and avoid such a threat. Therefore, we propose to
adopt blockchain and build a decentralized global log-
ging system (Fig. 2). Blockchain is the distributed ledger
technology that laid the foundation of crypto-currencies,
and has been proposed for various genomic/healthcare/
biomedical applications [6–12]. Furthermore, by having
immutability without a single-point-of-failure, blockchain
technology provides benefits such as transparency, inter-
operability, and credibility. Moreover, each repository
can still record access behaviors using traditional log files
in parallel to the global logging system. By using the
peer-to-peer blockchain as the infrastructure of the log-
ging system, we can prevent the central server attacking
threat because (1) there is no single central server to be
attacked, and (2) all data usage logs are recorded in an
immutable, transparent, and provenance-ensured way.
Although blockchain technology may be a feasible so-

lution, the speed, space and scalability of this new tech-
nology are still under investigation for many real-world
applications. Also, most of the genomic blockchain ap-
plications are still in the proposal phase [5], and the
practical aspects for implementations are yet to be

studied. Finally, the metrics and methods for evaluating
blockchain systems on genomics data are still emerging.
To investigate these issues, we developed a new track for
the competition. Anticipating a possible use of block-
chain technology for retrieval of genomics data, we
aimed at understanding to what extent blockchain may
be applied to serve as a global logging system. As such,
the goal of this competition is to develop blockchain-
based ledgering solutions to log and query the user ac-
tivities of accessing genomic datasets (e.g., GTEx) across
multiple sites.

Data and sub-tasks
The datasets were generated using a software we devel-
oped to simulate genomic data access behaviors. We as-
sume multiple users’ simultaneous access of various
types of resources (i.e. genomic datasets) on multiple
sites. Each user has the following ordered behavior: re-
quest to access the resource, view the resource, access
the resource, and, optionally, the user may receive a risk
score derived from privacy protection algorithms. We
used a simulator to generate both training and test data,
which were log files containing records (transactions)
such as “at 2018-08-13 08:21:43, user 10 viewed resource
3 on Site 1”. The training data we provided to the par-
ticipating teams included four data access log files,
representing user access activities from four sites. Each
log file contained 100,000 records. The test data were
not provided to the participating teams. We generated

Fig. 2 A global logging system. The system is based on blockchain technology, which is managed in a decentralized way [5]
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three datasets with different sizes (small = 50,000,
medium = 100,000, and large = 200,000 records per site)
to test the scalability of the solutions. We also increased
the number of parameters and types of resources to en-
courage more generalizable solutions.
There were two sub-tasks of the blockchain competi-

tion: logging and querying. For the logging sub-task
(Fig. 3), the solution was required to store all user access
log records on-chain, while storing no records off-chain.
For the querying sub-task (Fig. 4), the solution needed
to allow a user to search using any field of one log line
(e.g., User_ID), use any “AND” combination (e.g. User_
ID AND Resource_ID), sort the results (e.g. ascending/
descending order), and query the data from any of the
four sites.

Evaluation and test queries
To evaluate the participating teams, our criteria included
(1) accurately log/query results using the test data, and
(2) high performance in speed, storage/memory cost,
and scalability. For the first criterion, the log and query
results should be 100% accurate in order to be consid-
ered a valid solution. For the second criterion, the order
of importance was speed > storage/memory cost >
scalability.
To test the record queries, we generated 50 distinct

search queries to test the solutions, including 12 single-
line-type test queries (e.g. search for a specific record in
each of the four log files), 26 column-type test queries
(e.g. search for all records related to a specific resource),
and 12 combo-type test queries (e.g. search for all re-
cords related to a specific resource AND a specific user).
We also provided 4 example queries and solutions with
the training data with correct answers for the participat-
ing teams to verify their solutions.
The process to apply our evaluation criteria and to run

the test queries on the test data was as follows. First, we
ran the software of each participating team using the

small, medium and large test datasets, and measured the
following four metrics:

� Insertion (in seconds): the maximum time of
insertion plus synchronization (records are visible
on all 4 nodes), confirmed by using a query to check
the results, with a timeout limit of 70 h.

� Query (in seconds): the average time for 50 test
queries.

� Storage (in GB): the difference of disk usage before
and after the insertion process.

� Memory (in MB): the maximum usage for the
insertion process.

Next, we normalized each metric to a raw score from
0 to 100 among all teams. These raw scores are then
weighted-summed to a subtotal score for each of the test
datasets (i.e. small, medium and large) with weights of
35% for Insertion, 35% Query, 15% Disk, and 15% Mem-
ory. Finally, to take scalability into account, we com-
puted a weighted average of the subtotal scores by the
number of records (i.e. small = 50,000, medium = 100,
000, and large = 200,000) to an overall score (from 0 to
100) for final ranking.

Blockchain platform and test environment
Based on a recent review of popular blockchain platforms
[7], we chose to use MultiChain (a fork of the Bitcoin
Blockchain) [13, 14], which can reach about 1000 max-
imum transactions per second. We provided each partici-
pating team with 4 VMs, and each had 2-Core CPU, 8GB
RAM and 100GB storage, with a 64-bit Ubuntu 14.04 op-
erating system. We utilized 64 VMs on the Google Cloud
Platform [15] for testing and evaluation.

Participating teams and results
Seven teams completed the competition. Their names
and affiliations are as follows (in alphabetical order):

Fig. 3 Logging sub-task of our blockchain competition. Sites post all transactions to the chain [5]
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BlockchainProvenance (UT Dallas), CSI-Lab (Rutgers
University), GersteinLab (Yale University), JUICE
(Wuhan University, Juzix), Sandia (Sandia National
Laboratories), SUCloud (Syracuse University), and
YCao31 (Emory University, University of Central Florida,
and Kyoto University).
The overall scores are summarized in Fig. 5, and the

detailed measurements on the small, medium and large
test datasets are shown in Tables 1, 2, and 3, respect-
ively. There were 8 submissions from the 7 participating
teams. BlockchainProvenance had an additional submis-
sion shortly after the deadline, which we graded for the
sake of completion, and therefore is included only for
reference purposes. This is referenced as BP2 applied
various techn2 in all figures and tables. All submissions

successfully completed the insertion sub-task for the
small and medium test datasets, and 6 of them finished
inserting records to the large test dataset within 70 h.
There were 4 submissions that generated accurate query
results for the small and medium test datasets and,
among them, only 2 submissions also showed accurate re-
sults in the large test dataset. These 2 submissions (Ger-
steinLab and Sandia) also demonstrated nearly linear
scalability for all measurements.
Based on our evaluation criteria, the final winning

teams were GersteinLab (first place), Sandia (second
place), and YCao31 (third place). The research papers
from the winning teams describing their approaches
are included in this special issue [16–18]. GersteinLab
created a data frame from the blockchain to allow

Fig. 4 Querying sub-task of our blockchain competition. Site2 queries the chain using Boolean logic, and ranks results (any site can query the
chain as there is transparency across the sites) [5]

Fig. 5 Querying sub-task of our blockchain competition. BP = BlockchainProvenance, CSI = CSI-Lab, Gerstein = Gerstein-Lab, YCao = Ycao31. Higher
scores indicate better performance. A bar is dimmed if the results of any test dataset were not accurate; in this case the corresponding team was
not included in the final ranking. For BP2 and YCao, the results for the small and medium test datasets were accurate, however their solutions
were not able to complete the insertion of the large test dataset, therefore their subtotal scores for the large test dataset were both set to zero
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efficient queries [16]. Sandia employed a two-level
indexing method to support efficient queries with sin-
gle clause constraints [17]. YCao31 designed a hier-
archical structure to support efficient range queries
on the timestamp field [18]. Another team BP/BP2
also described the solution in the research paper in-
cluded in this special issue [19]. BP/BP2 applied vari-
ous techniques and optimizations (e.g., bucketization,
simple data duplication and batch loading) to speed
up their solution [19]. The method is very innovative
to address the logging/querying challenge of the
competition.

Summary
Based on the outcomes of the submissions, using block-
chain technology to support a global and immutable log-
ging system is feasible. The best solution was able to
store 800,000 genomic dataset access records (i.e., 200,
000 from 4 sites) within 1 h and query them accurately
within 3min. It can scale almost linearly in terms of in-
sertion time, query time, storage usage, and memory
usage. Although there is still room for an improvement
in efficiency, this reasonable performance showed the
potential of adopting an immutable, decentralized, trans-
parent, interoperable and credible ledger for genome
data access transactions.

Track 2: Secure parallel genome wide association
studies using homomorphic encryption
Introduction
As more human genomic data are generated, there is a
growing trend to use cloud computing services to store and
analyze these data for scalability and cost-effectiveness.
When outsourcing the human genome data to a third-
party cloud service provider, there can be concerns about
privacy risks and the practicability of communication. This
task is developed to challenge participating teams in com-
ing up with a secure outsourcing solution to compute a
Genome Wide Association Study (GWAS) based on homo-
morphically encrypted data. Fully homomorphic encryption
(FHE) under the Ring Learn With Error (RLWE) frame-
work is considered post-quantum safe and does not require
communication once encrypted data are provisioned on a
service provider. The basic idea of homo-(same) morphic-
(shape) encryption is to convert plaintext data into
encrypted data satisfying certain mathematical properties
(i.e., structural preserving mapping in the algebraic defin-
ition) so that the computation on the encrypted data have
one-to-one mapping to the corresponding operations in the
plaintext, therefore, the results are kept consistent (after de-
cryption). Data owners only need to make a one-time en-
cryption (using public key) and deposit encrypted data onto
the cloud. Then, they can execute different algorithms to

Table 1 Measurements on the small test dataset (50,000 records)

Small Complete Accurate Insertion Query Disk Memory

BP Yes No 02:36:10 00:00:12 1.570 GB 41 MB

BP2* Yes Yes 03:53:50 00:00:02 1.670 GB 42 MB

CSI Yes No 00:42:45 00:00:13 1.252 GB 10 MB

Gerstein Yes Yes 00:12:30 00:00:28 0.400 GB 18MB

JUICE Yes No 01:03:54 00:02:13 2.300 GB 6 MB

Sandia Yes Yes 00:43:09 00:00:26 1.438 GB 22 MB

SUCloud Yes No 00:06:28 00:00:15 0.307 GB 15 MB

YCao Yes Yes 04:24:20 00:00:08 1.458 GB 26 MB

Complete indicates whether the insertion process is completed within 70 h, and Accurate indicates whether the results of all test queries are accurate. A cell is
underscored if the results are not accurate. The bold cells of measurements indicate the best performances among accurate results. The asterisk (*) indicates
submissions received shortly after the deadline

Table 2 Measurements on the medium test dataset (100,000 records). The notation is the same as the one used in Table 1

Medium Complete Accurate Insertion Query Disk Memory

BP Yes No 19:18:11 00:00:47 7.870 GB 53 MB

BP2* Yes Yes 28:50:30 00:00:04 3.270 GB 54 MB

CSI Yes No 01:27:51 00:00:27 1.652 GB 10 MB

Gerstein Yes Yes 00:22:56 00:00:54 0.700 GB 30 MB

JUICE Yes No 02:04:17 00:04:16 4.300 GB 5 MB

Sandia Yes Yes 01:23:51 00:00:47 2.695 GB 28MB

SUCloud Yes No 00:12:34 00:00:30 0.552 GB 15 MB

YCao Yes Yes 03:05:33 00:00:16 2.558 GB 32 MB
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obtain encrypted results (which can be decrypted with the
secret key). The entire process is secure without leaking
any information.
Based on the previous success in building a learning

model (i.e., logistic regression) on encrypted data (Track
3: Homomorphic encryption (HME) based logistic re-
gression model learning in 2017) [20], we came up with
a more challenging task for 2018. That is, given
encrypted genome data that contain thousands of Single
Nucleotide Polymorphisms (SNPs) and hundreds of
samples, participants are asked to outsource the storage
and computation on a third-party server to carry out
GWAS (based on linear or binary logistic regression) to
compute p-values of different SNPs.
We followed the additive genetic model using the

Cochran-Armitage trend test [21], which is equivalent to
the score test in the logistic regression [22]. The model
for individual SNPs was tested using the following:

log pi j=1−p
i
j

� �
¼ 1þ β1X

i þ β2Z
i
j

where pij = P(Yi = 1) correspond to the probability that
individual i has the disease or not. The model has two
sets of parameters: β1 corresponds to the parameters for
the covariants (e.g., demographics, pre-conditions) and
β2 corresponds to a single parameter for an individual
SNP j. The test is to check whether β2 equals zero or
not, which indicates whether the disease Yi has a de-
pendence on SNP j.
Although significant performance improvements over

existing solutions have been demonstrated for construct-
ing logistic regression on encrypted data, it is still quite
computationally intensive (i.e., ~ 10min per SNP based
on the best entry in iDASH 2017). Direct implementa-
tion of linear or logistic regression based GWAS would
require building one model for each SNP, which makes
it technically impractical when we need to deal with mil-
lions of SNPs (see Fig. 6).
In order to come up with a task that is feasible, con-

sidering the performance limitation of FHE, we carefully

studied the literature and identified an alternative semi-
parallel algorithm [23] for this competition, which relies
on an approximation to reduce the necessary rounds of
computation. The main idea is to assume the parameters
for covariants will stay nearly the same for all SNPs and
convert n logistic regressions into one for covariants,
followed by another single-step parallelizable regression
on all SNPs. The challenge here is to develop efficient
packing and parallelization algorithms to make full use
of the memory and computation resources.

Threat model considered in this track
We are considering the outsourcing security in this
track, which include both data security and model secur-
ity. Our scenario applies to situation when owners of the
data want to outsource them on an untrusted cloud
computing environment. The threat model here involves
include information hijacking, system hacking, malicious
hosts, and other types of inference attack. We count in-
formation leakage during the information exchange, data
storage, model construction and evaluation. We also
consider the potential side channel attacks like monitor-
ing CPU or memory usage, looking over page fault pat-
terns, communication bandwidth, etc.

Data and compute environment
We prepared training data extracted from the Personal
Genome Project [24]. The training data have 3 covariates
(age, weight, height), 10,643 SNPs (all binary indicating
minor or major alleles), and 1 outcome variable for a
total of 245 individuals, partitioned into two groups by
the presence of high cholesterol, 137 for control group
and 108 for the disease group. The reserved test data are
on the same population (3 covariates + 14,841 SNPs),
which represent the same 245 individuals (therefore, the
same covariants) and different SNPs.
We asked the teams to develop solutions that have at

least 128 bits of security, following recommended parame-
ters from the Homomorphic Encryption Standardization
Workshop security whitepaper [25], and the solutions

Table 3 Measurements on the large test dataset (200,000 records). The notation is the same as Table 1. BP2 and YCao did not
complete the insertion process within the time limit (70 h)

Large Complete Accurate Insertion Query Disk Memory

BP Yes No 66:27:49 00:01:00 5.570 GB 78 MB

BP2* No No – – – –

CSI Yes No 02:52:13 00:01:10 2.452 GB 10 MB

Gerstein Yes Yes 00:55:46 00:02:11 1.300 GB 54 MB

JUICE Yes No 04:39:10 00:12:56 7.800 GB 6 MB

Sandia Yes Yes 04:07:17 00:01:48 5.438 GB 41MB

SUCloud Yes No 00:27:43 00:01:05 1.227 GB 15 MB

YCao No No – – – –
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need to be strictly non-interactive. Our evaluation is based
on the following measures: model accuracy, round-trip
time, and memory consumption, which are prioritized in
the given order (accuracy > time >memory). Our evalu-
ation environment is provided by the School of Biomed-
ical Informatics at UT Health, with 25 VMs that are
equivalent to Amazon T2 Xlarge instances, which have 4
vCPU, 16GB memory, disk size around 200GB.

Evaluation results
We received 13 solutions, submitted from 7 teams by the
deadline. The research papers from the participating teams
to describe the methods are included in this special issue
[26–30]. Table 4 summarizes the results, including mem-
ory consumption, round-trip time cost, and F1 scores at

different cutoffs. In terms of model accuracy, there is no
statistical significance for the first 4 teams, while UCSD
and Duality show a clear advantage on running time and
peak memory usage when compared with other competing
entries. Because the difference in F1 score is relatively
small, we also conducted an additional test on the differ-
ences between Area Under the ROC curve (AUC) to en-
sure the robustness of our comparison (AUC compares
the entire curve instead of a single point for F1). We used
DeLong’s Test [31] for AUCs and randomly sampled 1499
SNPs (~ 10%) to construct ROC curves, repeating 10 times
to obtain mean and standard deviation. Note that we trans-
formed semi-parallel GWAS outputs (estimated probabil-
ities) to 0–1 labels according to p-value cutoff 1E-2 and
1E-5 in the experiments, which are illustrated in Table 5.

Fig. 6 Traditional Genome Wide Association Study (GWAS) scans the entire list of SNPs iteratively. But such an approach is not computationally
practical for fully homomorphic encryption

Table 4 Overall results as in terms of end-to-end time/memory costs and F1 scores at different cutoffs. Note that gold and semi
refer to the original GWAS results and semi-parallel GWAS results in plaintext, respectively. We expect teams will benefit from using
our suggested semi-parallel algorithm to design their fully homomorphic encrypted counterpart, but we encouraged solutions to
approximate the gold standard (plaintext original GWAS model) as much as possible to be useful in practice

Team Submission Schemes End to End Performance Evaluation result (F1- Score) at different cutoffs

Running
time (mins)

Peak
Memory (M)

0.01 0.001 0.0001 0.00001

Gold Semi Gold Semi Gold Semi Gold Semi

A*FHE A*FHE −1 + HEAAN 922.48 3777 0.977 0.999 0.986 0.999 0.985 0.999 0.966 0.998

A*FHE −2 1632.97 4093 0.882 0.905 0.863 0.877 0.827 0.843 0.792 0.826

Chimera Version 1 + TFHE & HEAAN (Chimera) 201.73 10,375 0.979 0.993 0.987 0.991 0.988 0.989 0.982 0.974

Version 2 215.95 15,166 0.339 0.35 0.305 0.309 0.271 0.276 0.239 0.253

Delft Blue Delft Blue HEAAN 1844.82 10,814 0.965 0.969 0.956 0.944 0.951 0.935 0.884 0.849

UC San Diego Logistic Regr + HEAAN 1.66 14,901 0.983 0.993 0.993 0.987 0.991 0.989 0.995 0.967

Linear Regr 0.42 3387 0.982 0.989 0.980 0.971 0.982 0.968 0.925 0.89

Duality Inc Logistic Regr + CKKS (Aka HEAAN),
pkg.: PALISADE

3.8 10,230 0.982 0.993 0.991 0.993 0.993 0.991 0.990 0.973

Chi2 test 0.09 1512 0.968 0.983 0.981 0.985 0.980 0.985 0.939 0.962

Seoul National
University

SNU-1 HEAAN 52.49 15,204 0.975 0.984 0.976 0.973 0.975 0.969 0.932 0.905

SNU-2 52.37 15,177 0.976 0.988 0.979 0.975 0.974 0.969 0.939 0.909

IBM IBM-Complex CKKS (Aka HEAAN), pkg.: HElIb 23.35 8651 0.913 0.911 0.169 0.188 0.067 0.077 0.053 0.06

IBM- Real 52.65 15,613 0.542 0.526 0.279 0.28 0.241 0.255 0.218 0.229

+ no statistical significance in terms of discrimination=
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The UCSD team used a sparse binary secret setting
that is compatible with the security setting but not listed
in the white paper. Their adjusted performance using
the white paper setting is close to that of Duality (but
not listed here as it is after competition), so Duality and
UCSD were co-winners of the competition. The
Chimera team is a runner-up. We also decomposed the
time and memory cost in terms of different phases, in-
cluding key generation, encryption, computing and de-
cryption (Table 6). In Fig. 7, we illustrate the differences
between the top teams FHE estimated outputs (after de-
cryption) against their plaintext counterpart (semi-paral-
lel) and the plaintext gold standard.

Summary
Track 2 breaks the previous record in FHE computation
and shows that a practical secure protocol for basic gen-
ome data analysis like GWAS is possible. High accurate
secure computation for 15 k SNPs can be accomplished
within 2 min. Another interesting observation is that all
competition solutions choose a common encryption
framework CKKS/HEAAN [32], compared to several

different frameworks in the previous year. This suggests
a community “consensus” that certain strategies like the
approximate arithmetic homomorphic encryption are
amenable to numerical optimization for problems such
as the one we presented, and solutions that involve ma-
chine learning and statistical testing.

Track 3: Secure search of DNA segments in large
genome databases
Introduction
Databases of whole genome-scale genotypes are becom-
ing available in public (e.g., the UK Biobank [33]) or pri-
vate (e.g., from direct-to-consumer genetic testing
providers [34], such as 23andMe [35]) databases. One of
the straightforward applications for these data is to iden-
tify relatives, in particular distant relatives, which has
not only been useful for ancestry and genealogy analysis
by academic researchers, citizen scientists and individual
consumers [34], but also has strong implications for fo-
rensics (a great example is the arrest of the alleged
Golden State serial killer in California using genetic ge-
nealogy methods [36]).

Table 5 Statistical tests on AUCs using DeLong’s Test, showing that there is no statistical difference among the top four teams in
the previous table at a significance level of 0.01 for both cutoff thresholds (1E-2 for the triangle above the main diagonal of the
matrices, and 1E-5 for the triangle below the main diagonal of the matrices) for converting the outputs of semi-parallel GWAS
(estimated probabilities) to binary labels (for AUC computation)

Duality lr UCSD-1 A*FHE-1 Chimera-1

Duality lr 1.0000 ± 0.0000 0.3400 ± 0.0935 0.3121 ± 0.1332

UCSD-1 0.8959 ± 0.2195 0.3400 ± 0.0934 0.3156 ± 0.1332

A*FHE-1 0.7072 ± 0.3117 0.8113 ± 0.3043 0.4090 ± 0.3383

Chimera-1 0.2606 ± 0.1306 0.2632 ± 0.1296 0.2044 ± 0.0793

Table 6 Detailed decomposition of time and memory cost at different stages of the computation

Team Submission Time consumption and memory cost*

KeyGeneration Encryption Computing Decryption

Time (MIN) Memory (MB) Time (MIN) Memory (MB) Time (MIN) Memory (MB) Time (MIN) Memory (MB)

A*FHE A*FHE −1 0.79 822 921.25 3777 0.44 410

A*FHE −2 1.12 528 1631.01 4093 0.84

Chimera Version 1 0.30 10,375 8.92 10,375 192.80 9444 0.02 8

Version 2 13,658 7.93 10,358 208.00 15,166 0.02 73

Delft Blue Delft Blue 4.42 4723 1840.40 10,814 < 0.01 10,814

UC San Diego Logistic Regr 0.95 5205 0.34 8222 1.33 14,901 < 0.01

Linear Regr 0.01 246 0.38 3095 0.04 3387 < 0.01

Duality Inc Logistic Regr 0.35 5211 0.34 8953 3.46 10,230 < 0.01 10,228

Chi2 test < 0.01 283 0.05 1045 0.05 1512 < 0.01 1413

Seoul National
University

SNU-1 1928 6.17 6584 45.40 15,204 0.92 15,204

SNU-2 1.65 58 1.28 6525 50.45 15,117 0.63

IBM IBM-Complex 3.30 19.10 8651 0.95

IBM- Real 6.20 45.50 15,613 0.95

*the memory usage refers to the peak memory of the corresponding operation, all team's process fit in the 16GB environment
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Many algorithms have been developed for kin relation-
ship inference from genotype data. Unlike the close ge-
nealogical relatives such as parent and siblings that can
be derived from the genotypes on multiple genetic
marker loci (e.g., microsatellites), inference for distant
relatives often require genome-wide genotype data, and
thus may be computationally intensive [37, 38], espe-
cially when one is searching a query genome against a
large genome database (with thousands to millions of
genomes).

Threat model considered in this track
Searching these large databases for matched DNA seg-
ments (i.e., consecutive variant matches) represents an
efficient approach to the identification of distant rela-
tives. However, privacy concerns must be addressed be-
fore a practical querying system can be adopted. Here,
we assume both the querier and the database owner are
semi-honest (hosnest but curious), and may attempt to
learn the private genomic information owned by the
other party. To protect the query genome as well as the
genomes in the database, we hope to encrypt the query
and database genomes, respectively, while allowing their
comparison using ciphertext. Specifically, we designed this
track to challenge participating teams for developing a se-
cure two-party computation solution to identify set-max-
imal matches (longer than a given threshold) [39] between
a query genome and a large database of genotypes,
X = {x1, x2, …, xM}, where xi represents the vector of geno-
types (herein, we consider only the single nucleotide vari-
ants, or SNVs) for the i-th genome, S, in which the SNVs
are sorted with respect to their locations on the genome.
Formally, given X and a query genotype set z, a list of

consecutive SNVs indices between scalars a and b (S [a,
b]; a < b) is set-maximal if

1. There is a xi ∈ X such that the genotypes of xi and
z match exactly: xi,k = zk for k ∈ [a,b];

2. S [a,b] cannot be extended without genotype
mismatches between xi and z, i.e., xi,a-1 ≠ za-1 or
xi,b + 1 ≠ zb + 1;

3. There is no xj ∈ X (j ≠ i) such that the genotypes
of z and xj exactly match.

Note that a secure algorithm based on homomorphic
encryption has been previously proposed [40]. However,
it introduced high computation overhead. Here, we want
to challenge the community to develop novel, efficient
and secure two-party computation algorithms to identify
whether genome x in database X exhibits the set-
maximal match longer than a given threshold L with a
query genome z such that z is not exposed to the owner
of the database while no genome in X is exposed to the
querier.

Data and evaluation criteria
The participating teams were given a database of 1000
human genomes in the format of haplotype SNV se-
quences (supposed to be hosted by a data owner), and a
query genome of the same format (supposed to be sub-
mitted by a data querier), and were then challenged to
design a secure two-party algorithm between the owner
and the querier to compute all set-maximal matches lon-
ger than a given threshold of 1000 SNV sites between
the query genome and the genomes in the database,
without exposing the database to the querier or exposing
the query genome to the owner. Here, we assume that
the database genomes do not contain errors; as a result,
the output genomic segments represent perfect matches
between the corresponding database and query genomes.
For testing purposes, we provide a database of 1000

Fig. 7 Visualized comparison of top 4 models against plaintext semi-parallel outputs and plaintext gold standard estimates. The best model is
expected to be perfectly aligned with the blue curve
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genomic sequences (each consisting of 100,000 SNVs in
VCF format), a few sample queries, as well as the ex-
pected output from these queries.
Each team is required to submit their non-interactive

solution in executable forms (and source code if pos-
sible). Each team can choose to preprocess (e.g., index)
the database, which can be implemented in a non-secure
algorithm. In this case, the preprocessing algorithm and
the querying algorithm (for secure two-party computa-
tion) should be implemented and submitted separately.
We evaluated the submitted solutions using datasets of
similar size, but different from the provided data to test
the performance of the submitted solutions. We checked
the security compliance (at least 128-bit security level),
accuracy of the results (expected to be the same or very
close to the results of the non-secure algorithm), speed
(database preprocessing time and query time are consid-
ered separately) as well as the size of the transferred
data.

Participating teams, results and summary
Three teams submitted their solutions to the task: CNRS
(France), Microsoft Research (USA), and University of
Tsukuba and Riken (Japan). The CNRS team submitted
two solutions, one fast algorithm and one accurate (but
slower) algorithm. Unfortunately, none of the submitted
solutions were able to report accurate results in most
testing cases with the query genomes of 100,000 SNV
sites as the intended input of the challenge. When tested
on a smaller input size (consisting of 100 SNV sites), the
accurate solution of CNRS can report 23 correctly
matched genomes out of 26 test cases, while Microsoft
Research’s solution reported correctly 12 out of 26 cases
and the fast solution of CNRS reported correctly 4 out
of 26 cases. Microsoft Research’s solution can complete
the task in 7 s, while the CNRS accurate solution takes
much more time (26 h) and the CNRS fast solution takes
5 h. Based on these results, CNRS and Microsoft Research
shared the winning award. We conclude more efficient al-
gorithms are needed to tackle this challenging task. A re-
search paper from the Microsoft team that describes their
approach is included in this special issue [41].

Conclusions
Understanding genome privacy risks and developing
practical solutions is challenging. Our competition
attracted teams from different countries to address sig-
nificant issues in genome data sharing via privacy tech-
nology. The new methods and techniques illustrated
some important advances in this year’s competition, and
revealed new and promising results for practical biomed-
ical privacy research. For Track 1, we showed that a
blockchain-based immutable logging system is feasible
with observed storage of 800 K genomic dataset access

records from 4 sites within 1 h, and a query time within
3 min. For Track 2, we concluded that a practical secure
protocol for basic genome data analysis is possible for
high accuracy secure GWAS for 15 k SNPs, within 2
min. For Track 3, we showed that complicated protocols
such as secure multiparty ancestry analysis are viable,
although further research is still needed for fast and scal-
able approaches. These findings can contribute to en-
hance genomic security and privacy by bringing together
innovations from the scientific community that chal-
lenge current practices.
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