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Abstract

Background: Few somatic mutations have been linked to breast cancer metastasis, whereas transcriptomic
differences among primary tumors correlate with incidence of metastasis, especially to the lungs and brain.
However, the epigenomic alterations and transcription factors (TFs) which underlie these alterations remain unclear.

Methods: To identify these, we performed RNA-seq, Chromatin Immunoprecipitation and sequencing (ChIP-seq)
and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) of the MDA-MB-231 cell line and its
brain (BrM2) and lung (LM2) metastatic sub-populations. We incorporated ATAC-seq data from TCGA to assess
metastatic open chromatin signatures, and gene expression data from human metastatic datasets to nominate
transcription factor biomarkers.

Results: Our integrated epigenomic analyses found that lung and brain metastatic cells exhibit both shared and
distinctive signatures of active chromatin. Notably, metastatic sub-populations exhibit increased activation of both
promoters and enhancers. We also integrated these data with chromosome conformation capture coupled with
ChlIP-seq (HIChIP) derived enhancer-promoter interactions to predict enhancer-controlled pathway alterations. We
found that enhancer changes are associated with endothelial cell migration in LM2, and negative regulation of
epithelial cell proliferation in BrM2. Promoter changes are associated with vasculature development in LM2 and
homophilic cell adhesion in BrM2. Using ATAC-seq, we identified a metastasis open-chromatin signature that is
elevated in basal-like and HER2-enriched breast cancer subtypes and associates with worse prognosis in human
samples. We further uncovered TFs associated with the open chromatin landscapes of metastatic cells and whose
expression correlates with risk for metastasis. While some of these TFs are associated with primary breast tumor
subtypes, others more specifically correlate with lung or brain metastasis.

Conclusions: We identify distinctive epigenomic properties of breast cancer cells that metastasize to the lung and
brain. We also demonstrate that signatures of active chromatin sites are partially linked to human breast cancer
subtypes with poor prognosis, and that specific TFs can independently distinguish lung and brain relapse.
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Background

Worldwide, breast cancer is the leading cause of cancer
related deaths in women [1, 2]. Breast cancers are highly
heterogenous and are classified based on immunohisto-
chemistry markers (e.g. estrogen receptor (ER), proges-
terone (PR) and HER?2 status). Resected primary breast
tumors can also be independently stratified into intrinsic
molecular subgroups (e.g. PAM50 subtypes) based on
transcriptomic profiling. The most prominent molecular
subtypes identified to date include the normal-like, lu-
minal A, luminal B, HER2 enriched (referred as HER2),
basal-like, and claudin-low tumors [3-5]. While their
predictive and prognostic significance has been exam-
ined in clinical settings [6—-9], the cellular and molecular
determinants of these subtypes remains a subject of sig-
nificant investigation [10-12].

Advanced breast cancer is associated with a high mor-
tality rate due to the formation of metastases in vital dis-
tant organs [13]. Patients with relapses in the lungs and
brain in particular, have limited clinical options and
poor outcomes [14, 15]. In studies comparing human
primary and metastatic breast tumor samples,
metastasis-specific driver mutations are rare and muta-
tions associated with tissue-specific (a.k.a. organotropic)
metastasis have not been identified [16]. Conversely, dif-
ferences in gene expression have been found to mediate
metastasis in particular organ sites [17]. Importantly,
many genes associated with metastasis are already differ-
entially expressed in primary tumors. This is most not-
ably observed in tumors resected from patients that are
at risk for lung or brain relapse [13]. These unique meta-
static propensities may be influenced, in part, by primary
breast cancer subtype. For instance, basal-like tumors,
which often share features of triple negative cancers
(negative for ER, PR, and HER2), are more aggressive
[18]. Breast cancer patients with prior lung metastasis
are also more likely to develop brain metastases [19, 20].
Specific signatures have been associated with lung and/
or brain metastasis [21, 22], but their molecular under-
pinning remain unclear.

Cell lineage specification is molecularly driven by epi-
genetic mechanisms and in particular chromatin dynam-
ics [23, 24]. Profiling of histone modifications in
different mammary cell types reveal a hierarchy of en-
hancer activation, and unique enhancers present in each
mammary lineage can predict transcription factor net-
works that maintain lineage state [25]. Moreover, enhan-
cer profiling across human breast cancer cell lines
identified unique subtype-specific enhancer patterns
[26]. It has yet to be determined if particular chromatin
alterations can independently explain the metastatic
competence or organotropism of breast cancer cells.
Furthermore, previous studies have predicted enhancer-
driven gene expression changes using a nearest gene
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approach, whereas experimental techniques like HiChIP
enables a more robust way of identifying enhancer-gene
links [27, 28]. Also, the transcription factors linked to
particular chromatin landscapes and their association
with lung or brain metastasis gene expression remain
underexplored. Finally, while metastatic signatures have
been historically based on gene expression [29], the util-
ity of signatures based on chromatin profiling methods
have yet to be evaluated.

Herein we performed an integrated epigenomic ana-
lysis using human breast tumors and metastatic breast
cancer cells with tropism for lung or brain. By utilizing
Chromatin-Immunoprecipitation and sequencing (ChIP-
seq) and Assay for Transposase Accessible Chromatin
using sequencing (ATAC-seq), we identify substantial
changes in the active chromatin landscape of breast can-
cer cells that are associated with lung and brain meta-
static potential. We also incorporate HiChIP data to
robustly link enhancers with gene promoters and iden-
tify both promoter- and enhancer- driven pathway
changes. Finally, we define a chromatin accessibility sig-
nature linked to poor patient prognosis and predict tran-
scription factors whose expression or activity within this
chromatin state further distinguishes lung and brain me-
tastasis in humans.

Methods

Cell lines

MDA-MB-231 (ATCC HTB-26) and its metastatic sub-
populations, BrM2 and LM2 have been previously de-
scribed and were obtained from J. Massagué (Memorial
Sloan Kettering Cancer Center, New York) [21, 30]. Cell
lines were short tandem repeat tested to be MDA-MB-
231 using GenePrint 10 (Promega) and regularly myco-
plasma tested (ATCC mycoplasma kit). Cells were
grown in DMEM media (Gibco) supplemented with 10%
FBS (Gibco) and 1% penicillin (100 U/mL) and strepto-
mycin (100 pg/mL) (Gibco). Cells were grown to 70%
confluency prior to all experiments.

ATAC-seq and data analysis

Omni-ATAC-seq was performed as described in Corces
et al. [31]. We generated 2 biological replicates per cell
line (harvested at independent passages) and performed
paired-end sequencing using an Illumina HiSeq2000 se-
quencer, averaging 66 million reads per library. Raw
reads were trimmed of Nextera adapters using trimmo-
matic [32] and aligned to hgl9 using Bowtie2 [33] with
default parameters. Duplicates were marked using picard
tools and subsequently bam files were filtered using
samtools -F 1804 [34]. To obtain the Tn5 cutsite, for-
ward strand reads were shifted + 5 bp and reverse strand
reads were shifted -4bp. For a consensus ATAC-seq
peak set, bam files across cell lines and replicates were
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first merged together. Peaks were called using MACS2
with parameters —nomodel —keep-dup all -s 1 —shift -
75 —extsize 150 —call-summits [35]. Peaks were then
split at their summits using a custom R script. For differ-
ential accessibility analysis, reads that fell within the
consensus peak set were counted for each replicate of
each sample and processed with DESeq2 [36]. Peaks
with Benjamini Hochberg (BH) adjusted p-value < 0.05
were considered significantly differential. For principal
component analysis, averaged variance stabilization
transformed read counts of each biological replicate
were used. For upset plots comparing the three cell lines,
peaks were called within each cell line. Peaks overlap-
ping the consensus ATAC-seq peak set were then used
for plotting.

TCGA ATAC-seq analysis

For meta-analysis of the Corces et al. cohort (n =74),
raw counts were downloaded from the breast cancer
peak set [37]. Only one primary tumor sample was se-
lected from each patient (n =69). Raw ATAC-seq data
from our cell lines were processed through PEPATAC,
the same pipeline described in Corces et al. Using the
processed bam files, Tn5 cut site reads that fall within
the breast cancer peak set were counted by the same
process as described in Corces et al. MDA-MB-231 cell
line counts were then combined with the counts from
the Corces et al. cohort, and the full matrix was normal-
ized using cpm with log=TRUE and prior.count=>5
(edgeR package [38]) and normalize.quantiles (prepro-
cessCore package [39]).

For the metATAC signature peak set, DESeq2 was first
used to determine differential accessibility between par-
ental MDA-MB-231 and both metastatic sub-
populations within the aforementioned breast cancer
peak set. As we were interested in peaks that were ro-
bustly differentially accessible to create our signature, we
used an adjusted p-value cut-off of 5e-5. For our final
parental MDA-MB-231 signal set, we averaged normal-
ized counts falling within the signature peak set between
each replicate of parental MDA-MB-231. For our final
metastatic signal set, we did the same to all replicates of
the metastatic sub-populations. To assign a metATAC
score to each patient, we performed a Pearson correl-
ation comparing each patient sample to the parental and
metastatic signal sets following the equation:

SinetATAC = "' Met=VPar + 1

Where rp,, is the Pearson coefficient for parental sig-
nal, 7, is the coefficient for metastasis signal, and S,,,..
aTac is the metastasis score. Adding 1 was done to
ensure positive scores. Therefore, patients whose signa-
ture peak set matches more closely to the metastatic
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lines will have a higher score than patients matching the
parental line. For organotropic metATAC scores, we
performed the process as explained above, with the
modification of performing DESeq2 analysis on the orga-
notropic line versus parental. For the organotropic meta-
static signal set, the averaged normalized counts for each
replicate of the particular sub-population was used.

TCGA RNA-seq and survival analysis

RSEM-normalized RNA-seq reads for TCGA patients
were downloaded using the R package cgdsr [40] and
raw RSEM data were log2 normalized for downstream
analyses. PAM50 subtype annotations were retrieved
from Netanely et al. [41]. Progression-free interval data
were obtained from Liu et al. [42]. For survival analysis,
patients were stratified by top and bottom 50th percen-
tiles of metATAC scores.

RNA-seq and data analysis

Cells were harvested with QIAzol Lysis Reagent (QIA-
GEN) and homogenized using QIAshredder tubes (QIA-
GEN). For each cell line, 3 biological replicates were
harvested at different passages. RNA isolation was per-
formed using miRNeasy (QIAGEN), and library gener-
ation was performed using TruSeq stranded mRNA
library prep kit (Illumina). Paired-end sequencing was
performed using an Illumina HiSeq4000 sequencer, gen-
erating an average of 26 million reads per library. Reads
were aligned to hg38 and gene counts to GENCODEvV96
transcripts were obtained using STAR aligner v2.7.0 [43]
with default parameters. DESeq2 was used to obtain dif-
ferential gene expression, and HTSFilter [44] was used
to filter for expressed genes. Significant differences were
identified using a BH adjusted p-value cut-off of 0.05.

ChIP-seq and data analysis

Chromatin Immunoprecipitation and library synthesis
were performed as described [45]. Briefly, 107 cells were
cross-linked with DMEM media with 1% formaldehyde
for 15 min and quenched with 2.5 M glycine. After lysis,
nuclei were sonicated with a Bioruptor probe (Diage-
node) in an ice water bath set to medium strength in in-
crements of 10s on and 10s off for 10 min. For the
immunoprecipitation (IP), 5ug of H3K27ac (Abcam
ab4729) or 10 pug of H3K4me3 (Abcam ab8580) antibody
was used for each replicate. Library synthesis was per-
formed using the ThruPLEX kit (Takara) and quantified
using the NEBNext Library Quant Kit (NEB). Sequen-
cing was performed on an Illumina HiSeq2000 sequen-
cer generating an average of 16 million reads per library.
Two biological replicates were generated for each cell
line. Reads were aligned and processed as described
above. Reads for each IP target were merged and a con-
sensus peak set was called using MACS2 with option —
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broad. For analyses requiring gene transcription start
sites (TSS), TSS data in hgl9 coordinates were down-
loaded from BioMart using the R package biomaRt [46,
47]. For all analyses, only TSS of expressed genes were
used. For upset plots comparing the three cell lines,
peaks were called within each cell line. Peaks overlap-
ping the respective consensus peak set were then used
for plotting.

HiChlIP analysis and gene-enhancer linkages

H3K27ac Hi-ChIP interactions for MDA-MB-231 were
first obtained from Cho et al. [48]. All interactions iden-
tified in both Hi-ChIP replicates were first assigned to
the nearest (within 2000 bp) ATAC-seq consensus peak.
Next, only peak-peak interactions that occurred in both
Hi-ChlIP replicates were kept. ATAC peaks were anno-
tated as enhancers if they overlap with H3K27ac peaks
and are greater than 2000 bp away from the nearest TSS,
promoters if they overlap H3K4me3 peaks that them-
selves overlap a TSS, or unknown if they do not satisty
the above criteria. Linkage statistics are enumerated in
Supplemental Table 2.

Differential signal analysis and regulatory motif
enrichment

Using consensus peak sets, reads falling within the peaks
were counted with featureCounts [49]. Counts were de-
termined for each replicate of each cell line. These repli-
cate counts were then input into DESeq2 [36] for
differential binding or accessibility analysis across orga-
notropic (e.g. LM2 versus Par) or metastatic (LM2 and
BrM2 versus Par) contrasts. For enrichment of regula-
tory motifs associated with differentially expressed genes,
a motif bed file was first obtained from Marbach et al.
[50]. This bed file contained the annotated motif occur-
rences of 662 TFs across hgl9 along with a confidence
score based on evolutionary conservation. We first fil-
tered this file for confidence scores greater than 0. Next,
we collapsed TFs into clusters based on RSAT matrix
clustering of JASPAR CORE vertebrate TFs (http://jas-
par.genereg.net/matrix-clusters/vertebrates/) [51]. We
named each cluster using the most common TF family
within the cluster. To obtain gained or lost motifs, we
first counted unique TF clusters occurring under each
consensus ATAC-seq peak and then performed hyper-
geometric tests for each cluster. Significant, differentially
accessible ATAC-seq peaks associated with differentially
expressed genes (either by promoter or linked en-
hancers) were used as the foreground and consensus
peaks were used as the background. Significant peaks
used in the motif analysis were defined as BH adjusted
p-value <0.05. P-values resulting from the hypergeo-
metric tests were BH adjusted and significance was de-
fined as p-value < 0.05.
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Metastasis-free survival analysis

Because the TCGA cohort does not contain site-specific
relapse annotation, we utilized 3 microarray datasets
which total 560 patients annotated for site-specific re-
lapse. We downloaded the publicly available datasets
MSK and EMC (GSE2603, GSE2034, and GSE12276)
[21, 30, 52]. Datasets were RMA normalized and to re-
move batch effects, expression values were converted to
z-scores for all genes across each dataset prior to mer-
ging. Annotations were retrieved from Harrell et al. [22].
Relapse and clinical annotations including subtype, hor-
mone receptor status, age, tumor stage, differentiation
score, and chemotherapy status were available for 223
patients, and so these patients were used for all Kaplan-
Meier (KM) analyses. For all gene-based survival ana-
lyses, patients were split at the 50th percentile and top
were deemed high while bottom were deemed low. Each
gene was represented by its Jetset probe [53]. For single-
gene survival correlation, all identified transcription fac-
tors belonging to significantly gained or lost motif fam-
ilies were selected for analysis. For each factor, the Cox
proportional hazard ratio and p-value were calculated
using the metastasis-free survival times for relapse to
lung, brain, or any site (relapse) and adjusted for covari-
ates subtype, ER, PR, and HER2 statuses, age, tumor
stage, differentiation score, and chemotherapy status.
Log-rank hazard ratios and p-values were also calculated
using the log-rank test.

Statistical analysis and data visualization

All statistical analyses were performed using R version
3.5.2 (R Foundation for Statistical Computing, Vienna,
Austria). Heatmaps were generated using deepTools
package [54]. Graphs were generated using the R pack-
age ggplot2 [55]. Genome track images generated using
the R package Gviz [56]. For all Kaplan-Meier plots, log-
rank test was used to determine statistical significance.
For analysis of multiple intersections, the package
UpsetR [57] was used. P-values in multiple comparisons
were adjusted using BH method.

Results

Identifying the chromatin modification and accessibility
landscape of metastatic breast cancer cells

To identify epigenomic hallmarks of highly metastatic
breast cancer cells, we analyzed the transcriptome and
epigenome of cell sub-populations that were in vivo se-
lected from the well-established claudin-low breast can-
cer cell line MDA-MB-231 (referred to as Par)
(Supplemental Table 1). These include LM2-4175 cells
(referred to as LM2) [30] and MDA231-BrM2 (referred
to as BrM2) [21]. When compared to the Par line, LM2
and BrM2 cells have an enhanced capacity to colonize
the lung and brain of mice, respectively. Moreover, these
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metastatic sub-populations express distinctive gene ex-
pression signatures, which do not correlate with detect-
able protein coding gene mutations [58]. We compared
these cell lines using ChIP-seq of active histone marks
H3K4me3 and H3K27ac. To determine changes in chro-
matin accessibility, we also performed ATAC-seq of
these cell lines [31]. Putative enhancer regions were de-
fined as distal elements marked with H3K27ac peaks
that fall greater than +2kb from the nearest transcrip-
tion start site (TSS) of expressed genes and overlap with
an ATAC-seq peak [59, 60]. Predicted promoters, mean-
while, are defined by H3K4me3 peaks falling within +2
kb from the nearest TSS of expressed genes and overlap
with an ATAC-seq peak [60]. Finally, we utilized an
MDA-MB-231 HiChIP dataset targeting H3K27ac to
identify enhancer-promoter linkages (Supplemental
Table 2) [48].

Based on histone marks and chromatin accessibility
profiles, we found that the metastatic sub-populations
harbor epigenomic changes when compared to the less
metastatic Par line (Supplemental Table 3). LM2 and
BrM2 cells demonstrated distinct H3K4me3, H3K27ac,
and open chromatin profiles from Par line. We found
that most H3K4me3 (n = 16,273), H3K27ac (n = 25,953),
and ATAC (n = 140,499) peaks were shared between the
three sub-populations (Fig. 1a). However, there were still
specific changes within each metastatic sub-population.
Genome-wide heatmaps of significantly altered
H3K4me3 peaks (n =1099) show a similar pattern of al-
terations when comparing both metastatic cell sub-
populations to the Par cells (Fig. 1b, left panel). We also
found differential H3K27ac (n = 3712) peaks and ATAC
(n =128,314) peaks (Fig. 1b, middle and right panels)
when comparing metastatic sub-populations and Par
cells. When comparing both metastatic sub-populations
to Par, chromatin accessibility correlated with H3K4me3
and H3K27ac activation (Fig. 1c). We conclude that
breast cancer cells harbor significant alterations in active
chromatin marks and that these can distinguish meta-
static sub-populations from Par cells.

Brain and lung metastatic competence of breast cancer
cells correlates with increased promoter and enhancer
activation

Next, we analyzed the molecular consequences of
H3K4me3, H3K27ac and chromatin accessibility alter-
ations and their correlations with either multi-organ
metastatic potential (alterations which are common to
both metastatic sub-populations) versus specific organo-
tropic metastatic predilections to brain or lung.

Both LM2 and BrM2 cells displayed significant in-
creases in overall H3K4me3 within annotated promoter
regions, with more H3K4me3 peaks associated with ei-
ther LM2 or BrM2 cells than peaks that are shared by
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both cell sub-populations (Fig. 2a). To ascertain whether
alterations in H3K4me3 are likely to be functional, we
integrated our ChIP-seq analysis with our RNA-seq data
comparing LM2 and BrM2 with Par cells. The expres-
sion of genes with decreased promoter H3K4me3 signal
have reduced expression, whereas genes associated with
increased H3K4me3 signal have significantly higher ex-
pression in LM2 cells or BrM2 compared to Par cells
(Figure S1A-B). A small fraction of unique differentially
expressed genes was associated with altered promoter
activation in LM2 (12.8%) and BrM2 (11.4%) cells, and
only 5.29% of shared genes had changes of promoter ac-
tivation (Fig. 2b). Thus, H3K4me3 changes at the pro-
moters contribute to a small percentage of gene
expression changes that confer both overall metastatic
potential as well as organotropism. The promoters of
several known mediators of metastasis were found to be
activated. For example, there was promoter activation of
the lung metastasis gene Secreted Protein Acidic And
Cysteine Rich (SPARC) [30] in LM2 cells (Fig. 2c), and
brain specific gene Cadherin 18 (CDH18) [61] in BrM2
cells (Fig. 2d). In addition, the promoter H3K4me3 of
the Phospholipase C Beta 1 (PLCBI1) was similarly acti-
vated in LM2 and BrM2 cells (Figure S2A). PLCBI has
been recently shown to promote breast cancer metasta-
sis [62].

Recent profiling of breast cancer cell lines demon-
strated differential enhancer usage across breast cancer
subtypes [26]. To characterize changes within putative
active enhancers that were associated with metastasis,
we focused on H3K27ac regions overlapping ATAC
peaks. A general increase in enhancer H3K27ac was ob-
served, especially for BrM2 cells (Fig. 3a). To annotate
the genes associated with these putative enhancers, we
integrated HiChIP results from MDA-MB-231 cells [48]
with our ATAC-seq results to map enhancer-promoter
linkages (Supplemental Table 2, methods). As expected,
the increased enhancer H3K27ac peaks in metastatic cell
sub-populations are associated with increased gene ex-
pression, whereas the decreased H3K27ac peaks are
linked to decreased gene expression (Figure S1C-D, left).
Notably, randomly shuffling the enhancer-promoter
linkages abrogated the correlation between H3K27ac sig-
nal and gene expression, suggesting that the linkages are
biologically relevant (Figure S1C-D, right). 24.7 and
30.4% of unique, differentially expressed genes are asso-
ciated with enhancer changes in LM2 and BrM2 cells re-
spectively, and only 9.05% of shared genes had changes
of enhancer status (Fig. 3b). More than half of the differ-
entially expressed genes are downregulated genes and
are associated with decreased H3K27ac in the metastatic
cell sub-populations (Fig. 3b). Nonetheless, we found
that the enhancers of several known mediators of metas-
tasis are activated. For instance, the enhancer for
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Epithelial Membrane Protein-2 (EMP2), as shown by
HiChIP promoter-enhancer linkage, exhibits increased
H3K27ac and ATAC peaks in LM2 cells (Fig. 3c). EMP2
is implicated in endothelial cell migration [63]. Likewise,
the enhancer for Regulating Synaptic Membrane Exocyt-
osis 2 (RIMS2), a gene involved in synaptic neurotrans-
mitter release [64], has increased H3K27ac, H3K4me3,
and ATAC peaks in BrM2 cells (Fig. 3d). In addition,
the enhancer H3K27ac, H3K4me3 and ATAC levels of

Apolipoprotein B mRNA Editing Enzyme Catalytic Sub-
unit 3G (APOBEC3G) were similarly induced in LM2
and BrM2 cells (Figure S2B). Notably, APOBEC3G has
been implicated in metastasis of several cancers [65, 66].
Thus, genes involved in overall metastatic potential and
organotropism are regulated by chromatin changes at
gene enhancers.

Our analysis identifies biologically relevant promoter
and enhancer activation states in MDA-MB-231 cell
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sub-populations which correlate with their overall meta-
static potential as well as organotropism for brain or
lung.

A metastasis chromatin accessibility signature associates
with human breast cancer subtype and relapse

To determine if chromatin accessibility was linked to
promoter activation states, we identified the ATAC
peaks that overlapped with annotated promoters
enriched with H3K4me3. A small proportion of pro-
moter elements with relatively open (n =221) or closed
(n =161) chromatin were shared by both metastatic
lines, whereas a significant subset of unique promoter
regions (n =1220) had altered chromatin accessibility in

either LM2 or BrM2 cells alone (Fig. 4a). Similarly, to
determine if chromatin accessibility was linked to en-
hancer activation states, we identified the ATAC-seq re-
gions that overlapped with enhancer-annotated
H3K27ac regions. Among the altered enhancers shared
by both LM2 and BrM2 cells, 73% (n =2928) of them
had increased chromatin accessibility (Fig. 4b). On the
other hand, the organotropic chromatin accessibility
changes (1 = 8926) are more equally distributed into in-
creased and decreased categories (Fig. 4b).

We next tested if the chromatin accessibility landscape of
metastatic cells was recapitulated in primary breast tumors
from human patients with distinct clinical outcome. To this
end, we generated a chromatin accessibility signature, which
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we term the “common metATAC score”, based on ATAC-
seq peaks that were significantly altered between all meta-
static sub-populations and Par cells (Figure S3A). Primary
human breast cancers from The Cancer Genome Atlas
(TCGA) were recently profiled using ATAC-seq [37]. We
used this data to generate a score based on if their chroma-
tin landscape correlated more (high common metATAC
score) or less (low common metATAC score) with that of
the metastatic sub-populations. Accordingly, we found that
primary tumors with high common metATAC score had a
higher probability of relapse (p = 0.0071, Fig. 4c). Although
site of relapse is not annotated in the TCGA cohort, basal-

like and HER2 primary tumors, which are known to be at
risk for brain and lung metastasis, had higher common
metATAC scores compared to the less metastatic luminal A
and B subtypes (Fig. 4d). Because claudin-low was not a part
of the official TCGA annotation, we focused on these four
main subtypes. GREAT gene ontology analysis showed that
several pathways including genes involved in axon midline
choice point recognition are associated with increased (up)
ATAC peaks in the signature, while pathways including
genes involved in protein deubiquitination and response to
misfolded protein are correlated with decreased (down)
peaks in the signature (Figure S3B). ER status is a well-
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known early predictor of prognosis and may be a con-
founder in our survival analysis [67]. When we grouped pa-
tients by ER status as determined by IHC, we found a
significantly higher metATAC score associated with ER
negative patients (Figure S3C). However, the metATAC
score is still capable of identifying a subset of ER positive pa-
tients with significantly increased risk for relapse (Figure
S3D).

These observations demonstrate that shared changes
in the chromatin landscape of the highly metastatic
MDA-MB-231 cell sub-populations are biologically and
clinically relevant.

Promoter and enhancer driven pathways associated with
brain or lung metastasis

To determine the pathways of the genes associated with
promoter and enhancer changes, we integrated the

results from ATAC-seq, H3K4me3 and H3K27ac
ChIP-seq, RNA-seq and HiChIP linkages for pathway
and gene ontology (GO) analysis using EnrichR [68,
69]. For promoter GO we determined genes that are
differentially —expressed and harbor H3K4me3
changes at their promoter. The same procedure was
done for enhancer GO, using HiChIP linkages to
determine gene-enhancer associations. These ana-
lyses revealed pathways associated with either lung
or brain metastasis (Fig. 5, Supplemental Table 4).
For example, LM2 enhancer activated genes were
enriched for regulators of endothelial cell migration,
consistent with the notion that increased migratory
ability is a critical property of metastatic cells. LM2
promoter and enhancer activated genes were
commonly enriched for regulators of vasculature
development, highlighting the importance of vascular
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remodeling in lung metastasis [70]. BrM2 promoter
activated genes were enriched for homophilic cell
adhesion, and one example in this pathway is
CDH18, consistent with the recent reports that cell
clusters had higher metastatic potential [71]. On the
other hand, enhancer-associated genes in BrM2 cells
were mostly associated with suppression of several
pathways, including negative regulators of MAP kin-
ase activity and epithelial cell proliferation.

Thus, our integrated analysis identifies biologically
relevant pathways associated with organotropism of the
MDA-MB-231 cell sub-populations.

Transcription factors associated with chromatin activation
state in metastatic cells

The high-resolution of differentially open or closed
ATAC-seq peaks in the metastatic cells allows us to
precisely identify potential transcription factor binding
sites. As such, we integrated HiChIP, ATAC-seq and

gene expression data to identify motifs of regulatory tran-
scription factors (TFs) that were enriched in chromatin
regions with significantly increased (denoted gained TFs)
or decreased (denoted lost TFs) accessibility when
comparing either LM2 or BrM2 to Par. We determined
concordant ATAC peaks linked to gene expression
changes between each metastatic sub-population and the
Par line, and identified enriched transcription factor
motifs in these regions compared to the background of all
ATAC peaks (Figure S4, S5, and Fig. 6). Because many
transcription factors share similar motifs, we used RSAT
clustering to collapse motifs into their respective RSAT
cluster [51]. In both the LM2 vs Par and BrM2 vs Par
comparisons, motifs for Ets-related, Steroid hormone
receptor, and STAT factors were gained, while the
Runt-related, Kriippel-related, and nuclear receptor
(NR1) motifs were lost (Fig. 6a, b, Figure S5). For lung
metastatic LM2 cells, the other significantly gained motifs
were AP-2-related and HOX-related factors, while the
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other top motifs lost include GATA-type and Jun-related
factors (Fig. 6a, Figure S5). For brain metastatic BrM2
cells, significantly gained motifs include Forkhead box
factors, POU domain, and Jun-related factors, while the
top lost motifs are RFX-related, Grainyhead-related, and
SMAD factors (Fig. 6b, Figure S5). Motifs for 36 and 41
TFs were gained or lost, respectively, in both metastatic

sub-populations (Fig. 6¢ and Figure S5). On the other
hand, LM2 cells specifically gained motifs of 4 TFs and
lost motifs of 75 TFs. BrM2 cells have specific gained mo-
tifs of 48 TFs, and lost motifs of 12 TFs (Fig. 6¢ and Figure
S5). These analyses suggest that multiple TFs contribute
to the shared and distinctive epigenomes of lung and brain
metastatic cells.
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Expression of distinct lineage TFs is associated with distal
metastasis in human breast cancer patients

The association of certain TF binding motifs with open
or closed chromatin regions and transcription in meta-
static cells could be due to the aberrant expression of
these key lineage TFs. Also, the correlation of the com-
mon metATAC score with clinical outcome and breast
cancer subtypes suggest that these underlying TFs might
be important markers of breast cancer subtype, metasta-
sis to distant organs, or multiple overlapping clinical
features.

We first asked whether the TFs associated with the
gained or lost motifs correlated with site-specific relapse.
In this analysis, we utilized 3 independent breast cancer
cohorts (totaling 223 patients after excluding patients
with missing clinical covariates) annotated for site-
specific relapse [21, 30, 52, 72]. When analyzing the top
identified TFs in each organotropic comparison, many
known and novel lineage TFs were found to be associ-
ated with metastatic relapse to the lung, brain, or both
sites using log-rank test or multivariate analyses with
Cox Proportional-Hazards (PH) model (Fig. 7 and Sup-
plemental Table 5). For instance, in human primary tu-
mors, high expression of Transcription Factor AP-2
Gamma (TFAP2C), a TF found to be amplified in 6% of
primary breast cancers (cBioPortal [73, 74]), is positively
correlated with lung relapse (Fig. 7a, top), while low ex-
pression of Retinoic Acid Receptor Alpha (RARA) is asso-
ciated with lung relapse (Fig. 7a, bottom). High
expression of JUN is positively correlated with brain re-
lapse in patients (Fig. 7b, top), while low expression of
Regulatory Factor X7 (RFX?7) is associated with brain re-
lapse (Fig. 7b, bottom). In addition, high expression of
E74 Like ETS Transcription Factor 4 (ELF4) is positively
correlated with both lung and brain relapse (Fig. 7c),
while low expression of Runt Related Transcription Fac-
tor 2 (also known as RUNX Family Transcription Factor
2, or RUNX?2) is associated with both lung and brain re-
lapse (Fig. 7d).

Next, we explored the relationship between metastatic
chromatin states and their associated TFs with breast
cancer subtype and organotropic relapse. The common
metATAC score is higher in basal-like and HER2 sub-
types (Fig. 4d). The LM2 metATAC score is preferen-
tially increased in basal-like tumors, while BrM2
metATAC score is higher in both basal-like and HER2
subtypes (Figure S6A-B). These results suggest that the
chromatin landscape of brain and lung metastatic cells is
partially linked to aggressive molecular subtypes. How-
ever, among the TFs whose activities are associated with
lung or brain metastasis, we found some TFs that were
linked to subtype, while others were not. For example,
TFAP2C is positively associated with lung-specific relapse
and expressed at higher levels in basal-like tumors (Fig. 7a
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and Figure S6C). On the other hand, RUNX2 is negatively
correlated with lung and brain-specific relapse, but is simi-
larly expressed across subtypes (Fig. 7d and Figure S6D).
Likewise, SMADI is negatively correlated with brain-
specific relapse and expressed at slightly lower levels in
basal-like tumors (Figure S6E-F), while Nuclear Receptor
Binding Factor 2 (NRBF2) is positively correlated with
brain-specific relapse and expressed at similar levels across
breast cancer subtypes (Figure S6G-H). Some predicted
TFs also exhibit significant correlation with survival within
breast cancer subtypes. For instance, RUNX2 is negatively
correlated with lung-specific relapse (p =0.013) and JUN
is positively correlated with brain-specific relapse (p =
0.0028) within basal-like patients (n =38, Figure S7A-B).
This suggests that differential expression of TFs even
within subtypes may contribute to increased tumor
aggressiveness.

In summary, our approach identifies a chromatin ac-
cessibility state in primary breast cancers which is par-
tially linked to intrinsic subtype and increases the
likelihood of relapse. Furthermore, this active chromatin
state is associated with lineage TFs, whose variable ex-
pression may further differentiate brain from lung
metastasis.

Discussion
Several important studies have identified transcriptomic
signatures which characterize subgroups of human
breast cancers and their response to therapy. Despite
these advances, the underlying epigenomic determinants
of breast cancer heterogeneity and their influence on
metastatic competence are poorly understood. In this
study, we integrate epigenomic analysis of the well-
established claudin-low MDA-MB-231 breast cancer line
and its metastatic lung and brain sub-populations, with
recent chromatin accessibility profiling of human breast
cancers from TCGA. As the cell model and human data-
sets characterized herein are widely utilized, our data
provides a valuable resource for integrated breast cancer
epigenomic studies. Moreover, our findings suggest that
chromatin profiling could potentially be leveraged for
clinical prognosis, particularly as ATAC-seq can be per-
formed on limited amount of tumor tissue or cells [31].
We identified a chromatin accessibility signature, the
common metATAC score, from human tumors which is
significantly associated with progression free interval.
This finding is consistent with the notion that, in breast
cancer, metastatic competence can be enhanced by the
epigenetic state of malignant cells within the primary
tumor. This active chromatin state is a property of
known subtypes of breast cancer, such as the basal-like
and HER2 tumors. Nevertheless, we also identified TFs
associated with brain or lung relapse for patients inde-
pendently of subtype (e.g. basal-like). This is in
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Fig. 7 Expression of TFs associated with remodeled chromatin regions correlates with site-specific metastatic relapse. a-d Examples of Kaplan-
Meier curves of TF expression in lung metastasis-free (a), brain metastasis-free (b), or both lung and brain metastasis-free (c, d) survival. Human
breast tumors from independent institutes were compiled and classified as “high” or “low” based on whether TF expression was above or below
the median, respectively. Common up, associated with both lung and brain metastasis; Common down, negatively associated with both lung

and brain metastasis. P values were calculated by log-rank test. n =223

agreement with prior studies that demonstrate that gene
expression signatures which correlate with intrinsic sub-
types are indicators of distant organ relapse to the lungs
and brains, but that additional molecular features of
these primary tumors may enhance organotropism [22].
Our results support a model whereby the chromatin
landscape of a given breast cancer subtypes predisposes
to metastasis, but that the activity of specific TFs further
modulates these epigenetic states to influence the site of
metastatic colonization.

Differences in promoter and enhancer utilization be-
tween primary and metastatic tumors have been docu-
mented in several cancer types [75-77]. We find that
metastatic breast cancer cell sub-populations from the
MDA-MB-231 model generally harbor active promoters
and enhancers. When comparing lung and brain meta-
static cells to more indolent cells, alterations in pro-
moter activation were more limited whereas activation
of enhancers was more widespread. Notably, a signifi-
cant proportion of differentially regulated enhancers are
associated with the modulation of mammary develop-
ment, morphogenesis, and cell lineage specification [78,
79]. Basal lineage genes are also activated in malignant
cells located at the invasive front of primary tumors and
are required for dissemination [80]. Thus, tumors with
increased metastatic competence may share common
epigenomic features linked to lineage subtype (e.g. basal-
like). However, significant differences in both promoter
and enhancer landscapes could further distinguish
tumor cells that preferentially colonize the lung or brain.
Importantly, many of these epigenetic alterations were
within the regulatory elements of genes that are known
to mediate and/or mark lung or brain colonization. It is
important to note that only a small proportion of overall
gene expression changes is associated with promoter or
enhancer histone modification and other layers of epi-
genetic regulation may play a role in the expression dif-
ferences between Par and sub-populations.

Ultimately, transcription factors integrate the control
of chromatin dynamics with gene expression. In breast
cancer, several lineage TFs have been identified as medi-
ators of tumor progression. Although the expression of
TFs may be a surrogate for their function, there are
many epigenetic processes that ultimately affect their ac-
tivity [81, 82]. Chromatin accessibility has been success-
fully used to identify the functional effects of pioneering
TFs [83, 84]. Moreover, the technique used in this study,

omni-ATAC-seq, has been shown to have the same ro-
bustness for TF binding prediction as the previous gold
standard DNAase-seq [85]. Our pipeline uncovered ro-
bust candidate epigenetic markers of relapse that were
not identified by previous reports using ChIP-Seq only
[27]. These TFs may help establish or maintain chroma-
tin states which are permissive for the expression of pro-
metastatic gene expression programs.

For instance, the presence of AP-2 and Ets motifs
gained in metastatic lines demonstrate the presence of
canonical active enhancer motifs, as these factors are
known to cooperate with lineage TFs to define tissue-
specific enhancer usage [86]. Several lineage TFs cap-
tured in our analyses are also differentially expressed in
various breast cancer subtypes. For instance, the lu-
minal transcription factor GATAS3 is negatively corre-
lated with lung-specific relapse, consistent with the
metastasis suppressive role of GATA3. The observation
that luminal TFs may be differentially activated in a
sub-population of cells from the MDA-MB-231 cells,
considered a claudin-low cell line, suggests that plasti-
city of lineage gene expression can occur within a given
subtype. Another group of TFs identified in our study
provide novel avenues for exploration. For instance,
TFAP2C expression was significantly associated with
lung relapses, consistent with a recent study [27].
TFAP2C is a pioneer factor that plays important roles
in pluripotency and lineage differentiation [87, 88].
Interestingly, TFAP2C has been considered to regulate
luminal differentiation and its motif is enriched in lu-
minal breast cancer cells [26, 89]. TFAP2C overexpres-
sion is correlated with shorter survival 10years after
diagnosis and a poorer response to anti-hormone ther-
apy [90, 91]. Finally, we identified transcription factors
that commonly correlated with both lung and brain
metastasis. This includes ELF4 which is known for its
role in immune response and hematological malignan-
cies [92] but may also regulate functions required for
both lung and brain metastasis.

Conclusions

Integrating RNA-seq, ChIP-seq and ATAC-seq profil-
ing of metastatic cell lines, we identified distinctive
epigenomic changes associated with gene pathways in
lung and brain metastasis. Using human datasets, we
also demonstrated that signatures of metastatic active
chromatin are partially linked to breast cancer
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subtypes with poor prognosis, and that specific TFs
are associated with either lung or brain relapse for
patients independently of subtype. These findings re-
veal chromatin states of breast cancers with poor out-
come and nominate new potential TF biomarkers for
breast cancer metastasis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512920-020-0695-0.

Additional file 1: Figure S1. Gene expression associated with promoter
and enhancer changes. (A-B) Distribution of significant gene expression
changes (RNA log2FC) associated with promoter H3K4me3 peaks either
significantly decreased or increased in LM2 vs Par (A) or BrM2 vs Par (B).
(C-D) Distribution of significantly gene expression changes (RNA log2FC)
linked with either significantly increased or decreased enhancer H3K27ac
peaks in LM2 vs Par (C, left) or BrM2 vs Par (D, left). Linkages determined
using HiChIP. Shuffle indicates the same plot after randomly shuffling the
linkages. P values were calculated using Wilcox U-test. Figure S2. Com-
mon promoter and enhancer activation in metastatic cells. (A) Genome
track view of the promoter region of PLCBT demonstrating shared
H3K4me3 changes in metastatic sub-populations. (B) Genome track view
of APOBEC3G demonstrating shared enhancer H3K27ac changes in meta-
static sub-populations. Promoter-enhancer linkage was determined by
HiChIP. Figure S3. metATAC workflow and ontology. (A) Schematic of
how the TCGA cohort data and cell line ATAC data were integrated and
analyzed. MDA-MB-231 lines were processed using the same method as
indicated in Corces et al. [37], and top differentially accessible chromatin
regions were used to generate the metATAC signature. Each patient in
the TCGA cohort (n =69) was then assigned a score based on their open
chromatin similarity to Par or metastatic sub-populations (common metA-
TAC score). Significantly different regions defined by p < 5e-5, as deter-
mined by DESeq2 and BH correction. (B) GREAT gene ontology results
associated with increased (up) and decreased (down) peaks in the signa-
ture. (C) Distribution of metATAC score between ER positive and negative
patients as determined by IHC. P-value determined using Wilcoxon rank
sum test. (D) Kaplan-Meier plots of patients separated into ER positive
(left) and negative (right) as determined by IHC. metATAC quantile was
assigned before splitting the patient into the two groups. Figure S4.
Scheme for regulatory motif prediction. Scheme for identification of TFs
associated with differentially expressed genes between each metastatic
sub-population and Par. Reproducible linkages between ATAC peaks were
first determined using HiChIP data and subsequently annotated to be ei-
ther distal or proximal (promoter) to the TSS of each gene. Gene expres-
sion is then used to determine significantly up- or down-regulated
genes. ATAC peaks that are linked to these gene modules (both distal
and proximal) and also follow the same direction of signal change are
elected as regulatory regions. Hypergeometric tests are then performed
on regulatory regions using all regions as background to determine
enriched TF motif clusters (based on RSAT). Motif clusters are finally re-
assigned to transcription factors that fall within each respective cluster.
Figure S5. Regulatory motifs and associated transcription factors. (A) TFs
associated with motif clusters enriched in regions of increased accessibil-
ity (gained) in either LM2 compared to Par, BrM2 compared to Par, or
both. TFs names are color-coded to indicate membership in the respect-
ive motif cluster. (B) Same as (A) but with motif clusters enriched in re-
gions of decreased accessibility (lost) in the indicated comparison.
Figure S6. Subtype specificity of metATAC score and transcription factor
expression. (A-B) Distribution of LM2- (A) or BrM2-specific (B) metATAC
score across PAMS50 subtypes. (C-D) Expression of the indicated transcrip-
tion factors across subtypes. (E) Kaplan-Meier curve of SMADT expression
and brain metastasis-free survival. (F) Expression of SMADT across sub-
types. (G) Kaplan-Meier curve of NRBF2 expression and brain metastasis-
free survival. (H) Expression of NRBF2 across subtypes. NS non-significant.
Figure S7. Subtype specificity of metATAC score and transcription factor
expression. (A) Kaplan-Meier curve of RUNX2 and lung metastasis-free
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survival within basal-like patients. (B) Kaplan-Meier curve of JUN and brain
metastasis-free survival within basal-like patients. N = 38.

Additional file 2: Table S1. Read count and mapping percentage of all
sequenced libraries. Table S2. Statistics from HiChIP data. Number and
percentage of linked enhancers-promoters and promoters-promoters
shown. Genes with linkages are also indicated. Table $3. Number of sig-
nificantly differential peaks and genes in the indicated comparisons.

Additional file 3: Table S4. Gene ontologies and pathways. EnrichR
results from the analysis of promoter- or enhancer-linked gene expression
changes. Each sheet corresponds to a different database that was used
as the parameter in the EnrichR analysis.

Additional file 4: Table S5. Transcription factor hazard ratio table. Each
sheet corresponds to the results from the analysis of organotropic relapse
(Lung.relapse and Brain.relapse) or either relapse (Any.relapse). “Notes”
sheet includes every column and their descriptions. Transcription factors
listed are concordant across two parameters (Hazard ratio by either log-
rank or Cox proportional hazard model and the gain/loss of the TF motif).
padj Adjusted P value; HR Hazard ratio.
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Protein Acidic And Cysteine Rich; TCGA: The Cancer Genome Atlas;

TF: Transcription factor; TFAP2C: Transcription Factor AP-2 Gamma;

TSS: Transcription start site

Acknowledgements

Sequencing was conducted at Yale Stem Cell Center Genomics Core facility
which was supported by the Connecticut Regenerative Medicine Research
Fund and the Li Ka Shing Foundation.

Authors’ contributions

WLC: Conceptualization, Data curation, Methodology, Formal analysis, Writing
- Original draft preparation. CBG: Data curation, Methodology, Writing —
review & editing. JFC: Data curation, Formal analysis, Writing — review &
editing. AA: Data curation, Formal analysis, Writing - review & editing. JC:
Data curation, Formal analysis, Writing — review & editing. QY and DXN:
Conceptualization, Supervision, Writing — Original draft preparation. QY and
DXN contributed equally. The authors read and approved the final
manuscript.

Funding

This work was supported by the Department of Defense Breast Cancer
Research Program Awards W81XWH-15-1-0117 (to QY); National Institutes of
Health ROTCA166376 and ROTCA191489 (to DXN), F31CA243295 (to JFC), and
P30 CA16359 (to Yale Comprehensive Cancer Center); National Science Foun-
dation Graduate Research Fellowship DGE-1122492 (to WLC). The funding
bodies played no role in the design of the study and collection, analysis, and
interpretation of data and in writing the manuscript.

Availability of data and materials

The ChlIP-, ATAC-, and RNA-seq datasets generated and analyzed in this study
are available in the Gene Expression Omnibus (GEO) repository under the
SuperSeries accession number GSE129647 (with SubSeries accessions
GSE129645, GSE129646, and GSE138122). We deposited the results from the
PEPATAC pipeline applied to our ATAC-seq samples in the SubSeries
GSE129646. TCGA gene expression data were retrieved through the cBioPor-
tal R package, cgdsr [40]. Specifically, we used the TCGA Firehose Legacy
dataset (caselist parameter: “brca_tcga_all"). The direct download link for this
dataset is http://download.cbioportal.org/brca_tcga.tar.gz. PAMS50 subtype


https://doi.org/10.1186/s12920-020-0695-0
https://doi.org/10.1186/s12920-020-0695-0
http://download.cbioportal.org/brca_tcga.tar.gz

Cai et al. BMC Medical Genomics (2020) 13:33

were retrieved from Ref [41] (Additional file 2), and progression-free survival
data from Ref [42] (Table S1). TCGA ATAC-seq data were retrieved from Ref
[37] (https://gdc.cancer.gov/about-data/publications/ATACseq-AWG, file: Raw
ATAC-seq insertion counts within the pan-cancer peak set). For metastasis-
free survival analysis, datasets GSE2603, GSE2034, and GSE12276 [21, 30, 52]
were used. MDA-MB-231 HiChIP data were obtained from [48] (GSE97585). R
scripts are deposited in https://github.com/wesleylcai/lbmcmedgenomics202
0_metastasis.

Ethics approval and consent to participate
N/A.

Consent for publication
N/A.

Competing interests
DXN received research funding from Leidos and AstraZeneca.

Author details

'Department of Pathology, Yale School of Medicine, 333 Cedar St, New
Haven, CT 06510, USA. *Present address: Department of Pharmacology,
Vanderbilt University School of Medicine, 2209 Garland Ave, Nashville, TN
37240-0002, USA. *Yale Cancer Center, Yale School of Medicine, 333 Cedar St,
New Haven, CT 06510, USA. “Present address: Rutgers Cancer Institute of
New Jersey, Rutgers, 195 Little Albany St, New Brunswick, NJ 08903-2681,
USA. °Yale Stem Cell Center, Yale School of Medicine, 333 Cedar St, New
Haven, CT 06510, USA. ®Department of Pathology, Yale School of Medicine,
P.O. Box 208023, New Haven, CT 06520-8023, USA. "Department of Medicine
(Medical Oncology), Yale School of Medicine, 333 Cedar St, New Haven, CT
06510, USA.

Received: 8 October 2019 Accepted: 11 February 2020
Published online: 06 March 2020

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;
69(1):7-34.

2. Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global Cancer in women:
burden and trends. Cancer Epidemiol Biomark Prev. 2017,26(4):444-57.

3. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR,
Ross DT, Johnsen H, Akslen LA, et al. Molecular portraits of human breast
tumours. Nature. 2000;406(6797):747-52.

4. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen
KE, Jones LP, Assefnia S, Chandrasekharan S, et al. Identification of
conserved gene expression features between murine mammary carcinoma
models and human breast tumors. Genome Biol. 2007;8(5):R76.

5. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou
CM. Phenotypic and molecular characterization of the claudin-low intrinsic
subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.

6. Ohara AM, Naoi Y, Shimazu K, Kagara N, Shimoda M, Tanei T, Miyake T, Kim
SJ, Noguchi S. PAMS0 for prediction of response to neoadjuvant
chemotherapy for ER-positive breast cancer. Breast Cancer Res Treat. 2019;
173(3):533-43.

7. Laenkholm AV, Jensen MB, Eriksen JO, Rasmussen BB, Knoop AS,
Buckingham W, Ferree S, Schaper C, Nielsen TO, Haffner T, et al. PAM50 risk
of recurrence score predicts 10-year distant recurrence in a comprehensive
Danish cohort of postmenopausal women allocated to 5 years of endocrine
therapy for hormone receptor-positive early breast Cancer. J Clin Oncol.
2018;36(8):735-40.

8. Allott EH, Geradts J, Cohen SM, Khoury T, Zirpoli GR, Bshara W, Davis W,
Omilian A, Nair P, Ondracek RP, et al. Frequency of breast cancer subtypes
among African American women in the AMBER consortium. Breast Cancer
Res. 2018;20(1):12.

9. Holm J, Eriksson L, Ploner A, Eriksson M, Rantalainen M, Li J, Hall P, Czene K.
Assessment of breast Cancer risk factors reveals subtype heterogeneity.
Cancer Res. 2017;77(13):3708-17.

10.  Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy:
current status and perspectives. Genes Dev. 2014;28(11):1143-58.

11. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S,
McKinney S, Emerman J, et al. Transcriptome analysis of the normal human

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34,

35.

36.

Page 16 of 18

mammary cell commitment and differentiation process. Cell Stem Cell.
2008;3(1):109-18.

Kumar B, Prasad M, Bhat-Nakshatri P, Anjanappa M, Kalra M, Marino N,
Storniolo AM, Rao X, Liu S, Wan J, et al. Normal breast-derived epithelial
cells with luminal and intrinsic subtype-enriched gene expression
document Interindividual differences in their differentiation Cascade. Cancer
Res. 2018;78(17):5107-23.

Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-
specific colonization. Nat Rev Cancer. 2009;9(4):274-84.

Medeiros B, Allan AL. Molecular Mechanisms of Breast Cancer Metastasis to
the Lung: Clinical and Experimental Perspectives. Int J Mol Sci. 2019;
20(2272):1-17.

Leone JP, Leone BA. Breast cancer brain metastases: the last frontier. Exp
Hematol Oncol. 2015;4:33.

Schrijver W, Selenica P, Lee JY, Ng CKY, Burke KA, Piscuoglio S, Berman SH,
Reis-Filho JS, Weigelt B, van Diest PJ, et al. Mutation profiling of key Cancer
genes in primary breast cancers and their distant metastases. Cancer Res.
2018;78(12):3112-21.

Chen W, Hoffmann AD, Liu H, Liu X. Organotropism: new insights into molecular
mechanisms of breast cancer metastasis. NPJ Precis Oncol. 2018:2(1):4.

Bertucci F, Finetti P, Birmbaum D. Basal breast cancer: a complex and deadly
molecular subtype. Curr Mol Med. 2012;12(1):96-110.

Lassman AB, DeAngelis LM. Brain metastases. Neurol Clin. 2003;21(1):1-23
Vil.

Slimane K, Andre F, Delaloge S, Dunant A, Perez A, Grenier J, Massard C,
Spielmann M. Risk factors for brain relapse in patients with metastatic breast
cancer. Ann Oncol. 2004;15(11):1640-4.

Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de
Vijver MJ, Gerald WL, Foekens JA, et al. Genes that mediate breast cancer
metastasis to the brain. Nature. 2009;459(7249):1005-9.

Harrell JC, Prat A, Parker JS, Fan C, He X, Carey L, Anders C, Ewend M, Perou
CM. Genomic analysis identifies unique signatures predictive of brain, lung,
and liver relapse. Breast Cancer Res Treat. 2012;132(2):523-35.

Chen T, Dent SY. Chromatin modifiers and remodellers: regulators of cellular
differentiation. Nat Rev Genet. 2014;15(2):93-106.

Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem
cell differentiation and development. Nat Rev Genet. 2017;18(11):643-58.
Pellacani D, Tan S, Lefort S, Eaves CJ. Transcriptional regulation of normal
human mammary cell heterogeneity and its perturbation in breast cancer.
EMBO J. 2019;38(14):e100330.

Franco HL, Nagari A, Malladi VS, Li W, Xi Y, Richardson D, Allton KL, Tanaka
K, Li J, Murakami S, et al. Enhancer transcription reveals subtype-specific
gene expression programs controlling breast cancer pathogenesis. Genome
Res. 2018;28(2):159-70.

Li K, Xu C, Du Y, Junaid M, Kaushik AC, Wei DQ. Comprehensive epigenetic
analyses reveal master regulators driving lung metastasis of breast cancer. J
Cell Mol Med. 2019;23(8):5415-31.

Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang
HY. HiChIP: efficient and sensitive analysis of protein-directed genome
architecture. Nat Methods. 2016;13(11):919-22.

Smith HA, Kang Y. Determinants of Organotropic metastasis. Ann Rev
Cancer Biol. 2017;1(1):403-23.

Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB,
Gerald WL, Massague J. Genes that mediate breast cancer metastasis to
lung. Nature. 2005;436(7050):518-24.

Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA,
Vesuna S, Satpathy AT, Rubin AJ, Montine KS, Wu B, et al. An improved
ATAC-seq protocol reduces background and enables interrogation of frozen
tissues. Nat Methods. 2017;14(10):959-62.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30(15):2114-20.

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat
Methods. 2012,9(4):357-9.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R. Genome project data processing S: the sequence alignment/
map format and SAMtools. Bioinformatics. 2009;25(16):2078-9.

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum
C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq
(MACS). Genome Biol. 2008;9(9):R137.

Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.


https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://github.com/wesleylcai/bmcmedgenomics2020_metastasis
https://github.com/wesleylcai/bmcmedgenomics2020_metastasis

Cai et al. BMC Medical Genomics

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

(2020) 13:33

Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, Silva TC,
Groeneveld C, Wong CK, Cho SW, et al. The chromatin accessibility
landscape of primary human cancers. Science. 2018;362(6413):1-13.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26(1):139-40.

preprocessCore: A collection of pre-processing functions [https./github.
com/bmbolstad/preprocessCore].

cgdsr: R-Based API for Accessing the MSKCC Cancer Genomics Data Server
(CGDS) [https://CRAN R-project.org/package=cgdsr].

Netanely D, Avraham A, Ben-Baruch A, Evron E, Shamir R. Expression and
methylation patterns partition luminal-a breast tumors into distinct
prognostic subgroups. Breast Cancer Res. 2016;18(1):74.

Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD,
Kovatich AJ, Benz CC, Levine DA, Lee AV, et al. An integrated TCGA pan-
Cancer clinical data resource to drive high-quality survival outcome
analytics. Cell. 2018;173(2):400-16 e411.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013;29(1):15-21.

Rau A, Gallopin M, Celeux G, Jaffrezic F. Data-based filtering for replicated
high-throughput transcriptome sequencing experiments. Bioinformatics.
2013;29(17):2146-52.

Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH, Kim TH. Histone
Deacetylases positively regulate transcription through the elongation
machinery. Cell Rep. 2015;13(7):1444-55.

Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W.
BioMart and bioconductor: a powerful link between biological databases
and microarray data analysis. Bioinformatics. 2005;21(16):3439-40.

Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the
integration of genomic datasets with the R/bioconductor package biomaRt.
Nat Protoc. 2009;4(8):1184-91.

Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, Yost KE, Kim J, He
J, Nevins SA, et al. Promoter of INcRNA gene PVT1 is a tumor-suppressor
DNA boundary element. Cell. 2018;173(6):1398-412 e1322.

Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics.
2014;30(7):923-30.

Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S. Tissue-
specific regulatory circuits reveal variable modular perturbations across
complex diseases. Nat Methods. 2016;13(4):366-70.

Castro-Mondragon JA, Jaeger S, Thieffry D, Thomas-Chollier M, van Helden
J. RSAT matrix-clustering: dynamic exploration and redundancy reduction of
transcription factor binding motif collections. Nucleic Acids Res. 2017;45(13):
el19.

Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D,
Timmermans M, Meijer-van Gelder ME, Yu J, et al. Gene-expression profiles
to predict distant metastasis of lymph-node-negative primary breast cancer.
Lancet. 2005;365(9460):671-9.

Li Q, Birkbak NJ, Gyorffy B, Szallasi Z, Eklund AC. Jetset: selecting the optimal
microarray probe set to represent a gene. BMC Bioinformatics. 2011;12:474.
Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T. deepTools: a flexible
platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;
42(Web Server issue):W187-91.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Verlag New York:
Springer; 2016.

Hahne F, lvanek R. Visualizing genomic data using Gviz and bioconductor.
Methods Mol Biol. 2016;1418:335-51.

Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization
of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938-40.
Jacob LS, Vanharanta S, Obenauf AC, Pirun M, Viale A, Socci ND, Massague J.
Metastatic competence can emerge with selection of preexisting oncogenic
alleles without a need of new mutations. Cancer Res. 2015;75(18):3713-9.
Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z,
Lee LK, Stuart RK, Ching CW, et al. Histone modifications at human
enhancers reflect global cell-type-specific gene expression. Nature. 2009;
459(7243):108-12.

Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB,
Zhang X, Wang L, Issner R, Coyne M, et al. Mapping and analysis of
chromatin state dynamics in nine human cell types. Nature. 2011;
473(7345):43-9.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Page 17 of 18

Shibata T, Shimoyama Y, Gotoh M, Hirohashi S. Identification of human
cadherin-14, a novel neurally specific type Il cadherin, by protein interaction
cloning. J Biol Chem. 1997;272(8):5236-40.

Sengelaub CA, Navrazhina K, Ross JB, Halberg N, Tavazoie SF. PTPRN2 and
PLCbetal promote metastatic breast cancer cell migration through
PlI(4,5)P2-dependent actin remodeling. EMBO J. 2016;35(1):62-76.

Gordon LK, Kiyohara M, Fu M, Braun J, Dhawan P, Chan A, Goodglick L,
Wadehra M. EMP2 regulates angiogenesis in endometrial cancer cells
through induction of VEGF. Oncogene. 2013;32(46):5369-76.

Wang Y, Sudhof TC. Genomic definition of RIM proteins: evolutionary
amplification of a family of synaptic regulatory proteins. Genomics. 2003;
81(2):126-37.

Ding Q, Chang CJ, Xie X, Xia W, Yang JY, Wang SC, Wang Y, Xia J, Chen L,
Cai C, et al. APOBEC3G promotes liver metastasis in an orthotopic mouse
model of colorectal cancer and predicts human hepatic metastasis. J Clin
Invest. 2011;121(11):4526-36.

Lan H, Jin K, Gan M, Wen S, Bi T, Zhou S, Zhu N, Teng L, Yu W. APOBEC3G
expression is correlated with poor prognosis in colon carcinoma patients
with hepatic metastasis. Int J Clin Exp Med. 2014;7(3):665-72.

Bentzon N, During M, Rasmussen BB, Mouridsen H, Kroman N. Prognostic
effect of estrogen receptor status across age in primary breast cancer. Int J
Cancer. 2008;122(5):1089-94.

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z,
Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, et al. Enrichr: a
comprehensive gene set enrichment analysis web server 2016 update.
Nucleic Acids Res. 2016;44(W1):W90-7.

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan
A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis
tool. BMC Bioinformatics. 2013;14:128.

Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR,
Manova-Todorova K, Massague J. Mediators of vascular remodelling co-
opted for sequential steps in lung metastasis. Nature. 2007;446(7137):765—
70.

Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, Krol
I, Scheidmann MG, Beisel C, Stirnimann CU, et al. Circulating tumor cell
clustering shapes DNA methylation to enable metastasis seeding. Cell. 2019;
176(1-2):98-112 e114.

Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D, Kreike B, Zhang
Y, Wang Y, Ishwaran H, et al. Lung metastasis genes couple breast tumor
size and metastatic spread. Proc Natl Acad Sci U S A. 2007;104(16):6740-5.
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A,
Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal: an
open platform for exploring multidimensional cancer genomics data.
Cancer Discov. 2012;2(5):401-4.

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y,
Jacobsen A, Sinha R, Larsson E, et al. Integrative analysis of complex cancer
genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):
pl1.

Denny SK, Yang D, Chuang CH, Brady JJ, Lim JS, Gruner BM, Chiou SH,
Schep AN, Baral J, Hamard C, et al. Nfib promotes metastasis through a
widespread increase in chromatin accessibility. Cell. 2016;166(2):328-42.

Roe JS, Hwang Cl, Somerville TDD, Milazzo JP, Lee EJ, Da Silva B, Maiorino L,
Tiriac H, Young CM, Miyabayashi K, et al. Enhancer reprogramming
promotes pancreatic Cancer metastasis. Cell. 2017;170(5):875-88 e820.
Morrow JJ, Bayles I, Funnell APW, Miller TE, Saiakhova A, Lizardo MM, Bartels
CF, Kapteijn MY, Hung S, Mendoza A, et al. Positively selected enhancer
elements endow osteosarcoma cells with metastatic competence. Nat Med.
2018;24(2):176-85.

Lee HK, Willi M, Shin HY, Liu C, Hennighausen L. Progressing super-
enhancer landscape during mammary differentiation controls tissue-specific
gene regulation. Nucleic Acids Res. 2018:46(20):10796-809.

Pellacani D, Bilenky M, Kannan N, Heravi-Moussavi A, Knapp D, Gakkhar S,
Moksa M, Carles A, Moore R, Mungall AJ, et al. Analysis of Normal human
mammary Epigenomes reveals cell-specific active enhancer states and
associated transcription factor networks. Cell Rep. 2016;17(8):2060-74.
Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast
cancer requires a conserved basal epithelial program. Cell. 2013;155(7):
1639-51.

Filtz TM, Vogel WK, Leid M. Regulation of transcription factor activity by
interconnected post-translational modifications. Trends Pharmacol Sci. 2014;
35(2):76-85.


https://github.com/bmbolstad/preprocessCore
https://github.com/bmbolstad/preprocessCore
https://cran.r-project.org/package=cgdsr

Cai et al. BMC Medical Genomics

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

(2020) 13:33

Tootle TL, Rebay I. Post-translational modifications influence transcription

factor activity: a view from the ETS superfamily. Bioessays. 2005;27(3):285-98.

Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, Pritchard JK. Accurate
inference of transcription factor binding from DNA sequence and
chromatin accessibility data. Genome Res. 2011;21(3):447-55.

Sherwood R, Hashimoto T, O'Donnell CW, Lewis S, Barkal AA, van Hoff JP,
Karun V, Jaakkola T, Gifford DK Discovery of directional and nondirectional
pioneer transcription factors by modeling DNase profile magnitude and
shape. Nat Biotechnol. 2014;32(2):171-8.

Li Z, Schulz MH, Look T, Begemann M, Zenke M, Costa IG. Identification of
transcription factor binding sites using ATAC-seq. Genome Biol. 2019;20(1):
45,

Vierbuchen T, Ling E, Cowley CJ, Couch CH, Wang X, Harmin DA, Roberts
CWM, Greenberg ME. AP-1 transcription factors and the BAF complex
mediate signal-dependent enhancer selection. Mol Cell. 2017,68(6):1067-82
el012.

Li L, Wang Y, Torkelson JL, Shankar G, Pattison JM, Zhen HH, Fang F, Duren
Z,Xin J, Gaddam S, et al. TFAP2C- and p63-dependent networks
sequentially rearrange chromatin landscapes to drive human epidermal
lineage commitment. Cell Stem Cell. 2019;24(2):271-84 e278.

Pastor WA, Liu W, Chen D, Ho J, Kim R, Hunt TJ, Lukianchikov A, Liu X, Polo
JM, Jacobsen SE, et al. TFAP2C regulates transcription in human naive
pluripotency by opening enhancers. Nat Cell Biol. 2018;20(5):553-64.

Cyr AR, Kulak MV, Park JM, Bogachek MV, Spanheimer PM, Woodfield GW,
White-Baer LS, O'Malley YQ, Sugg SL, Olivier AK; et al. TFAP2C governs the

luminal epithelial phenotype in mammary development and carcinogenesis.

Oncogene. 2015;34(4):436-44.

Perkins SM, Bales C, Vladislav T, Althouse S, Miller KD, Sandusky G, Badve S,
Nakshatri H. TFAP2C expression in breast cancer: correlation with overall
survival beyond 10 years of initial diagnosis. Breast Cancer Res Treat. 2015;
152(3):519-31.

Gee JM, Eloranta JJ, Ibbitt JC, Robertson JF, Ellis 10, Williams T, Nicholson R,
Hurst HC. Overexpression of TFAP2C in invasive breast cancer correlates
with a poorer response to anti-hormone therapy and reduced patient
survival. J Pathol. 2009;217(1):32-41.

Suico MA, Shuto T, Kai H. Roles and regulations of the ETS transcription
factor ELF4/MEF. J Mol Cell Biol. 2017,9(3):168-77.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 18 of 18

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cell lines
	ATAC-seq and data analysis
	TCGA ATAC-seq analysis
	TCGA RNA-seq and survival analysis
	RNA-seq and data analysis
	ChIP-seq and data analysis
	HiChIP analysis and gene-enhancer linkages
	Differential signal analysis and regulatory motif enrichment
	Metastasis-free survival analysis
	Statistical analysis and data visualization

	Results
	Identifying the chromatin modification and accessibility landscape of metastatic breast cancer cells
	Brain and lung metastatic competence of breast cancer cells correlates with increased promoter and enhancer activation
	A metastasis chromatin accessibility signature associates with human breast cancer subtype and relapse
	Promoter and enhancer driven pathways associated with brain or lung metastasis
	Transcription factors associated with chromatin activation state in metastatic cells
	Expression of distinct lineage TFs is associated with distal metastasis in human breast cancer patients

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

