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Abstract

Background: Bronchoscopy for suspected lung cancer has low diagnostic sensitivity, rendering many inconclusive
results. The Bronchial Genomic Classifier (BGC) was developed to help with patient management by identifying
those with low risk of lung cancer when bronchoscopy is inconclusive. The BGC was trained and validated on
patients in the Airway Epithelial Gene Expression in the Diagnosis of Lung Cancer (AEGIS) trials. A modern patient
cohort, the BGC Registry, showed differences in key clinical factors from the AEGIS cohorts, with less smoking
history, smaller nodules and older age. Additionally, we discovered interfering factors (inhaled medication and
sample collection timing) that impacted gene expressions and potentially disguised genomic cancer signals.

Methods: In this study, we leveraged multiple cohorts and next generation sequencing technology to develop a
robust Genomic Sequencing Classifier (GSC). To address demographic composition shift and interfering factors, we
synergized three algorithmic strategies: 1) ensemble of clinical dominant and genomic dominant models; 2)
development of hierarchical regression models where the main effects from clinical variables were regressed out
prior to the genomic impact being fitted in the model; and 3) targeted placement of genomic and clinical
interaction terms to stabilize the effect of interfering factors. The final GSC model uses 1232 genes and four clinical
covariates – age, pack-years, inhaled medication use, and specimen collection timing.
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Results: In the validation set (N = 412), the GSC down-classified low and intermediate pre-test risk subjects to very
low and low post-test risk with a specificity of 45% (95% CI 37–53%) and a sensitivity of 91% (95%CI 81–97%),
resulting in a negative predictive value of 95% (95% CI 89–98%). Twelve percent of intermediate pre-test risk
subjects were up-classified to high post-test risk with a positive predictive value of 65% (95%CI 44–82%), and 27%
of high pre-test risk subjects were up-classified to very high post-test risk with a positive predictive value of 91%
(95% CI 78–97%).

Conclusions: The GSC overcame the impact of interfering factors and achieved consistent performance across
multiple cohorts. It demonstrated diagnostic accuracy in both down- and up-classification of cancer risk, providing
physicians actionable information for many patients with inconclusive bronchoscopy.

Keywords: Lung cancer, Bronchoscopy, Risk stratification, Gene expression, Whole transcriptome RNA sequencing,
Machine learning, Molecular diagnostic test

Background
The National Lung Screening Trial showed that low dose
computed tomographic (CT) screening results in a mor-
tality reduction through early detection of lung nodules
[1], but suffers a high rate of false positive findings, result-
ing in additional diagnostic procedures to reach a defini-
tive diagnosis. Compared to other procedures,
bronchoscopy is a relatively safe and less invasive diagnos-
tic tool for the evaluation of lung nodules, with low com-
plication rates [2]. However, the reported sensitivity of
bronchoscopy is as low as 34% and varies widely depend-
ing on the location and size of the lesion, which results in
a suboptimal diagnostic yield [3]. Patients with nondiag-
nostic bronchoscopy results are often referred for add-
itional invasive procedures, including surgical lung biopsy
and transthoracic needle biopsy. To reduce the rate and
risk of these invasive procedures, complementary and less
invasive approaches are needed to improve the overall
diagnostic yield after bronchoscopy and to provide physi-
cians with more actionable information.
Using a microarray-based gene expression platform,

the Bronchial Genomic Classifier (BGC) was originally
developed to assess the risk of lung cancer in current
and former smokers with a nondiagnostic bronchoscopy
[4, 5]. The BGC leverages the molecular “field of injury”
that occurs in airway epithelial cells exposed to cigarette
smoke [6]. Gene expression changes in the airway epi-
thelium were found to correlate with the presence of
cancerous lung nodules in current and former smokers
[7]. The BGC was designed to be a “rule-out” test, with
high sensitivity to detect malignancy and a negative pre-
dictive value over 90% when patients with an intermedi-
ate pre-test cancer risk are reclassified as low (post-test)
risk. Test performance was validated in two independent
cohorts [4, 5]; and clinical utility of the BGC was dem-
onstrated in the same cohorts [8] by modeling the po-
tential reduction in invasive procedures among patients
who were down-classified from intermediate pre-test to
low post-test risk of lung cancer.

In this study, we developed a second-generation risk
stratification algorithm for lung cancer – the Genomic Se-
quencing Classifier (GSC) –with broadened utility beyond
the BGC. Like the BGC, the GSC continues to leverage
the molecular field of injury whereby cigarette smoking
creates gene expression changes in bronchial airway epi-
thelial cells, some of which are associated with lung cancer
[6, 7]. As cigarette smoking impacts the bronchial airway
transcriptome differently among current vs. former
smokers [6], smoking status (current vs. former) is now
recognized to be a dominant factor explaining the overall
bronchial airway gene expression variations. The genome-
wide impact of smoking status makes it challenging to dis-
tinguish genomic lung cancer signals from smoking effect
in bronchial airway epithelium. To better address such a
challenge, we developed a genomic smoking index to cap-
ture the smoking effect shared among subjects with and
without lung cancer, and then included it as a covariate in
algorithm development.
In developing the GSC, we utilized samples from over

1600 patients from several clinical cohorts, all of whom
underwent bronchoscopy after suspicious lung nodules
were detected on HRCT and most of whom (96%) were
current or former smokers. Due to the large number of
samples, multiple sequencing batches needed to be proc-
essed over a period of time and by multiple laboratory oper-
ators. Therefore, technical batch effects among processing
runs needed to be minimized. This was achieved through a
two-step approach: early detection of potential batch effects
using replicated control samples carefully placed throughout
development phase processing runs, and removal of
unwanted variation with algorithmic optimization.
Combining multiple independent cohorts posed

unique challenges: the most critical one being distribu-
tion shifts in key clinical factors. In addition, we found
that differences in airway epithelial gene expression were
linked to the timing of bronchial brushing specimen col-
lection during the bronchoscopy procedure. The propor-
tion of patients with sample collection prior to, versus
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after, other cytology and/or pathology sampling during
bronchoscopy was substantially different across cohorts
and this imbalance was associated with gene expression
differences across cohorts. Moreover, the sequencing
data used for classifier development is from upper air-
way bronchial epithelial cells, which are not direct sam-
plings of the lung lesion itself. It is therefore not
surprising that a genomic signal differentiating malig-
nant from benign would be relatively modest, and poten-
tially masked or confounded by stronger signals such as
those due to smoking damage response, or age and other
clinical characteristics. To compensate for this, we lever-
aged interaction terms between clinical and genomic fea-
tures to better manage the impact from these factors
and to maintain overall classification performance across
cohorts. An ensemble classification approach was uti-
lized to stabilize performance across patients with differ-
ent clinical characteristics and multiple batches in
sequencing.
Here we describe the identification and mitigation of

technical and analytical challenges in developing the
GSC using next generation whole transcriptome RNA
sequencing data. We demonstrate that the GSC achieved
robust performance across different clinical cohorts for
both down- and up- classification of lung cancer risk.
We propose potential clinical utility for nodule manage-
ment in patients with inconclusive bronchoscopy results.

Methods
Study design
This study utilized bronchial brushing samples from
three cohorts of current and former smokers who
underwent bronchoscopy for suspected lung cancer: the
Airway Epithelial Gene Expression in the Diagnosis of
Lung Cancer (AEGIS-1 and AEGIS-2) [4], and the pro-
spective BGC Registry study [9]. A total of 1718 subjects
with a suspicious lung nodule were enrolled in the AEGI
S study and 576 subjects were enrolled in the BGC
Registry study (Additional file 1 Fig. S1) at the time of
algorithm development. Subjects were excluded from
the development and validation of the classifiers due to
missing clinical data, low RNA sample quantity, or a
sequencing QC failure. Subjects within indication are
defined as those satisfying these criteria: they are current
or former smokers, they had nondiagnostic bronchos-
copy results and they do not have a history of former or
concurrent cancer. All other subjects are considered out
of indication (OOI) and they include never smokers,
subjects with malignancy (lung cancer) detected at bron-
choscopy, subjects with cancers metastatic to the lung,
and subjects with a history of former or concurrent can-
cer. In AEGIS, 435 subjects were within indication. The
assignment of AEGIS subjects to training and test co-
horts used in the BGC validation was preserved here [4,

5]. In the BGC Registry cohort, 288 subjects were within
indication, and were randomly split into 122 subjects in
the training set and 166 subjects in the test set (Add-
itional file 1 Fig. S1). In the combined set of AEGIS and
BGC Registry cohorts, there were 1361 subjects out of
indication, including 947 subjects with malignancy de-
termined at bronchoscopy, 63 never smokers and 203
subjects with a history of former or concurrent cancer.
All out-of-indication subjects were assigned to the train-
ing set since they were informative in understanding
genomic features such as cancer signals, smoking dam-
age and epithelial cell types.
All subjects were followed until a diagnosis was estab-

lished, or for 12 or 24 months after bronchoscopy. A
diagnosis of lung cancer was established at the time of
bronchoscopy or subsequently by additional diagnostic
procedures. Benign disease was determined based on a
review of medical records and follow-up procedures at
12 months post-bronchoscopy [4, 5].

Molecular testing, sequencing pipeline, and data QC
Bronchial brushing samples were collected during bron-
choscopy and were stored in a nucleic acid preservative
(RNAprotect, QIAGEN, Hilden, Germany) before ship-
ment to Veracyte for processing. From each brushing
sample, total RNA was extracted using the miRNeasy
Mini Kit (QIAGEN, Hilden, Germany), quantitated
(QuantiFluor RNA System, Promega, Madison, WI) and
50 ng was used as input to the TruSeq RNA Access Li-
brary Prep procedure (Illumina, San Diego, CA) for cod-
ing transcriptome enrichment. Libraries meeting quality
control criteria were sequenced using NextSeq 500 in-
struments (2 × 75 bp paired-end reads) with the High
Output Kit (Illumina, San Diego, CA). Raw sequencing
(FASTQ) files were aligned to the Human Reference as-
sembly 37 (Genome Reference Consortium) using the
STAR RNA-seq aligner software [10]. Uniquely mapped
and non-duplicate reads were summarized for 63,677
annotated Ensembl genes using HTSeq [11]. Data quality
metrics were generated using RNA-SeQC [12]. Samples
were excluded and re-sequenced when their library
sequence data did not achieve minimum criteria for total
reads, uniquely mapped reads, mean per-base coverage,
base duplication rate, percentage of bases aligned to cod-
ing regions, base mismatch rate and uniformity of cover-
age within each gene. To monitor potential technical
batch effects, four commercially acquired cell lines and
lung tissue samples (control samples) and bronchial
brushing samples from five patients (sentinel samples)
were included in each 96 well plate across all sequencing
runs. The sentinel samples were selected from the com-
mercial stream of the BGC with diverse clinical features
and gene expression representative of the patient popula-
tion. Kinship analysis [13] was performed on all samples
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with acceptable sequencing quality metrics to ensure sam-
ple identity.

Genomic gender
We developed a genomic gender index to verify that
samples sequenced were in agreement with the corre-
sponding clinical annotation. The genomic gender index
uses raw expression counts from 9 genes on chromo-
some Y and 611 genes on chromosome X, and is calcu-
lated as follows:

Genomic gender index ¼ Σi log2 yi þ 1ð Þ
log2 Σ jx j

� � ;

where and xj ′ s and yi ′ s are raw counts for genes on
chromosome X and Y, respectively. The genomic gender
of a sample is “Male” if the index is greater than 3.16,
and “Female” otherwise. Mentions of gender hereafter in
this paper refer to genomic gender.

Normalization and gene filtering
Sequence data were filtered to exclude any features that
were not targeted for enrichment by the library assay,
resulting in 26,268 Ensembl genes. Expression count
data at the gene level were normalized by the variance
stabilizing transformation (VST) method in DESeq2
[14]. We used BGC Registry training samples that were
within indication as the seed set, which is a frozen data-
set used to estimate the dispersion-mean relationship of
gene expression. Dispersions were fit using the “local”
option and considering subject diagnosis (benign/malig-
nant label), clinical smoking status and specimen collec-
tion timing. For each individual sample in the training
set and the independent test set, the sample is combined
and normalized with the seed set samples. Size factors
and normalization factors, which are sample-level and
gene x sample level adjustment scale, were estimated
using the seed set samples as reference. Normalization
factors for individual genes were estimated separately for
the plus strands and the minus.
From the 26,268 gene expression features profiled by

the assay platform [15, 16], we identified 7991 genes
with less than 1 transcript per million in over 99% of all
samples in the training set, which were hereafter defined
as low expressers and excluded from feature selection.
Meanwhile, we identified 369 genes with excessive vari-
ability under constant assay conditions, thus potentially
affected by batch effects, using replicated control and
sentinel samples processed under similar technical con-
ditions (i.e. batches) using the RUV method [17]. After
removal of the low expressers and batch-sensitive genes,
a total of 17,954 genes were included in subsequent
analyses.

Gene expression correlation analysis
We applied Weighted Gene Co-expression Network
Analysis (WGCNA) [18, 19] on the gene expression pro-
files of bronchial brushing samples from within-
indication subjects (N = 311), to examine the gene ex-
pression patterns and their association with subject diag-
nosis (lung cancer or benign disease), clinical factors
(current or former smoker, pack-years, current use of in-
haled medication), specimen collection timing, and co-
hort (AEGIS or BGC Registry). Genes on sex
chromosomes were removed from this analysis. Normal-
ized (VST) gene expression data were used to construct
a co-expression network and module eigengenes (the
first principal component of individual gene modules).
We examined over-represented biological processes in
each gene module using PANTHER [20].

Genomic smoking index
Several previous studies showed reversible and irrevers-
ible effects of smoking on epithelial gene expression,
with distinguishable patterns between current versus
former smokers [6, 21]. A binary classification model for
current or former smoker status was trained using 1438
samples with clinical smoking status from the training
portion of AEGIS and BGC Registry cohorts, augmented
with 140 samples from an additional independent study
cohort [22]. The input features were normalized gene
expression levels after exclusion of genes with low ex-
pression or affected by batch effects. Five-fold cross-
validation (CV) with five repeats were used to evaluate
training performance of the genomic smoking index.
Sample partition for cross-validation was balanced by
smoking status (current vs. former), pre-test risk (low,
intermediate and high) and cohort.
Within each CV loop, model training comprised three

sequential steps (Fig. 1). (1) Feature selection by differ-
ential expression (DE) analysis for smoking status, which
was performed using DESeq2 [14], with gender and co-
hort included in the design matrix. Genes differentially
expressed by smoking status with FDR < 0.05 were se-
lected into a feature set. (2) A feature reduction step to
bring down the size of the feature set by a proportion of
0.1, 0.2 or 0.5 through HOPACH [23] or hierarchical
clustering was also performed. Six additional feature sets
were generated through this process. (3) At the model
training step, hyperparameter optimization used an
inner layer of 5-fold CV with five repeats. For each fea-
ture set, we examined two classification models: support
vector machine (SVM) and logistic regression with elas-
tic net. Ensemble models were also examined by com-
bining individual machine learning methods via the
weighted average of scores of individual models [24].
The final selected model was logistic regression using
248 gene predictors, trained on the entire training set
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(N = 1578) with elastic net regularization (hyperpara-
meters α = 0.129, λ = 0.131). The genomic smoking index
is the continuous logit score by the final model and was
used as a continuous feature in benign vs. malignant
classifiers.

Cell populations in the bronchial samples
A bronchial brush collects airway epithelial cells, con-
sisting of ciliated, secretory and basal cells, with possible
contamination from blood and inflammatory cells [25,
26]. To estimate the cell populations of our samples, we
used the single sample GSEA algorithm [27] to derive
cell type indexes for three types of airway epithelial cells
(basal, ciliated and secretory) [28], blood cells [29] and
immune cells [27] respectively. Each index is the gene
set enrichment score for respective cell-type-specific
signature genes (Additional file 2).

Genomic classifier for specimen collection timing
Specimen collection timing is a binary variable that de-
scribes whether the bronchial brushing sample is col-
lected prior to or after other cytology and/or pathology
sampling during bronchoscopy. We observed a correl-
ation between specimen collection timing and cell type
index. We used this insight to train a genomic classifier
for specimen collection timing (prior vs. after), as a pro-
portion of the training samples have this information
missing and such a genomic classifier will provide the
needed imputation. This classifier was developed using
all BGC Registry training samples for which the collec-
tion timing variable was clinically recorded (N = 285). In-
put features were restricted to genes that were members
of the airway epithelial, blood or immune cell signatures
(Additional file 2). Classifier training utilized ten repeats
of 5-fold cross-validation with four feature selection op-
tions as follows: no feature selection, differentially
expressed genes with adjusted p-value < 0.05 with or
without additional feature reduction by HOPACH or
hierarchical clustering. Each feature set of the cross-
validation training portion was fit into SVM, elastic net

logistic regression and ensemble of all individual models
with the same feature set (Fig. 1). The final classifier is a
logistic regression model using 84 gene predictors. Its
performance was validated on the test set reserved for
the GSC benign/malignant lung cancer classifier, with a
pre-defined decision boundary = 0.5 on the probability
scale. Samples with higher probability score than the de-
cision boundary are predicted as being collected “After”.

GSC development
Genomic feature selection
Selection of gene expression features for GSC develop-
ment involved multiple steps. As described above, an ini-
tial gene filtering step excluded low expressers and
genes sensitive to batch effects. Second, the differential
gene expression analysis step identified genes differen-
tially expressed with respect to the benign/malignant
label for lung cancer. Next, a feature reduction step was
performed to trim down the gene feature set by a pro-
portion of 0.1, 0.2 or 0.5 through HOPACH [23] or hier-
archical clustering to remove highly correlated or
redundant features. The final gene set combined with
clinical covariates were provided as the input features
for machine learning algorithms.

Differential expression analysis
For the genomic feature selection step described above,
we identified genes differentially expressed between
bronchial brushing samples from subjects with benign
and malignant pulmonary nodules. We carried out dif-
ferential gene expression analysis for cancer status (be-
nign versus malignant) with DESeq2 [14]. Raw gene-
level expression counts of 17,954 genes from the initial
feature filtering step were used to perform the differen-
tial analysis. To control for variation associated with
clinical factors, gender, clinical smoking status and co-
hort were included in the design matrix. To boost the
sample size and the power of the DE analysis, we used
an auxiliary set of out-of-indication malignant bronchial
samples in addition to the within-indication training

Fig. 1 Analysis and evaluation pipeline based on a nested cross-validation schema
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samples in the DE analysis. The auxiliary set was com-
posed of bronchial samples from 579 AEGIS subjects
and 41 subjects from an independent study [22]. These
samples were out of indication due to lung malignancy
diagnosed at the time of bronchoscopy and therefore in-
cluded in the auxiliary set. The DE step of feature selec-
tion identified genes differentially expressed with respect
to benign/malignant label with FDR < 0.05.

Imputation for missing values in clinical variables
Imputation was applied to generate values for clinical
variables missing in the clinical records of some subjects,
when those variables are under consideration as candi-
date classification features. These include years since
quitting smoking, pack-years, nodule size and age. To
impute those missing values, the median value was cal-
culated for each cohort using subjects with non-missing
values separately for within-indication and out-of-
indication groups and further subdivided by physician
assessed risk group (low, intermediate and high). Inhaled
medication is a binary variable with “yes” indicating cur-
rently taking inhaled medication and “no” indicating not
currently taking such medication; the default value was
“no” if it was missing. For specimen collection timing,
the genomic classifier for specimen collection timing
was used to impute missing data.

Training the benign vs. malignant classifiers
For model training, the response variable was the adjudi-
cated benign/malignant diagnosis label, and the predict-
ive features comprised clinical features and normalized
expression levels for differentially expressed genes. We
examined three types of feature sets: clinical-dominant
feature sets including age, genomic gender, pack years,
specimen collection timing, inhaled medication use, and
genomic smoking index; genomic-only feature sets in-
cluding individual gene features and the genomic smok-
ing index; and clinical-genomic feature sets that
included clinical variables and gene features as well as
interactions between the two. We evaluated multiple
classification models, including random forest, support
vector machine, linear discriminant analysis, gradient
boosting and penalized logistic regression. We also ex-
amined ensemble models constructed as the weighted
average of scores from individual classifiers.
Each classifier was evaluated using repeated 5-fold

cross-validation. Sample partitions for cross-validation
were balanced by adjudicated benign/malignant label,
smoking status and specimen collection timing based on
the prevalence in the overall training set. Hyperpara-
meter tuning was performed within each cross-
validation split in a nested manner [30] (Fig. 1). We used
random search and one standard error rule for selecting
the best hyperparameters from inner CV to minimize

potential overfitting. Ultimately, hyper-parameter tuning
was repeated on the entire training set to determine
values to be used in the final classifier.
Our primary goal was to develop a high-sensitivity test

that down-classifies low and intermediate pre-test risk
patients to very-low and low post-test risk, respectively.
For this purpose, we assessed classifier specificity when
the decision boundary was set to achieve a minimum
sensitivity of 0.9 on the sample set of within-indication
subjects with low and intermediate pre-test risk. Individ-
ual and ensemble models were evaluated separately
based on 5-fold CV with ten repeats. For each repeat of
5-fold CV, the cross-validated scores of within-
indication samples with low/intermediate pre-test risk
from the five folds are combined to evaluate the best
specificity at minimum sensitivity of 0.9. Models were
compared by the median and interquartile range (IQR)
of specificities from the CV repeats.
Our secondary goal was to up-classify intermediate and

high pre-test risk patients to high and very-high post-test
risk groups, respectively. We evaluated the performance to
the secondary endpoint with the maximum up-
classification rate at the post-test positive predictive value
(PPV) threshold of 0.65 for intermediate pre-test risk sam-
ples and PPV threshold of 0.9 for high pre-test risk samples.
Post-test PPV was calculated using specificity, sensitivity
and cancer prevalence in each pre-test risk group.
The final GSC is an ensemble model comprised of

four individual models (Fig. 2). The first model is a
clinical-dominant model, which is a penalized logistic re-
gression with main effects and interaction effects from
four clinical variables – age, gender, pack-years and gen-
omic smoking index. The second model is a genomic-
dominant linear-kernel SVM model, using gender, gen-
omic smoking index and 998 genes as features. The
third model is a clinical-genomic model, which is a pe-
nalized logistic regression with main effects and inter-
action effects from five clinical variables and 441 genes.
Clinical variables in this model include age, genomic
gender, inhaled medication, specimen collection timing
and genomic smoking index. The fourth model is a hier-
archical generalized linear model (GLM). The motiv-
ation for this approach is to estimate the association of
gene expression with disease status after accounting for
established clinical risk factors for lung cancer. At the
top level, a clinical-dominant logistic regression model
using main effects of clinical features was fit to subject
labels. The logit score of this model was then used as an
offset in the fitting of a second clinical-genomic model
with main effects of clinical features and gene features
using penalized logistic regression. We hypothesized that
most gene expression changes associated with a clinical
risk factor do not have a direct association with the de-
velopment of cancer. By accounting for the cancer risk
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with clinical factors as much as possible at the top layer
(a clinical-dominant model), we selected genes that have
additional predictive power for lung cancer risk which
are unlikely to be confounding with clinical factors in
the second layer. The final hierarchical GLM model con-
tained age, gender, pack-year, genomic smoking index
and 16 individual gene features. The final ensemble
model score is the logit of mean probabilities from the
four individual models. Together, this ensemble model
uses five clinical features (age, gender, pack-year, inhaled
medication and specimen collection timing) and 1232
gene features (including genes used in genomic smoking
index).

Evaluation of technical batch effects
Replicated control samples and sentinels across all plates
in the training and validation sets were evaluated in the
genomic space and scored with candidate classifiers to
estimate plate-to-plate variability using a linear mixed
effect model controlling for biological effects from indi-
vidual samples. The candidates that are associated with
smaller score variabilities were preferred.
To measure the robustness of our candidate classifier

against different enrichment probe lots, a key library
preparation reagent, 71 brushing samples were re-
sequenced using two different, independently manufac-
tured lots of enrichment probes. These samples were se-
lected from the training set to have scores that cover the
candidate classifier score range. Each sample had three
replicates, one in training and two additional runs with
different enrichment probe lots. All replicates were
scored with candidate classifiers to estimate score vari-
ability. For each new lot, a linear model of the scores
was fit to the scores from development batches using
paired replicates to estimate two forms of systematic
bias in scores, e.g. score shift and rotation, associated
with each enrichment probe lot.

Independent validation
The final candidate classifier was validated on an inde-
pendent test set. Three decision boundaries were opti-
mized on respective pre-test risk groups in the test set
to achieve these aims: 1) 90% sensitivity on the down-
classification of intermediate and low pre-test risk sub-
jects, 2) 90% PPV on the up-classification of high pre-
test risk subjects to very high post-test risk, and 3) 65%
PPV on the up-classification of intermediate pre-test risk
subjects to high post-test risk. Classifier predictions were
compared to the adjudicated subject label of benign or
malignant to compute sensitivity and specificity. Cancer
prevalence in the low (5%), intermediate (28.2%) and
high (73.6%) pre-test risk groups were derived from the
test set, and were applied, together with sensitivity and
specificity, for the computation of NPV and PPV in each
pre-test risk group. A receiver-operator characteristic
curve (ROC) and corresponding area under the curve
(AUC) were also produced using the intermediate and
low pre-test risk subjects combined to evaluate the per-
formance of the down-classification feature.

Results
Study cohorts
A set of 1237 subjects from AEGIS consisting of 189
within-indication and 1048 out-of-indication subjects,
and 265 subjects from the BGC Registry consisting of
122 within-indication and 143 out-of-indication subjects,
were used to develop our genomic sequencing classifier
(Table 1). The independent test set consisted of brushing
samples from 412 within-indication subjects: 246 were
from AEGIS, all of which were used in the original BGC
validation, and 166 were from BGC Registry. Clinical
characteristics of the within-indication subjects from the
training and test sets are summarized in Table 2. The
composition with respect to key demographic and clin-
ical factors was prospectively balanced between training

Fig. 2 Genomic sequencing classifier structure. a Overall structure of the Ensemble model. b Detailed structure of the hierarchical logistic
regression component

Choi et al. BMC Medical Genomics 2020, 13(Suppl 10):151 Page 7 of 15



and test sets. The test set is enriched with infiltrate lung
lesions (p < 0.001) and non-small-cell lung cancer (p =
0.025), compared to the training set.

Genomic feature correlation analysis
A total of 15,683 autosomal genes are clustered into 28
co-expression modules using the WGCNA gene cluster-
ing approach [19]. See Additional file 3 for overrepre-
sented Gene Ontology biological processes associated
with individual gene modules. We examined the correl-
ation between module eigengenes (the first principal
component of individual gene modules) and clinical fac-
tors of interest (Fig. 3). For 10 out of 28 co-expression
modules, smoking status has a stronger correlation than
all other clinical factors with the module eigengene,
reflecting a strong genome-wide impact from cigarette
smoking on gene expression. The impact of smoking
status is observable in the first principal component of
the gene expression profiles (Fig. 4a). Among these 10
modules, four modules also have significant correlation
with smoking intensity as measured by pack-years. Spe-
cimen collection timing is the second strongest factor,
associated with five modules, indicating an impact from
the sample collection procedure on bronchial epithelial
cell gene expression (Fig. 4b). Cohort is also a strong
factor associated with three modules, reflecting the gen-
omic differences between the two sample populations
(Fig. 4c). Note that cohort and specimen collection tim-
ing are confounded, as 97% of AEGIS samples were col-
lected prior to other cytology/pathology sampling while
only 38% of BGC Registry samples were collected prior
(Chi-square test p = 1.8 × 10−27). Eigengenes of 12 mod-
ules are significantly correlated with inhaled medication.
These modules are also significantly correlated with
smoking status or specimen-collection timing, possibly

reflecting a shared cellular response to airway stimulants
or perturbation. Modest sample separation by inhaled
medication was observed in PCA space (Fig. 4d). Com-
pared with other clinical factors, fewer gene modules are
associated with lung cancer status, and the correlations
are weaker as well. Similar results were observed through
DE analysis. We performed DE analysis with respect to B/
M disease label and clinical factors including smoking sta-
tus, specimen collection timing and inhaled medication
and observed far fewer differentially expressed genes by
disease label than by the examined clinical factors (Add-
itional file 1 Fig. S2).

Smoking index
Smoking status (former vs. current) is manifested in
bronchial airway gene expression (Fig. 4a). Therefore, we
were able to develop a genomic classifier for smoking
status with high accuracy: cross-validation performance
in the training set showed a high AUC (median 0.956)
and the performance is retained in the test set with an
AUC of 0.945 (Additional file 1 Fig. S3). The smoking
index not only captured the genomic signatures for
smoking status, but also reflected smoking history and
intensity, with a Pearson correlation of 0.23 with pack-
years and − 0.61 with years since quitting smoking (Add-
itional file 1 Fig. S3).

Impact of specimen collection timing on cell type
composition
With cell type indexes, we discovered that the gene ex-
pression of brushing samples can be largely impacted by
the specimen collection timing. Specifically, compared to
samples collected prior to other cytology and/or path-
ology sampling, samples collected after other sampling
tend to have higher basal and blood cell gene expression,

Table 1 Training and test set composition. a The OOI Malignant set includes subjects out of indication due only to having a positive
lung cancer diagnosis from bronchoscopy. b The OOI Other set includes subjects that are out of indication due to other reasons
(never smokers, concurrent or prior cancer or metastatic to lung)

Set Cohort Pre-Test Risk Group N

Low Intermediate High Missing

Training (N = 1502) Primary (Within Indication) AEGIS 25 50 78 36 189

Registry 7 80 35 . 122

Total 311

OOI Malignanta AEGIS 1 24 477 77 579

Total 579

OOI Otherb AEGIS 48 122 217 82 469

Registry 22 85 33 3 143

Total 612

Test (N = 412) Primary (Within Indication) AEGIS 58 82 106 . 246

Registry 22 106 38 . 166

Total 412
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Table 2 Demographic and clinical characteristics of training and test sets focusing on within-indication subjects

Training Test P-value

Characteristic AEGIS
(N = 189)

Registry
(N = 122)

AEGIS
(N = 246)

Registry
(N = 166)

Sex 0.36

Female 72 65 83 84

Male 117 57 163 82

Median age (IQR) 62 (54–70) 64 (57–71) 62 (54–70) 65 (58–71) 0.45

Race 0.59

White 141 106 192 132

Black 34 14 42 29

Other 11 2 12 4

Unknown 3 0 0 1

Smoking status 0.45

Current 79 48 107 73

Former 110 74 139 93

Median cumulative tobacco use (IQR) – pack-year 40 (18–57) 35 (20–50) 35 (20–56) 35 (20–56) 0.82

Lesion size < 0.001

Infiltrate 0 0 25 0

< 2 cm 42 61 88 80

2 to 3 cm 30 29 48 29

> 3 cm 41 26 75 44

Unknown 60 6 10 13

Lesion location 0.47

Central 50 9 72 10

Peripheral 78 107 108 144

Central and peripheral 46 0 53 0

Unknown 15 6 13 12

Lung-cancer histologic type 0.025

Small-cell 8 3 8 1

Non-small-cell 69 48 100 43 0.18

Adenocarcinoma 30 25 58 25

Squamous 28 12 26 10

Large-cell 6 1 4 0

Non-small-cell not otherwise specified 5 10 12 8

Other 0 2 0 2

Unknown 21 3 3 6

Diagnosis of a benign condition < 0.001

Fibrosis 1 0 1 0

Granuloma 15 6 26 10

Infection 30 15 36 15

Inflammation 4 2 1 2

Multiple 6 0 8 0

Other 17 4 25 2

Resolution of Stability 18 39 38 40

Clinically benign 0 0 0 45
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and lower ciliated cell gene expression (Fig. 4e). As the
proportion of samples collected at the beginning of
(prior to) the bronchoscopy in AEGIS and the BGC
Registry cohorts is 97 and 38% respectively, gene expres-
sion in samples are largely different by collection timing
and cohort at the whole genome level; this phenomenon
is clearly manifested in the PCA analysis (Fig. 4b, c).
Therefore, specimen collection timing was included as a
binary variable in the benign vs. malignant classifier to
help address the heterogeneous sample composition of
our data. To impute missing values for the specimen col-
lection timing variable, we developed a genomic classifier
which achieved sensitivity of 0.81 and specificity of 0.81
with an AUC of 0.88 on 357 samples with truth labels for
specimen collection timing in the independent test set.

Cross-validation performance on the training set
We evaluated multiple methods of feature selection and
machine learning algorithms on the primary within-
indication set of 311 subjects in training. Overall, feature se-
lection by DE analysis using the auxiliary sample set, com-
posed of out-of-indication subjects such as “bronchoscopy
positives”, generated models with better performance than
models trained using primary within-indication subjects
only. Clinical-genomic models outperformed clinical-only
and genomic-only models. The addition of clinical-genomic

interaction terms improved model performance over
models with main effects alone. Linear models such as pe-
nalized regression model outperformed non-linear tree-
based models such as random forest.
The CV performance of four representative models for

down-classification on low and intermediate pre-test risk
samples (N = 162) in the training set is shown in Fig. 5.
We used the Gould clinical model [31] as a comparator
to estimate the probability of lung cancer in subjects
with solitary pulmonary nodules using four clinical pre-
dictors: smoking history (pack-year), age, nodule size
and time since quitting smoking. The Gould model had
an overall AUC of 0.63 (0.71 for AEGIS and 0.55 for
BGC Registry) and a specificity of 0.28 (0.34 for AEGIS
and 0.22 for BGC Registry) at overall sensitivity of 0.9
(Fig. 5a and b). The low performance of the Gould
model in our study may be due to the higher prevalence,
heavier smoking history and smaller nodules in the VA
Hospital population used to develop the Gould model,
compared to the cohorts in this study [31].
A generalized linear model using only main effects of

genomic features and clinical covariates (age, gender,
nodule size, pack-year, years since quitting smoking, spe-
cimen collection timing and genomic smoking index)
has a median CV AUC of 0.76 (0.76 for AEGIS and 0.74
for BGC Registry) and a specificity of 0.42 (0.42 for

Fig. 3 Gene correlation analysis (WGCNA): module eigengenes (listed by row) correlation with clinical factors (by column). Heatmap color is
based on absolute Pearson correlation. Legend for p-value significance: '***' 0 < p-value ≤ 0.001; '**' 0.001 < p-value ≤ 0.01; '*' 0.01 < p-value ≤
0.05; '.' 0.05 < p-value ≤ 0.1; ' ' 0.1 < p-value ≤ 1. Number of genes in each module is shown in parenthesis in row labels
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AEGIS and 0.45 for BGC Registry). (Fig. 5a and b,
“GLM(m)). This model has an improved performance
over the Gould model, and shows less performance

difference between cohorts, indicating that genomic fea-
tures may reduce the impact of demographic differences
between cohorts on classification performance. Including

Fig. 4 Gene expression variation associated with smoking status, specimen collection timing, cohort and inhaled medication. PCA was performed
using scaled normalized (VST) expression data for a 17,954 genes from all subjects in the smoking index training set (N = 1578); b and c 17,954
genes from within-indication subjects in the training set (N = 311); d 998 benign vs malignant DE genes from within-indication subjects in the
training set (N = 311). e Distribution of basal, blood, cilia and immune cell type indexes in within-indication subjects in the training set, separate
by specimen collection timing
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interaction terms between clinical covariates and gen-
omic features as predictors in the generalized linear
model further improved performance, with a median CV
AUC of 0.78 (0.79 for AEGIS and 0.77 for BGC Registry)
and a specificity of 0.48 (0.48 for AEGIS and 0.46 for
BGC Registry) (Fig. 5a and b, “GLM(i)).
We evaluated classifier performance in subgroups defined

by individual clinical covariates. We observed a classifier score
shift among subjects currently using inhaled medication; the
shift is directionally consistent in both benign and malignant
samples (Additional file 1 Fig. S4). The GLM model with
clinical-genomic interactions showed a median score differ-
ence for inhaled medication that was 9–17% of the overall
CV score range after controlling for benign/malignant label.
Sensitivity (0.96 vs 0.88) and specificity (0.38 vs 0.65) also dif-
fered between subjects currently using and those not using
inhaled medication. We therefore added a binary clinical co-
variate (subject currently using inhaled medication: Y/N) into
the model. As a result, the median CV score difference by in-
haled mediation was reduced to 4–5% of the overall CV score
range, and sensitivity (0.93 vs 0.90) and specificity (0.47 vs
0.59) are stabilized. The overall down-classification perform-
ance also improved after adding inhaled medication into the
classifier, with a median cross-validated AUC of 0.79 and
specificity of 0.51 (Additional file 1 Fig. S4).
The final ensemble model achieved the best cross-

validation (5-fold, 10 repeats) performance in the training
set for the down-classification of low and intermediate

pre-test risk subjects to very low and low post-test risk
groups, with median cross-validated AUC = 0.80 (IQR =
0.017) and median specificity 0.52 (IQR 0.092) at sensitiv-
ity 0.92 (IQR = 0) on primary low/intermediate-risk sam-
ples (Fig. 5, “Ensemble”).

Robustness of classifiers against technical assay variability
Within the same reagent lot, the total score variability of
the final classifier estimated using repeated samples, sen-
tinels and controls, is 0.123, which is 3.3% of the cross-
validated score range (1%-trimmed range). The batch-
to-batch variability is estimated as 0.058, which is a
minor effect on the score variability.
Using 71 bronchial brushing samples repeated over

three batches each with a different reagent lot, the esti-
mated total score variability with different reagent lots is
0.16 (5.1% of the score range), with 0.068 contributed
from reagent effects. Score variability in the final classi-
fier is the lowest among candidate models, suggesting
robustness to technical batch effects.

Independent validation performance
In prospective validation, the final ensemble classifier
achieved an AUC of 0.74 (95% CI: 0.67–0.81) on the
combined low and intermediate pre-test risk groups with
a sensitivity of 0.91 (95% CI: 0.81–0.97) and specificity
of 0.45 (95% CI: 0.38–0.53) for down classification. Per-
formance by pre-test risk group is listed in Table 3. This

Fig. 5 Cross-validation performance for down-classification. The performance is evaluated on within-indication training samples with low/
intermediate pre-test risk (N = 162) using 10 repeats of 5-fold CV. The original Gould model was used to score training samples. GLM(m) is a
generalized linear regression model only containing main effects of clinical features and genomic features. GLM(i) includes main effects and
interactions between clinical features and genomic features. GLM(m) and GLM(i) used the same set of input clinical features: age, gender, nodule
size, pack-year, years since quitting smoking, specimen collection timing and genomic smoking index. “Ensemble” is the final GSC classifier
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resulted in down-classifying 30% of subjects from pre-
test intermediate to post-test low risk with post-test
NPV of 91%; and 55% of subjects from pre-test low to
post-test very low risk with post-test NPV of > 99%. Per-
formance in individual cohorts are reported in Add-
itional file 1 Table S1.
For the secondary goal of up-classification, using add-

itional decision boundaries based on pre-test risk cat-
egory, the classifier up classified 12% of the intermediate
pre-test risk subjects to high post-test risk with a posi-
tive predictive value of 65% (95%CI 44–82%). 27% of
high pre-test risk subjects were reclassified to very high
post-test risk with a positive predictive value of 92%
(95% CI 78–97%). Detailed performance including sensi-
tivity and specificity is listed in Table 3.

Discussion
We describe the development and evaluation of the
GSC, a second-generation algorithm for lung cancer risk
stratification among patients with nondiagnostic bron-
choscopy results. The GSC has expanded risk stratifica-
tion utility compared to the first generation BGC, with
accurate down- and up-classification of lung cancer risk
in the intermediate pre-test risk group across several in-
dependent patient cohorts. The GSC down-classifies low
and intermediate pre-test risk patients with a high nega-
tive predictive value (> 99 and 91% respectively) minim-
izing the need for additional invasive diagnostic
procedures in patients reclassified to low risk. Up-
classification of intermediate and high pre-test risk pa-
tients at high positive predictive value (65 and 91% re-
spectively), can help with physician confidence,
accelerating appropriate treatment and shortening time
to diagnosis of cancer.
Challenges emerged during the development of GSC.

We included multiple independent cohorts to increase
sample size as well as to represent the heterogeneity in
the contemporary clinical setting, including any changes

in the use or diagnostic yield of lung nodule bronchos-
copy over time. Several key clinical factors showed dif-
ferent distributions across the cohorts, some of which
(smoking, age) appear to have an impact in the genomic
space. To address this, we developed a genomic smoking
index and proactively included it in the final classifier.
The genomic smoking index not only captures the dif-
ference between current and former smokers, but also
captures differences in smoking history, showing a positive
correlation with pack-years and a negative correlation
with years since quitting smoking. Different sample collec-
tion practices also created challenges. Sample collection
prior to or after other bronchoscopic sampling has a sub-
stantial impact on the overall gene expression profile in
the collected airway epithelial sample. One possibility is
that prolonged external disturbance of the bronchial air-
way during bronchoscopy may cause physical damage to
the bronchial epithelium, especially the ciliated cells lining
the surface of airway tracts, and lead to bleeding. In line
with this hypothesis, we observed more expression of
blood cell signature genes and less expression of ciliated
cell signature genes in samples collected at the end of
bronchoscopy. To account for this impact, we included
specimen collection timing as a feature during the
machine learning algorithm development and observed
improved performance.
In comparison to interfering factors, such as the clin-

ical and technical characteristics of each cohort, the use
of inhaled medication and specimen collection timing,
the expression signals associated with lung cancer status
(Y/N) are much weaker. We approached the challenge
of distilling signals associated with lung cancer status
while controlling for interfering factors by using novel
strategies for feature selection and model construction.
We created clinical-dominant feature sets, genomic-only
feature sets and genomic-dominant feature sets. In clin-
ical-dominant feature sets, we incorporated interactions
among clinical covariates and the genomic smoking index,

Table 3 Lung cancer genomic sequencing classifier validation performance (Down, up classification). *Cancer prevalence calculation

includes local benign subjects as Prevalence = #Malignant
#Malignantþ#Benignþ#Local Benign. The local benign subjects had local label as benign but did

not have an adjudicated label. NPV, PPV and % Reclassified are all functions of prevalence (estimated including local benign
subjects), sensitivity and specificity (both estimated excluding local benign subjects)

AUC Pre-test
Cancer Risk

*Cancer
prevalence

Cancer risk
re-stratification

Specificity Sensitivity Post-test
NPV/PPV

§% Re-stratified

73.4% [68.3–78.4] Low 5% Low to Very Low 57.4% [44.8–69.3] 100% [39.8–100] 100% NPV [91.0–100] 54.5%

Intermediate 28.2% Intermediate to Low 37.3% [27.9–47.4] 90.6% [79.3–96.9] 91.0% NPV [80.8–96.0] 29.4%

Intermediate to High 94.1% [87.6–97.8] 28.3% [16.8–42.3] 65.4% PPV [43.8–82.1] 12.2%

High 73.6% High to Very High 91.2% [76.3–98.1] 34.0% [25.0–43.8] 91.5% PPV [77.9–97.0] 27.3%
§% Reclassified (Low to Very Low, Intermediate to Low) = (1- Prevalence) specificity + Prevalence (1-sensitivity)
§% Reclassified (Intermediate to High, High to Very High) = Prevalence sensitivity + (1-Prevalence) (1- specificity)
* There are 8, 33 and 4 local benign subjects in low, intermediate and high-risk group
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which helped resolve the confounding relationship be-
tween features. In genomic-dominant feature sets, we ad-
justed for interfering clinical factors in two ways. The first
was to incorporate interactions between clinical covariates
and gene expression levels, the other was to use a hier-
archical structure where the genomic component was fit
downstream of the clinical component. Incorporating gen-
omic and clinical interaction terms improved training per-
formance over methods only considering main effects.
Multiple machine learning algorithms were examined on
each feature set, and the best performing models on indi-
vidual types of feature sets were then combined into an
ensemble model. Machine learning algorithms built on
different types of feature sets thus extract information on
disease status from different angles. This strategy showed
consistent performance across technical replicates and
most importantly, retained predictive accuracy in an inde-
pendent validation set consisting of different cohorts.
There are several important limitations to this study.

First, the sample size in training and validation sets are
limited. Although the sample sizes of both training and
validation sets have increased substantially over previous
studies [4, 7], sample size in certain subgroups remain
small, limiting our ability to best capture signals in those
subjects. Second, we optimized the decision boundaries
and reported the performance on each pre-test risk group
of the test set, also separately for up- or down-
classification. This is mainly due to the limitation of sam-
ple size after filtering subjects with missing data and divid-
ing the test set by pre-test risk groups. Third, our
understanding of how certain factors impact the genomic
signal is still limited. These include clinical risk factors for
lung cancer such as age, gender and smoking history, as
well as interfering factors such as inhaled medication and
specimen collection timing. Additional clinical risk factors
for lung cancer exist but are not captured in this study,
such as environmental exposure and dietary habits [32].
The final model with only four clinical variables was
chosen under these two considerations 1) the difficulty of
collecting high-quality clinical data in real world setting
and 2) similar performance between the final model with
only four clinical variables versus more complex models
including more clinical variables, Future studies may shed
light on how these factors cause gene expression changes
in bronchial airway epithelial cells. With a deeper under-
standing of underlying mechanisms, we may better delin-
eate gene expression signatures specifically associated
with lung cancer from these confounding signals.

Conclusions
We developed a robust Genomic Sequencing Classifier
(GSC) for lung cancer risk stratification with consistent
performance across multiple independent test cohorts.
The GSC shows durable performance in the face of

demographic composition shift in clinical cohorts, and in-
direct and weak cancer signal compared with interfering
technical factors. The GSC provides actionable informa-
tion through down-classifying and up-classifying patient
lung cancer risk with high NPV and PPV respectively.
Among low and intermediate risk patients with down-
classified risk, additional invasive diagnostic procedures
could potentially be avoided; among intermediate and
high-risk patients with up-classified cancer risk, the diag-
nostic process may be accelerated to inform next steps
and reach definitive diagnoses sooner.
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