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Abstract

Background: DNA methylation is a key epigenetic regulator contributing to cancer development. To understand
the role of DNA methylation in tumorigenesis, it is important to investigate and compare differential methylation (DM)
patterns between normal and case samples across different cancer types. However, current pan-cancer analyses call
DM separately for each cancer, which suffers from lower statistical power and fails to provide a comprehensive view
for patterns across cancers.

Methods: In this work, we propose a rigorous statistical model, PanDM, to jointly characterize DM patterns across
diverse cancer types. PanDM uses the hidden correlations in the combined dataset to improve statistical power
through joint modeling. PanDM takes summary statistics from separate analyses as input and performs methylation
site clustering, differential methylation detection, and pan-cancer pattern discovery. We demonstrate the favorable
performance of PanDM using simulation data. We apply our model to 12 cancer methylome data collected from The
Cancer Genome Atlas (TCGA) project. We further conduct ontology- and pathway-enrichment analyses to gain new
biological insights into the pan-cancer DM patterns learned by PanDM.

Results: PanDM outperforms two types of separate analyses in the power of DM calling in the simulation study.
Application of PanDM to TCGA data reveals 37 pan-cancer DM patterns in the 12 cancer methylomes, including both
common and cancer-type-specific patterns. These 37 patterns are in turn used to group cancer types. Functional
ontology and biological pathways enriched in the non-common patterns not only underpin the cancer-type-specific
etiology and pathogenesis but also unveil the common environmental risk factors shared by multiple cancer types.
Moreover, we also identify PanDM-specific DM CpG sites that the common strategy fails to detect.

Conclusions: PanDM is a powerful tool that provides a systematic way to investigate aberrant methylation patterns
across multiple cancer types. Results from real data analyses suggest a novel angle for us to understand the common
and specific DM patterns in different cancers. Moreover, as PanDM works on the summary statistics for each cancer
type, the same framework can in principle be applied to pan-cancer analyses of other functional genomic profiles. We
implement PanDM as an R package, which is freely available at http://www.sta.cuhk.edu.hk/YWei/PanDM.html.
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Background
DNA methylation refers to the process of adding methyl
groups to DNA segments [1]. As it does not change the
nucleic acid of the DNA sequence, it is an epigenetic
modification [2]. DNA methylation regulates gene expres-
sion [1] and interplays with genetic and environmental
alterations [3]. Thus, it has become one of the best char-
acterized epigenetic modifications to date [4, 5]. Aberrant
DNA methylation has been confirmed as one of the hall-
marks of cancer [6] and has been proposed as a biomarker
for cancer prognosis, diagnosis, treatment response, and
therapeutic targets [5]. Therefore, to elucidate the cancer
mechanism, it is crucial to understand the aberrant DNA
methylation patterns across diverse cancer types.

DNA methylation profiles can be measured by both
microarray and next-generation sequencing tech-
niques. Microarray platforms such as Illumina Infinium
HumanMethylation27 BeadChip and HumanMethy-
lation450 BeadChip measure the methylation level at
pre-determined CpG sites [7]. The next-generation
sequencing techniques, including whole-genome bisulfite
sequencing (WGBS), allow genome-wide profiling of the
methylation level at all CpG sites [8]. Nevertheless, due to
the cost, the Infinium HumanMethylation450 BeadChip
array is still the most commonly adopted for studies with
large sample sizes [9].

For microarray and sequencing data, various statistical
methods have been proposed to identify CpG sites that
show differential methylation (DM) status between case
and control samples for a given type of cancer. IMA [10],
FastDMA [11], Minfi [12], MethylMix [13] can detect DM
in array data; for count data, BSmooth [14], MethylKit [15],
MOABS [16] and DSS [17–19] call DM for sequencing
experiments. For cancer studies, another complication is
that case samples are often obtained as a mixture of nor-
mal cells and cancer cells [20]. Therefore, recently devel-
oped DM calling methods also adjust for tumor purity
[21, 22]. In this study, we analyze samples assayed by the
Infinium HumanMethylation450 BeadChip array, and our
model takes tumor-purity-adjusted summary statistics as
input data. As our method works on summary statistics, it
can also be applied to studies assayed by sequencing tech-
nologies as long as the summary statistics that encode DM
tendency are provided.

Despite the many single-cancer-based DM calling meth-
ods, the common and distinct DM patterns across dif-
ferent cancer types remain elusive. The Cancer Genome
Atlas (TCGA) Research Network [23] and the Interna-
tional Cancer Genome Consortium (ICGC) [24] have
been collecting multi-omics data for a diverse set of
common cancer types over the past several years. The
abundant data, particularly the DNA methylation profiles,
generated by these large-scale projects offer an unprece-
dented opportunity to study cancer from a systematic

perspective. On one hand, the common DM patterns
across cancer types may help to extend the research strat-
egy of studying basic molecular mechanisms and their
corresponding effective clinical therapies in well-studied
cancer types to other cancer types with similar DM pro-
files [25]. On the other hand, the DM patterns unique to
each cancer type can help to develop novel cancer-type-
specific biomarkers. Therefore, pan-cancer DM analysis is
crucial for a thorough understanding of cancer etiology.

Recently, several pan-cancer methylation studies have
made the first attempts to survey pan-cancer DM pat-
terns. For instance, Kim et al. observed a high level of
concordance in the pathways affected by DM genes across
different tumor types by investigating 10 distinct cancer
methylomes [26]. Gevaert et al. proposed a new method
MethylMix to identify genes that are DM between nor-
mal and disease samples and meanwhile predictive of their
own gene expression [27]. The authors applied MethylMix
to each of 12 cancer methylomes and then studied the
DM patterns of “transcriptionally predictive” genes across
cancer types [13]. Yang et al. first used limma [28] to iden-
tify DM CpG sites for each cancer type individually [29].
Next, they focused on DM CpG sites that are consistently
hypermethylated or hypomethylated in at least 8 out of
15 cancer types, as well as those CpG sites that show
DM in only a single cancer type [29]. All of these pan-
cancer analyses first analyzed each cancer type separately
and then directly summarized the findings from separate
analyses without a solid statistical model. However, con-
ducting separate analyses in the first stage reduces the
statistical power so that weak signals are not detected,
which in turn will miss the underlying common and
cancer-type-specific DM patterns. Therefore, to fully use
the pan-cancer data, joint modeling of DM status across
cancer types is urgently needed.

In this article, we propose a novel integrative statisti-
cal method named PanDM, which can jointly model DNA
methylation data across diverse cancer types by generaliz-
ing a meta-analysis method for gene expression data [30].
PanDM assumes that all CpG sites can be divided into
several clusters. CpG sites within the same cluster share
similar although not identical DM patterns across cancer
types. Joint modeling allows DM patterns across cancer
types to be learned for each cluster. As a result, the DM
status of a given CpG site g in a particular cancer type
c can be determined with reference to its DM status in
other cancer types and the DM status of the CpG sites
that share the same cluster membership as CpG site g in
cancer type c. Consequently, PanDM offers improved sta-
tistical power over the input summary statistics for each
separate cancer type. Furthermore, PanDM enables the
investigation of biological properties of CpG sites belong-
ing to the same cluster, which are not available with
current pan-cancer methylation analyses. We evaluate the
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performance of PanDM via a simulation study and apply
it to the methylomes of 12 cancer types collected from the
TCGA project. The results of the enrichment analyses on
the clusters learned from the TCGA data suggest that CpG
sites with similar pan-cancer patterns indeed share bio-
logical implications. In addition, PanDM discovers a set of
functional genes missed by the separate analyses.

Results
The proposed model
Suppose we want to investigate the differential methyla-
tion patterns between normal samples and tumor samples
of in total G CpG sites across C cancer types. Both nor-
mal samples and tumor samples are collected for each
cancer type. To adjust for the effect of tumor purity, we
first call differential methylation for each cancer type sep-
arately using InfiniumPurify [22]. InfiniumPurify provides
a p-value for each CpG site for a given cancer type c, pgc,
indicating the significance level of DM. As a result, we
obtain a matrix p = (

pgc
)

G×C for all C cancer types. Our
model aims to learn the pan-cancer-DM patterns from p
and improve DM detection for each cancer type.

We illustrate the PanDM model in Fig. 1. DM detection
is a typical large-scale inference problem [31]. For large-
scale studies, in contrast to the theoretical null, a more
appropriate null can be estimated by leveraging all of the
pgc , g = 1, 2, · · · , G, for a given cancer type c, which
is called the “empirical null distribution” [31]. Following
the “empirical null approach”, we first transform the p-
values into z-values by zgc = �−1 (

pgc
)
, where � is the

standard normal cumulative distribution function. Con-
sequently, as shown in Fig. 1a, for each given cancer type,
the G z-values zgc, g = 1, 2, · · · , G, come from two normal
distributions: Nc0 for the empirical null hypothesis and
Nc1 for the alternative hypothesis [31]. For DM detection,
the empirical null distribution corresponds to the non-
differentially methylated CpG sites, and the alternative
represents the DM CpG sites. We denote the underlying
true DM status for CpG site g in cancer type c as Hgc,
where Hgc = 1 indicates DM (Fig. 1c). The distribution of
zgc then follows

zgc|Hgc = 0 ∼ Nc0
(
x|μc0, σ 2

c0
)

;
zgc|Hgc = 1 ∼ Nc1

(
x|μc1, σ 2

c1
)

.

The parameters of Nc0 and Nc1 together with Hgc can
be learned by fitting two normal mixture distributions
to pgc, g = 1, 2, · · · , G, for each cancer type individ-
ually. Nevertheless, the inference may suffer from low
accuracy due to the high level of noise in the methyla-
tion data. Therefore, in our proposed model, we attempt
to learn the DM patterns across cancer types Hg =(
Hg1, Hg2, . . . , HgC

)
together so that the correlations of

cancer types help to improve the detection of DM sta-
tus for each cancer type. This would in turn allow for a
better estimation of Nc0 and Nc1, leading to better DM
detection.

Enumerating all combinations of Hg directly in the
model is prohibitive as there are 2C possible patterns,
which becomes 212 = 4096 for the 12 cancer types in
our analysis. To overcome the exponential growth of the
parameter space, we instead assume that all of the CpG
sites come from K clusters, where K is a parsimonious
small number compared with 2C . The CpG sites of the
same cluster share similar, although not identical, DM pat-
terns across the C cancer types. Specifically, for a CpG
site of cluster k, denoted as ag = k, the probability of
DM in cancer type c is qkc = Pr

(
Hgc = 1|ag = k

)
. Conse-

quently, a large qkc indicates that the CpG sites in cluster
c are likely to be DM for cancer type c (Fig. 1b). Never-
theless, two CpG sites in the same cluster are not required
to have exactly the same DM status. In other words, it is
not necessary for CpG sites g and g′ within the same clus-
ter to hold Hgc = Hg′c although Pr

(
Hgc = Hg′c|ag = ag′

)

is promoted by our proposed model. Assuming that given
the cluster membership ag the DM status Hgcs are inde-
pendent among different cancer types, then the joint
probability of a specific DM configuration Hg and its cor-
responding observed Zg = (

zg1, zg2, . . . , zgC
)

given that
the CpG site belongs to cluster k becomes

Pr
(
Zg , Hg |ag = k

) =
C∏

c=1

[
qkcNc1

(
zgc

)]Hgc [
(1 − qkc)Nc0

(
zgc

)]H̄gc ,

(1)

where H̄gc = 1 − Hgc.
Denote the prevalence of cluster k among all of

the CpG sites as πk and collect Z = (
zgc

)
G×C ,

A = (a1, . . . , aG), π = (π1, π2, . . . , πK ), Q =
(qkc)K×C , μ = (μ10, . . . , μC0, μ11, . . . , μC1) and � =
(σ10, . . . , σC0, σ11, . . . , σC1). The joint distribution can be
written as:

Pr (Z, H, A|π , Q, μ, �) =
G∏

g=1

K∏

k=1

{
πkPr

(
Zg , Hg |ag = k

)}I(ag=k) ,

(2)

where I(·) is the indicator function with I(S) = 1 if S is
true and I(S) = 0 otherwise.

We collect the model parameters into � = {π , Q, μ, �}.
Note that in the above joint distribution, only Z are
observed data. Both H and A are latent variables. Thus,
PanDM adopts the expectation-maximization (EM) algo-
rithm [32] to estimate �. The optimal number of clusters
is determined by the Bayesian information criterion (BIC)
[33]. The derivation of the parameter inferences, pat-
tern number selection, and DM status identification are
detailed in the “Methods” section. PanDM is implemented
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Fig. 1 Illustration of the PanDM model. a Distributions for the empirical null hypothesis (Nc0) and the alternative hypothesis (Nc1) in different
cancer types. b In this toy example, there are nine CpG sites which can be grouped into three clusters. The cluster proportion corresponds to the π

in our model. The DM tendency in the three cancer types, termed pan-cancer DM patterns, are summarized in the probability matrix Q by PanDM. c
The DM status matrix H derived from Q. Each element of H is a binary variable, indicating whether a specific CpG site is DM or non-DM in every
cancer type. d Marginal distributions of the observed data. The distribution results from the mixture of Nc0 and Nc1, where the proportion of each
component is given by H . e The z-values for each CpG site in every cancer type. The z-value matrix can be further transformed into the observed
p-value matrix

as an R package and is available at http://www.sta.cuhk.
edu.hk/YWei/PanDM.html.

Simulation
We evaluate the performance of PanDM via a simulation
study. The synthetic data are generated as follows. We
assume that in total G = 100, 000 CpG sites are mea-
sured for C = 9 cancer types. There are K = 5 distinct
DM patterns among all of the G CpG sites. We randomly
choose a πk proportion of CpG sites to belong to pattern
k, where 0 < πk < 1, and

∑5
k=1 πk = 1. ag = k indicates

that CpG site g belongs to pattern k. For DM pattern k,
the probability of DM in cancer type c is equal to qkc. The
matrix Q = (qkc)K×C , shown in Fig. 2a, summarizes the
DM patterns across all cancer types (see Additional file 1,
Table S1 for numerals). The DM status Hgc for a given CpG
site g in cancer type c is sampled as a Bernoulli random

variable Ber (qkc). If Hgc = 1, which means that CpG site
g is DM in cancer type c, then its z-value Zgc is generated
from N

(
μc1, σ 2

c1
)
; if CpG site g is not DM in cancer type

c, i.e. Hgc = 0, then Zgc follows N
(
μc0, σ 2

c0
)
. The specific

settings for μc1, μc2, σ 2
c1, σ 2

c2 are listed in Additional file 1,
Table S2. Consequently, we obtain the z-value matrix Z.

We apply PanDM to Z. We set the tolerance bound ε for
‖ �(n+1) − �(n) ‖ to 1e-4 and let K vary from 2 to 10.
According to the BIC plot in Fig. 2c, the lowest BIC value
is reached at K = 5. Therefore, PanDM recovers the true
number of assumed DM patterns. Moreover, Fig. 2b shows
that the estimated Q̂ = (

q̂kc
)

K×C matches exactly with the
underlying true DM patterns Q shown in Fig. 2a.

We compare the DM calling performance of PanDM
with that of two types of separate analyses. For Type
I separate analyses, we simply rank the CpG sites for
each cancer type separately according to their p-values

http://www.sta.cuhk.edu.hk/YWei/PanDM.html
http://www.sta.cuhk.edu.hk/YWei/PanDM.html
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Fig. 2 Simulation results. a The assumed underlying true DM patterns Q. Each row indicates one of the five patterns; each column corresponds to
one cancer type. A darker color suggests a higher probability of being DM. b Detailed DM patterns of the five clusters Q̂ learned by PanDM, which
almost exactly match the true patterns. c The BIC plot for PanDM from K = 2 to K = 20. PanDM achieves the minimal BIC at the assumed true
K = 5. d The five DM patterns learned by separate analysis from the simulation data, which are prone to noise and deviate from the underlying true
patterns. e Pattern matching matrix of PanDM and the assumed true cluster labels. The color in cell (k, l) corresponds to the number of CpG sites
identified as model-fitted pattern l by PanDM while actually belonging to pattern k normalized by the total number of true cluster k CpG sites. Thus,
the diagonal suggests the proportion of matched cases. From the heatmap we can see that PanDM correctly groups most of the CpG sites. f Pattern
matching matrix from the separate analysis and the assumed true cluster labels. The vague diagonal indicates the high misclassification rate of the
separate analysis

transformed from the corresponding z-values. This type
of analysis corresponds to the widely adopted practice in
EWAS studies. For Type II separate analyses, we fit the
“empirical null” to the z-values [31]. Specifically, we fit a
mixture model with two normal components to the data
for each cancer type separately using the EM algorithm.
Then, we rank the CpG sites according to their probabili-
ties of belonging to the non-null component. This allows
us to investigate where the power of PanDM lies. For each
of the three methods, we count the number of true pos-
itives among the top-ranked CpG sites. From Fig. 3a-i,
we can see that the performance of the Type II separate
analyses is about the same as that of the Type I separate
analyses. PanDM, however, beats both types of separate
analyses. Therefore, the improvement in PanDM’s power
to detect DM mainly arises from joint modeling across dif-
ferent cancer types rather than from the “empirical null”
approach.

Next we compare the performace of PanDM and sepa-
rate analyses on the clustering of DM patterns. We focus
on Type I separate analyses because this type of strategy
is the common practice in current studies. We control
the global false discovery rate (FDR) of the simulated p-
values at 0.01 and assign a binary state, denoted as ρgc, to
each CpG site to indicate its DM status in cancer type c.
We regard the indicator vector ρg = (

ρg1, ρg2, · · · , ρg9
)

as the pan-cancer DM pattern for CpG site g resulting
from separate analyses. We then apply K-means cluster-
ing [34] to the DM patterns of all 100,000 CpG sites and
group them into 5 clusters. For each cluster, we calcu-
late the group mean ρ̂k = meang∈groupk

(
ρg

)
. Figure 2d

shows ρ̂k , k = 1, 2, · · · , 5. Compared with Fig. 2a and
b, the separate analysis fails to identify the true under-
lying DM patterns across the cancer types and is prone
to noise. Moreover, from PanDM, we can determine
which DM pattern each CpG site belongs to according to
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Fig. 3 Comparison of model performance. (a-i) The number of true positives among the top-ranked CpG sites by each of the three DM calling
methods. “P” refers to PanDM; “E” refers to “Empirical Null”, corresponding to the strategy of fitting two-normal mixtures to the single-study-based
p-values of each cancer type individually; “S” indicates our separate analyses based on the rank of the p-values. The two separate analyses produce
almost the same results when detecting top-ranked CpG sites. PanDM identifies more true positive DM CpG sites

Pr
(

ag = k|Z, �̂
)

. Figure 2e presents the pattern match-
ing matrix, which demonstrates the accuracy of PanDM’s
DM pattern classification. In contrast, Fig. 2f is the corre-
sponding pattern matching matrix for the Type II separate
analyses, which has a much higher misclassification error
rate.

We further investigate the scenario where PanDM is
applied to the dataset with a pre-specified cluster number

K̂ that differs from the true underlying K. Suppose that
K̂ is set to 4, which is smaller than the true cluster num-
ber K = 5. Then, the true underlying patterns 4 and 5
are learned as a single merged pattern 4 for K̂ = 4, as
shown in Additional file 1, Fig. S1. Nevertheless, patterns
1-3 are learned the same under both scenarios. In con-
trast, when K̂ > K , the original pattern 2 is split into two
separate new patterns, while the other DM patterns stay
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the same (see Additional file 1, Fig. S2). Therefore, the DM
pattern matrix Q̂ can reflect the underlying DM pattern
even when the number of clusters K̂ is mis-specified. Fur-
thermore, we evaluate the capability of PanDM to identify
the true positives when K̂ deviates from the underlying
K. Figs. S3 and S4 in Additional file 1 demonstrate that
PanDM still outperforms both types of separate analyses.
Therefore, even when K is not searched exactly, PanDM
still provides a legitimate estimation of the DM patterns
and improves the detection power.

In summary, the simulation study illustrates that
PanDM can accurately estimate the model parameters,
evaluate the global FDR, determine the DM status, iden-
tify the DM patterns across cancer types and cluster CpG
sites according to their DM patterns.

Application to TCGA data
Model-fitting results
We downloaded the methylomes of 12 cancer types from
the TCGA project [23]. We first call DM for each can-
cer type by InfiniumPurify [22] adjusting for the effects
of tumor purity. We then transform the obtained p-values
into corresponding z-values and apply PanDM to the z-
value matrix. The chosen number of candidate patterns
K ranges from 5 to 50. According to the BIC plot shown
in Additional file 1, Fig. S5, the optimal number of pan-
cancer DM patterns is K = 37. Given K̂ = 37, we
first evaluate how well PanDM fits the real data. Specif-
ically, for each cancer type, we generate random sam-
ples from the mixture distributions with the parameters
π̂k , q̂kc, μ̂jc, σ̂jc, and then produce the quantile-quantile (Q-
Q) plots for the samples against the real observed data
(see Additional file 1, Fig. S6). These Q-Q plots suggest
that our estimated mixture distributions closely match
the marginal distributions of the real data. Therefore,
PanDM fits the real data well. We provide the PanDM
cluster membership for each CpG site in Additional file 2,
Table S4.

Figure 4 shows the detailed 37 DM patterns and their
proportions. The largest among all of the learned clusters
is cluster 33, which represents the non-DM pattern in the
12 investigated cancer types. Therefore, a large proportion
of CpG sites are not affected by cancer. The second largest
cluster, cluster 14, characterizes the DM pattern in all the
12 investigated cancer types. Previous studies have mainly
focused on this type of consistent DM pattern [23, 26, 29].
Nevertheless, PanDM reveals that many DM patterns are
cancer-type dependent.

The pan-cancer DM patterns are also helpful for group-
ing cancer types. We apply hierarchical clustering with the
complete linkage method and Euclidean distance to both
DM patterns and cancer types. In Fig. 4, the 12 cancer
types are classified into 5 subgroups according to the hier-
archical clustering tree. The patterns in the LUSC-HNSC

group show high concordance, suggesting the epigenetic
commonality of squamous cell carcinoma. Tracing back
to the root node of the clustering tree, LUSC, HNSC,
BLCA, and LIHC can be further grouped together, which
is consistent with the previous finding that LUSC, HNSC
and BLCA are squamous-like subtypes [35]. LUSC and
LUAD, despite being the two main subtypes of non-small-
cell lung carcinoma [36], have distinct disease methylomes
according to our PanDM results. Thus, these two cancer
types are distant from each other in the clustering tree in
Fig. 4. The grouping of cancer types by pan-cancer DM
patterns provides a novel perspective from which to study
the epigenetic similarities between different tumor types.

Biological interpretation
To further understand the biological implications of the
pan-cancer DM patterns, we conduct enrichment analyses
for all of the CpG sites in each of the 37 clusters using the
GREAT tool [37] with the default parameters. We exam-
ine the enrichments of “Gene Ontology (GO)”, “Disease
Ontology”, “MSigDB/ PANTHER/ BioCyc Pathway” and
“MSigDB Cancer Neighborhood” (see Additional file 3,
Table S5A and Additional file 4, Table S5B).

We first investigate Cluster 33, the all-non-DM pattern.
It is enriched with several essential biological processes
and pathways, including “nuclear-transcribed mRNA
catabolic process”, “translational initiation”, “translational
elongation”, “genes involved in metabolism of RNA”, “genes
involved in transcription” and “genes involved in mRNA
splicing” (see Additional file 3, Table S5A). All of these
processes and pathways are responsible for maintaining
basic biological functions in the human body. We expect
the majority of genes involved in these processes and path-
ways to function properly despite the occurrence of can-
cers, which is consistent with our discovered all-non-DM
pattern.

To consider the enriched ontology terms with strong
signals, for the remaining 36 clusters, in addition to the
0.05 FDR threshold, we add another filtering criterion
requiring fold enrichment to be larger than two. Only
those ontology terms that pass both criteria are recorded
(see Additional file 4, Table S5B) and discussed in the
following.

Under the more stringent criterion, functional signifi-
cance is still found for several clusters. Cluster 13 is mainly
composed of CpG sites that are only DM in COAD. One of
the enriched ontology terms for this cluster is the biologi-
cal process “intestinal epithelial cell differentiation”. It has
been reported that CDX-2, a transcription factor involved
in the proliferation and differentiation of intestinal epithe-
lial cells, is an important biomarker for colon adenocarci-
noma [38]. This suggests that the enriched biological pro-
cess is indeed closely related to colon cancer. Thus, clus-
ter 13 can help us to identify more COAD-specific DM



Shi et al. BMC Medical Genomics 2020, 13(Suppl 10):154 Page 8 of 13

Fig. 4 The detailed DM patterns across the 12 cancer types learned by PanDM. The proportion of each pattern, πk , is also given next to the cluster
label. The darker the color in the cells of the heatmap, the higher the probability of DM

genes that contribute to the carcinogenesis of colorectal
cancer.

Cluster 16 presents a pattern of strong DM tendency
in LUSC and HNSC according to our PanDM analyses
(Fig. 4). One of its enriched “GO Biological Process” terms
is “response to UV-B”. Ultraviolet B (UVB) is one of the
major carcinogens involved in squamous cell skin cancers
[39]. The enrichment of UVB-response-related biological
processes suggests that this cluster contains genes that
are commonly affected in squamous cell carcinoma. We
expect that cluster 16 can be used to discover potential
squamous cell carcinoma-specific biomarkers or thera-
peutic targets.

Cluster 18 captures the pattern of DM in two gender-
specific cancer types: BRCA and UCEC. A closer
inspection reveals that this cluster includes more X-
chromosome-located CpG sites than any other cluster
except cluster 33 (see Additional file 5, Table S6). It
has been observed that uterine serous carcinomas and

basal-like breast carcinomas share many molecular fea-
tures, including similar DNA methylation alterations [40].
Therefore, cluster 18 supports previous findings and can
serve as a useful resource for further exploration of the
underlying relationship between breast and endometrial
cancers. This cluster is also enriched with the biologi-
cal process “ubiquitin-dependent SMAD protein catabolic
process”. It has been reported that hyperactivity of the
SMAD signaling pathway is required to maintain the
epigenetic silencing of epithelial-mesenchymal transition
genes during breast cancer progression [41]; therefore, we
expect that cluster 18 collects genes that contribute to the
activation of the SMAD signaling pathway.

Cluster 22 suggests another BRCA-specific DM pat-
tern. However, its CpG sites tend to be non-DM in
UCEC. Among the significantly enriched ontology terms
for this cluster, two MSigDB pathways are notable: “Genes
involved in Class B/2 (secretin family receptors)” and
the “Hedgehog signaling pathway”. Dysregulated secretin
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receptors have been linked to aberrant methylation in
breast cancer tissues [42]. Meanwhile, the Hedgehog sig-
naling pathway also plays an essential role in the devel-
opment of breast cancer [43] and is now considered as a
potential anticancer target [44]. These facts confirm the
BRCA-specific DM pattern of cluster 22.

In addition to the patterns with DM specificity in
only one or two cancer types, PanDM detected DM
in a large number of cancer types. Cluster 28 encom-
passes CpG sites with a strong DM tendency in 6 out of
the 12 investigated cancer types: LUSC, HNSC, BLCA,
LIHC, PRAD and LUAD. This cluster is enriched with
three MSigDB pathways: “genes involved in presynap-
tic nicotinic acetylcholine receptors”, “genes involved in
acetylcholine binding and downstream events”, and “genes
involved in highly calcium-permeable postsynaptic nico-
tinic acetylcholine receptors”. These pathways are involved
in tobacco-induced carcinogenesis because nicotine, the
principle component of cigarette, can stimulate cell pro-
liferation as well as facilitate tumor growth and survival
by binding to nicotinic acetylcholine receptors (nAChRs)
[45]. Hence, the enrichment of nAChR-related pathways
suggests that cluster 28 contains CpG sites whose methy-
lation status is commonly altered in cancers induced by
tobacco carcinogens. Moreover, the six cancer types with
a strong DM tendency in this pattern are more likely to
be associated with cigarette smoking than the remaining
six. In fact, smoking increases the risk of lung cancers
(LUAD, LUSC) [46], liver cancer (LIHC) [47], cancer of
the oral cavity (HNSC) [48] and bladder cancer (BLCA)
[49].

Apart from the biological interpretation of the pan-
cancer DM patterns, we investigate whether PanDM per-
forms better than traditional separate analyses on the real
data. We again adopt Type I separate analyses for bench-
marking. Controlling global FDRs at 0.01, we obtain two
sets of dichotomous classification (DM/non-DM) for all
of the CpG sites in each cancer type. CpG sites that
are identified as non-DM by separate analyses but as
DM by PanDM are defined as PanDM-specific DM CpG
sites (PanDM-specific DMC). The numbers of PanDM-
specific DMC vary across the 12 different cancer types
(see Additional file 1, Fig. S7). We focus on the results
from UCEC, as it has the largest number of PanDM-
specific DMC. Most of the 3,094 UCEC PanDM-specific
DMC come from pan-cancer DM patterns 6 and 14.
These CpG sites can be mapped to 1,285 unique genes.
As multiple CpG sites can correspond to one single gene
on the Infinium HumanMethylation450 BeadChip array,
we remove the genes that match at least one DM CpG
site identified by separate analyses. We find three UCEC
PanDM-specific DMC genes that are directly associated
with cancer according to the KEGG pathway annota-
tion by DAVID [50, 51]: EI24, GNGT2, and MIR21. EI24

encodes an autophagy-associated transmembrane pro-
tein, which is a putative tumor suppressor due to its
role as a downstream induction target of p53-dependent
apoptosis [52]. Its genomic location, chromosome 11q24,
is also a region with frequent mutation in cancer cases
[53, 54]. GNGT2 encodes a transducin that may be
involved in many cancer-related pathways such as the
“chemokine signaling pathway” and “PI3K-Akt signaling
pathway” [55]. MIR21 encodes an important microRNA,
miR-21, in mammal. It is one of the frequently dys-
regulated microRNAs in cancer and most of its tar-
gets are tumor suppressors [56]. According to these
well-established functions of EI24, GNGT2 and MIR21,
PanDM’s identification of their DM status in cancers is
highly likely to reflect a biological reality. All of these
results demonstrate that PanDM can help to retrieve DM
signals missed by separate analyses.

Discussion
In this paper, we propose PanDM, an integrative statistical
model that can learn DM patterns across diverse cancer
types and thereby improve DM detection for each can-
cer type. Previous methods call DM separately for each
cancer type and then focus on the identified DM CpG
sites with strong signals from each cancer type. How-
ever, the first stage of individual screening for DM CpG
sites not only is likely to miss those weak signals, but
also fails to fully use the information from those non-
DM CpG sites that may be helpful for DM detection in
other cancer types. For instance, the pan-cancer DM pat-
tern 26 learned from the TCGA dataset tends to be totally
non-DM in KIRP, COAD and LUAD but has a high DM
preference in LUSC and PRAD. Therefore, for a CpG site
that belongs to this pattern, if we are uncertain about its
DM status in PRAD but are sure that it is non-DM in KIRP,
COAD and LUAD as well as DM in LUSC, then we can
be more confident in claiming DM for it in PRAD. Hence,
PanDM fully uses the information across cancer types
to improve signal detection. Consequently, PanDM offers
a more accurate and comprehensive picture of DM sta-
tus for all the measured CpG sites across all investigated
cancer types simultaneously.

Currently, PanDM works on summary statistics from
each cancer type following the “empirical null” approach
[31]. As a result, PanDM accepts the output of any single-
cancer-type-based DM calling method as long as it pro-
vides a list of p-values. Therefore, any advance in single-
cancer-based DM method can be conveniently incorpo-
rated right away. For instance, in this paper, we adopt the
tumor-purity-adjusted DM calling method. Meanwhile,
now we follow the tradition of the “empirical null” to fit
a two Gaussian mixture to the summary statistics, one
for the null and the other for the alternative, which has
been shown to be very effective for most high-dimensional
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genomic datasets [57]. In principle, we can also fit a
three-component Gaussian mixture to further discrimi-
nate between hypo-methylation and hyper-methylation.
PanDM can easily handle such generalization straightfor-
ward. Nevertheless, to allow the flexibility to work with
any DM calling method where usually only p-values are
provided, at present we focus on the classic “empirical
null” approach to distinguish between DM and non-DM
only. Users can further plot heatmaps for each DM pattern
to explore the direction of aberrant DNA methylation.
Moreover, the current approach enables PanDM to be
applied to pan-cancer analyses of other types of functional
genomic assays such as gene expression, SNP data, and
copy number variation detection as long as p-values for
each individual cancer type are provided. We foresee that
such flexibility will greatly advance pan-cancer analyses.

PanDM clusters CpG sites according to their DM pat-
terns across cancer types. CpG sites assigned the same
cluster membership share similar DM patterns. There-
fore, they are likely to be driven by the same underlying
biological mechanism. Our pathway and ontology enrich-
ment results for the 37 clusters learned from the TCGA
data suggest that these pan-cancer DM patterns indeed
have distinct biological implications. PanDM provides not
only a more accurate way to identify DM CpG sites but
also a novel clustering strategy for pan-cancer DM analy-
sis. Different DM patterns will be helpful for oncologists
to obtain a comprehensive picture of the mechanisms and
etiologies of cancers. Moreover, the clustering analysis
suggests that it would be better to select CpG sites from
different clusters rather than the same cluster for future
biomarker discovery, as CpG sites from diverse clusters
provide richer non-redundant information in describing
the DM patterns.

We believe that PanDM will greatly advance our under-
standing of the shared molecular mechanisms in distinct
cancer types, help us to identify the unique features of
each cancer type, and help us to discover new cancer-
type-specific biomarkers. We hope PanDM will become
an indispensable tool for pan-cancer analyses.

Conclusion
Pan-cancer analyses provide an efficient means of learning
the common and varied characteristics shared by distinct
tumor types. Both similarities and differences between
cancer types can guide us to find better clinical thera-
pies. Despite the rapid accumulation of cancer genomic
profiles in the public data repositories, comprehensive
and systematic pan-cancer analyses are still limited due
to the lack of rigorous statistical methods. In this work,
we develop a novel model, PanDM, for pan-cancer methy-
lome analysis. PanDM facilitates the joint analysis of mul-
tiple distinct cancer methylation profiles and enhances
DM signal detection. In both the simulation study and real

data analysis, PanDM outperforms the traditional method
and offers a new perspective for pan-cancer DM patterns
with novel biological insights.

Methods
Parameter estimation by PanDM
According to the joint distribution in (2), the complete
log-likelihood function is

lnLcomp(�|Z, H, A) =
G∑

g=1

K∑

k=1
I
(
ag = k

)
lnπk

+
G∑

g=1

K∑

k=1
I
(
ag = k

) C∑

c=1
Hgc

[
lnqkc + lnNc1

(
zgc

)]

+
G∑

g=1

K∑

k=1
I
(
ag = k

) C∑

c=1
H̄gc

[
ln(1 − qkc) + lnNc0(zgc)

]
.

(3)

In the n-th iteration of the EM algorithm, we denote
the current parameter estimates as �(n) and derive the
following E-step and M-step.

In the E-step, we calculate the Q-function, the condi-
tional expectation of the log-likelihood, as follows:

Q
(
�|�(n)

)
= E

[
lnLcomp|Z, �(n)

]

=
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(lnπk) E

[
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(
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]
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(
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)]
E

[
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]}
.

(4)

Here, the conditional expectation for the cluster member-
ship of a CpG site g is calculated as

E
[
I
(
ag = k

) |Z, �(n)
]

= Pr
(

ag = k|Z, �(n)
)

= Pr
(
Z|ag = k, �(n)

)
Pr

(
ag = k, �(n)

)

∑K
j=1 Pr

(
Z|ag = j, �(n)

)
Pr

(
ag = j, �(n)

)

=
π
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∏C
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(
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) +
(
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kc

)
N (n)
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(
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[
q(n)
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(
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(
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N (n)
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(
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)] ,

(5)

where N (n)
c1

(
zgc

) = Nc1
(

zgc|μ(n)
c1 , σ (n)

c1

)
and the same

abbreviation applies to N (n)
c0

(
zgc

)
.

As Eq. (5) shows, the cluster membership for CpG site g
is determined by comparing the likelihood of its observed
p-values across all cancer types under the DM patterns
of each cluster. Subsequently, information is pooled over
cancer types.
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Meanwhile, the conditional probability of DM for CpG
site g given that it belongs to k becomes

E
[
I
(
ag = k

)
Hgc|Z, �(n)

]
= Pr

(
ag = k, Hgc = 1|Z, �(n)

)

= Pr
(

Hgc = 1|ag = k, Z, �(n)
)

Pr
(

ag = k|Z, �(n)
)

= q(n)

kc N (n)
c1

(
zgc

)
Pr

(
ag = k|Z, �(n)

)

q(n)

kc N (n)
c1

(
zgc

) +
(

1 − q(n)

kc

)
N (n)

c0
(
zgc

) .

(6)

As Eq. (6) involves q(n)

kc , the DM status of CpG site g in
cancer type c borrows strengths from the DM status of
other CpG sites in cluster k, and thus is more robust to
noise.

In the M-step, we maximize the Q-function with respect
to � and obtain new parameter estimates:

π
(n+1)

k =
∑G

g=1 E
[
I
(
ag = k

) |Z, �(n)
]

G
, (7)
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(12)

The two steps are iterated until ‖ �(n+1) − �(n) ‖ is
smaller than a pre-specified error tolerance bound ε.

We denote the estimates obtained from the EM algorithm as
�̂={

π̂k , q̂kc, μ̂jc, σ̂jc : k =1, · · · , K ; c = 1, · · · , C; j = 0, 1
}

.

Pattern number selection
PanDM adopts the BIC to determine the number of DM
patterns K. Specifically, for a given K, we calculate the BIC
as

BIC(K) = − 2lnL̂obs + (K − 1 + KC + 4C)lnG

= − 2
G∑

g=1
ln

K∑

k=1

{

π̂k

C∏

c=1

[
q̂kcNc1

(
zgc|μ̂c1, σ̂ 2

c1
)

+ (
1 − q̂kc

)
Nc0

(
zgc|μ̂c0, σ̂ 2

c0
)]

}

+ (K − 1 + KC + 4C)lnG.
(13)

The BIC values for different Ks are evaluated, and the one
with the smallest BIC is chosen as the optimal K, denoted
as K̂ .

DM pattern classification
Once the number of DM patterns K is determined, the
DM pattern for the kth group is estimated as Q̂k =(
q̂k1, q̂k2, . . . , q̂kC

)
. q̂kc represents the probability that a

CpG site belongs to group k and is DM in cancer type
c. For a given CpG site g, it is classified as belonging to
group kg = maxk

{
Pr

(
ag = k|Z, θ̂

)}
, and its DM pattern

is classified as that of group kg .

False discovery rate
To determine the DM status for each CpG site under
each cancer type, we calculate the false discovery rates
(FDRs) from the parameter estimates. The probability
that CpG site g is DM in cancer type c is calculated
as Pr

(
Hgc = 1|Z, �̂

)
= ∑K̂

k=1 Pr
(

ag = k, Hgc = 1|Z, �̂
)

.
Correspondingly, its local false discovery rate (fdr) [31] is

f̂drgc = Pr
(

Hgc = 0|Z, �̂
)

= 1 − Pr
(

Hgc = 1|Z, �̂
)

.

(14)

Following [31] and [58], the global FDR when setting the
threshold of local fdr at the cutoff τ becomes

F̂DR(τ ) =
∑G

g=1
∑C

c=1 f̂drgcI
(

f̂drgc ≤ τ
)

∑G
g=1

∑C
c=1 I

(
f̂drgc ≤ τ

) . (15)

Consequently, after converting all of the f̂drgc to F̂DRgc for
each CpG site in each cancer type, we call CpG site g as
DM in cancer type c if F̂DRgc ≤ t, where t is the level at
which we control the global FDR.

TCGA data collection and pre-processing
We collect level 3 Infinium 450K DNA methylation data
for 12 cancer types with at least 20 normal samples (see
Additional file 1, Table S3) from the Genomic Data Com-
mons Data Portal [59]. We first call DM for each sample
type using the InfiniumPurify function from the R pack-
age InfiniumPurify with the tumor purity effects adjusted.
InfiniumPurify models the methylation levels of normal
samples as a normal distribution and subtracts the nor-
mal signals from the tumor samples according to their
estimated tumor purities using a linear regression model
[22].

Among the 396,065 CpG sites in the real data, there are
115 and 204 missing values for BRCA and UCEC, respec-
tively. As PanDM can naturally incorporate missing data
into the model and borrow information from the other
CpG sites within the same cancer type and the DM status



Shi et al. BMC Medical Genomics 2020, 13(Suppl 10):154 Page 12 of 13

of the same CpG site in the other cancer types, we retain
all of the CpG sites with missing values.
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